
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 4 (2011) 327

he U.S. Navy’s Assessment Division (N81) integrates and prioritizes war-
fighting capability within resource constraints by using a joint campaign model

to represent “what it takes to win” in the complex arena of multiservice
regional conflict. N81 commissioned an assessment in the spring of 2006 to deter-
mine the feasibility and affordability of adding a maritime capability to the Synthetic
Theater Operations Research Model (STORM) to make it an acceptable campaign
model for the U.S. Navy staff. The result of this assessment was a partnership between
the U.S. Navy’s N81 and the U.S. Air Force Air Staff’s Studies and Analyses Director-
ate (A9), under the project name “STORM+.” Replacing a legacy campaign model
has broad impact on future investment decisions and can attract a wide range of
stakeholders with an even wider range of requirements. This article describes how an
APL team partnered with both the sponsor and the developer to implement systems
engineering concepts to ensure a successful replacement of the existing deterministic
U.S. Navy campaign model with a stochastic model created by adding a maritime war-
fare capability to STORM. The results indicate systems engineering can be successfully
applied to a large, complex software development effort as long as the cultures of both
the sponsor and the developer are appreciated and accommodated.

The Application of Systems Engineering to
Software Development: A Case Study

Robert L. Sweeney, Jeffrey P. Hamman,
and Steven M. Biemer

THE PURPOSE OF STORM+
The landscape of model development is littered with

the abandoned remains of needed analysis tools. They
lie discarded, rather than in use, often because they
could not achieve a useful set of capabilities constrained
sufficiently to maintain a manageable data input load

and an acceptably short run time. Such an outcome is
generally the result of too many stakeholders with dis-
parate analysis problems and varying granularity being
unwilling to compromise for a greater “good enough.”
They hold out for a sum of all requirements, which often

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 4 (2011)328

R.  L.  SWEENEY,  J.  P.  HAMMAN,  and  S.  M.  BIEMER

results in a terminated program that fails to meet any
requirements at all. Systems engineering provides a dis-
ciplined, structured process to keep the effort focused on
this greater “good enough”—the minimal set of require-
ments necessary and sufficient to meet a well-defined,
feasible need.1–4 This is the story of the challenges in
getting participants to accept systems engineering even
when the sponsor has decreed its use. The story describes
a collaboration of different professional cultures that
share the community of military modeling and simula-
tion (M&S) but, like most good stories, leads to a happy
ending that more than vindicates the trials and tribula-
tions, not to mention the investment of resources.

The sponsor for the STORM+ project was the
U.S. Navy’s Assessment Division in the Office of the
Chief of Naval Operations (OPNAV), known by their
office code as N81. In the world of U.S. Navy resource
requirements, N81 is OPNAV’s “honest broker” and
integrator. It produces capability analyses for both war-
fighting and warfighting support, integrating and pri-
oritizing capabilities within resource constraints and
balancing inputs from strong constituencies to recom-
mend a broad, affordable program to ensure that the
U.S. Navy can meet its role as defined by the National
Military Strategy.5

N81 analyses take advantage of M&S throughout
the modeling hierarchy pyramid depicted in Fig. 1. The
ultimate determination is how the program contrib-
utes to the joint (all armed services) campaign arena,
evaluating “what it takes to win” and the “so what?” of
any capability analysis or analysis of alternatives. How
a system or concept performs in a campaign with the
scope of a Desert Storm or Iraqi Freedom with multiple,
competing missions and capabilities from all of the U.S.
armed services and against the most capable projected
adversary is often the final discriminator for senior deci-
sion makers.

Since the early 1990s, N81’s campaign model has
been the Integrated Theater Engagement Model (ITEM),
consisting of air, land, and naval warfare modules that
permit realistic representations of capabilities from all
armed services in a common computer environment by
using a deterministic method to represent uncertainty
in outcomes. This deterministic approach can allow
greater fidelity of object attributes than a stochastic
approach, which requires a large number of model runs
and therefore longer run times to generate a distribution
of possible outcomes. With the rapid increase of com-
puting power and speed over the last 10 years, run time
for stochastic models has become less of a consideration.
Stochastic models are gaining broad acceptance for their
ability to provide the analyst a solution space rather
than a point solution based on an assumed probability.
Identifying an area of uncertainty around outcomes
increases the credibility of analysis and gives decision
makers more contexts with which to make a decision.

When N81 began looking for a stochastic model to
replace ITEM, the U.S. Air Force’s Synthetic Theater
Operations Research Model (STORM) was an attrac-
tive choice. First implemented in 2004, STORM is a
stochastic, discrete-event, data-driven simulation writ-
ten in the C++ programming language. STORM is
based on an architecture called the Common Analytic
Simulation Architecture (CASA), which is designed to
reduce development time and life-cycle costs for analytic
simulations, while minimizing dependencies between
software modules. STORM has an active and ongoing
development effort managed by the U.S. Air Force Air
Staff’s Studies and Analyses Directorate (A9) as well as
a growing users’ community that includes other U.S.
services, the Office of the Secretary of Defense, the
staff of the Chairman of the Joint Chiefs of Staff, and
international participation. It brings a variety of highly
desirable attributes, such as an open architecture, the
use of industry standards, low program and ownership
costs, and high adaptability because of its data-driven
format. N81 commissioned an assessment in the spring
of 2006 to determine the feasibility and affordability
of adding a maritime capability to STORM to make it
an acceptable campaign model for the U.S. Navy staff.
The result of this assessment was a partnership between
N81 and A9 under the project name “STORM+.” Tap-
ping into the convergence of a campaign model that
had been embraced by the U.S. Air Force, was used
within the Office of the Secretary of Defense, and had
captured the interest of the U.S. Marine Corps would
bring broad understanding and credibility to future
U.S. Navy studies.

Campaign models must be capable of joint force struc-
ture analysis, strategy assessments, and operational plan-
ning while providing metrics useful to decision makers.
Given the range of military activities that must be mod-
eled, the diversity of mathematical algorithms contained
within, and the interrelated trade-offs of attributes such
as run speed, granularity, and ease of use, there can be
little doubt that a campaign model is a complex system.

Larger
scope

More
resolution

STORM
and ITEM

Campaign

Physics and phenomenology

Systems engineering

Mission

Engagement

Figure 1.  Modeling pyramid, showing the location of the U.S. Air
Force’s STORM and the U.S. Navy’s ITEM in the modeling hierarchy.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 4 (2011) 329

APPLICATION OF SYSTEMS ENGINEERING TO SOFTWARE DEVELOPMENT

The development of a complex system requires systems
engineering throughout its life cycle, from requirements
generation through functional definition, development,
integration and testing, deployment, and operations
and support. Each user (modeler) and stakeholder (user
of the model’s output) is an advocate for certain model
capabilities and attributes. Some capabilities and attri-
butes are true requirements to achieve the overall objec-
tive, but others are only “nice-to-haves” that, although
desirable to some or even all of the user/stakeholder
community, bring unnecessary risk to performance,
cost, and schedule.

The U.S. Navy recognized that systems engineer-
ing could guide the development process, keeping it
headed efficiently toward the objective while coordinat-
ing the various disciplines represented by the stakehold-
ers, including M&S code writers, analysts, and decision
makers. Inherent to systems engineering also would be
a testing plan to verify that requirements were met and,
most importantly, to continually inform the sponsor on
the level of risk and to recommend courses of action
when the risk became too high. Embarking on a mul-
tiyear, multimillion-dollar model-development effort to
add maritime capability to STORM without a systems
engineer to monitor, assess, and report would have
invited, at a minimum, schedule delays and cost over-
runs and ultimately could have led to a final product
that did not meet the need originally identified as the
reason for replacing the legacy model.

SYSTEMS ENGINEERING PLAN
Systems engineering is built on the principle of main-

taining a total system perspective throughout the devel-
opment of a complex system, resolving design decisions
by using the highest context available. This principle
requires the systems engineer to continually focus on
five activities throughout the development life cycle:

1.	 Formulating and refining operational, functional,
and performance requirements

2.	 Identifying and decomposing the system’s function-
ality

3.	 Implementing that functionality into a feasible,
useful product

4.	 Verifying the system’s requirements, functionality,
and implementation

5.	 Managing inherent operational, technical, and pro-
grammatic risks

Whether in the first or the final stage of develop-
ment, the performance of these five activities drives
design decisions and leads to a structured approach.
However, applying a structured approach to software
development has always presented a challenge. Cre-

ativity, innovation, and rapid response are hallmarks of
modern software engineering; this was the case with the
STORM+ program.

The STORM+ developers used a form of agile soft-
ware development, an iterative life cycle model that
quickly produces prototypes that the user and developer
can evaluate to refine requirements and design. It is
especially well suited to small- to medium-sized projects
for which requirements are not firmly defined and where
the sponsor is willing to work closely with the developer
to achieve a successful product. The agile methodology
depends on this close sponsor–developer engagement.

As defined by its proponents, the agile methodology
is based on the following postulates:

•	 Requirements (in many projects) are not wholly
predictable and will change during the develop-
ment period. A corollary is that sponsor priorities
are likely to change during the same period.

•	 Design and construction should be integrated
because the validity of the design can seldom be
judged before the implementation is tested.

•	 Analysis, design, construction, and testing are not
predictable and cannot be planned with adequate
levels of precision.

Agile development relies heavily on the software
development team conducting simultaneous activities.
Formal requirements analysis and design are not sepa-
rate steps; they are incorporated in the coding and test-
ing of software. In this approach, quality and robustness
are evolved attributes of the product. Thus, the itera-
tions are to be built upon, rather than thrown away (see
chapters 20–24 in Ref. 4).

Although agile development works well, it is difficult
to reconcile with traditional systems engineering meth-
ods. Furthermore, the STORM development history has
used a series of spiral releases, scheduled approximately
every 6 months. It was important that introducing sys-
tems engineering into the development of a maritime
capability not break this cycle.

To conform to this 6-month periodicity, the
STORM+ development effort was initially divided
into a set of separate 6-month periods, with five spiral
releases (numbered 1 through 5) that culminated in
a formal release of STORM v2.0. Each spiral would
include additional functionality over the previous one;
however, the level of functionality would not be linear.
In fact, the first spiral would not involve a software
release at all but rather a set of design documents focus-
ing on the model infrastructure necessary to implement
maritime capability. The first four spiral releases would
be used to measure and evaluate the progress against
the maritime requirements. Before the spiral develop-
ment, however, two early phases would be completed:
requirements analysis and conceptual design. Figure 2
depicts this schedule.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 4 (2011)330

R.  L.  SWEENEY,  J.  P.  HAMMAN,  and  S.  M.  BIEMER

The version of STORM available to users at the
beginning of this effort was v1.6. Two additional ver-
sions would become available to general users: v1.7,
having limited maritime capability, and v2.0, having full
maritime capability.

The plan that evolved had to support agile develop-
ment used by the developer while maintaining the criti-
cal aspects of systems engineering. Figure 3 depicts the
process that integrates the two. Overlaid in maroon
on Fig. 3 are the names of the eight integrated prod-
uct teams (IPTs) listed next to the activities for which
they were responsible. As indicated, the Management,
Systems Engineering, Risk Management, and Data
Integrity IPTs had responsibilities throughout the pro-
cess. Although the IPTs had distinct, clearly defined
responsibilities, their membership was drawn from all
participating organizations, with some people serving
on more than one IPT. This mixed membership, along
with biweekly teleconferences that included representa-
tion from all IPTs, kept “stovepipes” from forming that
could lead to inefficiencies, miscommunications, and
other problems.

Requirements Analysis
Requirements analysis is a critical

component of systems engineering
and was at the heart of the STORM+
development effort. The require-
ments focused on what naval assets
(along with their attributes) and what
processes would be in STORM+. Ini-
tially identifying requirements was
not the challenging activity, because
they came from the capabilities of
the current ITEM. The challenge
was scoping this initial set of ITEM
capabilities into a manageable and
consistent set of requirements. The
goal was to establish a stable set of
requirements early. Constrained by
an ambitious schedule and a budget,
the requirements were not allowed to
creep beyond the goal of “ITEM-like”
capabilities, but they did evolve to
enhance clarity.

Functional Analysis
Although the requirements define the assets and pro-

cesses (the “what”) in the model, they do not define how
they are implemented (the “how”). Functional analysis
focused on the specifics of the naval asset interactions,
processes, and information architecture necessary to
implement the requirements.

Design, Development, and Unit Testing
The developer followed their agile approach for

design and development. Before each spiral develop-
ment effort, a general road map was published for
review and feedback. Once the road maps were under-
stood and agreed upon, a series of module design
documents were developed as the design and develop-
ment progressed. These documents described the gen-
eral design for each portion of the model addressed in
the spiral. Finally, code was engineered, followed by
unit testing on each module, which was performed by
the developer.

Feasibility
analysis

July
2006

January
2007

July
2007

January
2008

July
2008

January
2009

July
2009

January
2010

July
2010

STORM
v1.6

STORM+
Navy
Interim
Version

STORM
v1.7

STORM+
Navy
Alpha
Version

STORM
v2.0

Requirements
analysis

Conceptual
design Spiral 1 Spiral 2 Spiral 3 Spiral 4 Spiral 5

Figure 2.  The schedule for the STORM+ development effort.

ITEM
Capabilities

STORM+ requirements
document

STORM+ conceptual model

Development IPT

Requirements
IPT

• Management IPT
• Systems Engineering IPT
• Risk Management IPT
• Data Integrity IPT

Functional
Analysis IPT

CV&T IPT

Feedback

Each spiral

Test results

Code
release

Spiral road maps

Module design
documents

Whiteboard
sessions

STORM+
design

STORM+
functional
analysis

STORM+
CV&T

STORM+
requirements

analysis

STORM+
development

and unit testing

Figure 3.  The STORM+ systems engineering process, which incorporated agile devel-
opment while maintaining critical aspects of systems engineering. Names of the eight
IPTs are shown in maroon next to the activities for which they were responsible.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 4 (2011) 331

APPLICATION OF SYSTEMS ENGINEERING TO SOFTWARE DEVELOPMENT

Concurrent Verification and Testing
Concurrent verification and testing (CV&T) involved

the planning, execution, and reporting of the STORM+
spiral testing. Activities that were performed included
(i) verifying the mapping of requirements to conceptual
model to development products; (ii) assessing developer
unit testing; (iii) verifying and testing requirement repre-
sentation, initialization data, and hardware/software inte-
gration; and (iv) documenting and reporting activities.

As the lead systems engineer, APL was responsible
for ensuring that this process was followed as well as
identifying and mitigating risks throughout the pro-
gram. Accomplishing this responsibility meant signifi-
cant involvement in three of the four primary activities
depicted in Fig. 3—requirements analysis, functional
analysis, and CV&T—in addition to risk management.

The next section describes the actions performed
within these three activities and their outcomes that led
to the successful release of STORM v2.0. At the end of
the section is a discussion of risk management.

SYSTEMS ENGINEERING CONTRIBUTIONS
Requirements Development and Analysis

The STORM+ maritime requirements development
process began during an initial assessment of the abil-
ity of the U.S. Air Force’s STORM to support OPNAV
campaign analysis. The team of subject-matter experts
(SMEs) that N81 convened in May 2006 identified
broad maritime capabilities that would need to be added
to STORM to achieve an analysis capability compara-
ble to ITEM. “ITEM-like” capabilities would be a com-
bination of those demonstrated in STORM plus those
implemented in a STORM modification.

The Requirements IPT was responsible for identify-
ing, analyzing, and articulating the model requirements.
They surveyed ITEM users and campaign analysts for
model requirements necessary to provide maritime capa-
bilities in STORM+. Initially, more than 871 user needs
were identified and submitted for requirements analysis.

Proposed requirements went through several systems
engineering process steps (depicted in Fig. 4) before
being accepted as valid STORM+ requirements. First,
user needs were categorized into maritime capability cat-
egories (e.g., anti-submarine warfare, sea-based air and
missile defense, etc.). Second,
a requirements review was
completed that identified
and deleted duplicate and
nonspecific user needs. And
third, each requirement
was assessed to determine
whether it was represented in
ITEM and whether it could
be represented in STORM.

If a requirement was represented in ITEM, it was
designated as “In-ITEM.” If it was not, the requirement
was designated as “Out-ITEM.” If the requirement was
already represented in STORM, even if it was not com-
pletely met, it was designated as “In-STORM.” Finally, if
the requirement was not represented in STORM, it was
designed as “Out-STORM.”

Thus, the requirements were divided into four
categories:

1.	 In-ITEM/In-STORM
2.	 In-ITEM/Out-STORM
3.	 Out-ITEM/In-STORM
4.	 Out-ITEM/Out-STORM

These categories were used to prioritize the STORM+
requirements. Table 1 shows the resulting matrix for the
STORM+ requirements and their priorities.

This requirements analysis process produced 542
STORM+ requirements. After further assessment and
review by OPNAV and the U.S. Air Force, the number
of STORM+ requirements was reduced to 527.

The final product of this process was a STORM+
requirements document. Both the sponsor (N81) and
the model manager (A9) signed off on the STORM+
requirements document—N81 from the perspective of
what was needed and A9 from the perspective of feasi-
bility. This final set of requirements was split into two
categories: The first category represented 231 require-
ments that the existing STORM could not support and
needed to be added as “unique” development efforts;
the second category represented 296 requirements that

ITEM-based
analysis

Refinement
analysis

Initial
user needs

871 542

STORM+
requirements

v1.1

527

STORM+
requirements

v1.2Already
implemented
in STORM to
some degree

296

New to
STORM
231

Figure 4.  The requirements analysis process.

Table 1.  Matrix of STORM+ requirements and their priorities.

ITEM
Capabilities

STORM Capabilities

In-STORM Out-STORM

In-ITEM STORM+ requirement: priority 1 STORM+ requirement: priority 1

Out-ITEM STORM+ requirement: priority 2 Not a STORM+ requirement; deferred

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 4 (2011)332

R.  L.  SWEENEY,  J.  P.  HAMMAN,  and  S.  M.  BIEMER

STORM could support to some degree (those designated
In-STORM). The 231 unique STORM+ requirements
were provided to the STORM+ Functional Analysis
IPT to develop a STORM+ conceptual model for use by
the STORM+ developer. The In-STORM requirements
were provided to the CV&T IPT to determine whether
the STORM implementation was sufficient to fully meet
the requirement.

Functional Analysis Development
It is within the functional analysis development that

the first integration of systems engineering and agile
development occurred. A set of requirements is not suf-
ficient to start software development. The Functional
Analysis IPT was responsible for developing and main-
taining a STORM+ conceptual model. The conceptual
model was a document that described how the unique
STORM+ requirements should be implemented, from
a real-world operator’s perspective rather than from a
modeler’s perspective. The conceptual model’s purpose
was to

•	 Document traceability between requirements and
desired capabilities

•	 Provide a basis for preliminary design and other
planning activities by the developers

•	 Support the associated CV&T activity in relating
development plans to requirements

Development of the conceptual model was a col-
laboration between analysts who currently perform
campaign analysis for the U.S. Navy and the developers
of STORM. This collaborative approach was designed
to accommodate a compressed development timeline.
It also ensured that the resulting STORM+ model was
responsive to U.S. Navy analysis needs while retaining
its architectural integrity, the coherence of its meth-
odology, and the analysis capability on which users of
STORM had come to rely. The conceptual model also
helped improve the consistency of the analysts’ interpre-
tation of model capability before the developer initiated
code development.

The process for creating the
conceptual model was to con-
vene multiple whiteboard ses-
sions comprising selected SMEs
from the Functional Analysis,
Requirements, and CV&T IPTs
as well as the STORM+ devel-
oper. These whiteboard sessions
were designed to allow the SMEs
to interact freely with developers
while discussing model function-
ality to meet a given set of require-
ments. After each whiteboard
session, a Functional Analysis IPT

member was assigned to develop a conceptual model
description based on the discussions. These conceptual
model descriptions were combined into an integrated
STORM+ conceptual model that described an agreed-
upon method of implementing maritime requirements
into the existing STORM software. Figures 5 and 6
show examples of conceptual model products on com-
mand and control (C2) that were developed during a
whiteboard session.

Although many of the conceptual model sections
bore titles related to STORM+ requirement capabilities
(anti-air warfare, anti-submarine warfare, etc.), there
were also sections that described model functionality,
such as “Maritime Motion,” “Maritime Sensing,” and
“Maritime Prosecution, Engagement, and Damage.”
Each section of the conceptual model referenced the
unique and, if needed, the In-STORM requirements
for traceability.

The integration of developers with IPT SMEs in the
whiteboard sessions was beneficial in ensuring that the
functionality described did not adversely impact the
current STORM architecture. Where possible, existing
model architecture and functionality for ground and air
forces was reused for maritime functionality. If the exist-
ing functionality did not support a required maritime
function, then the whiteboard session members devel-
oped and mutually agreed on a solution.

Concurrent Verification and Testing
CV&T was divided into three phases. Phase I was

responsible for testing the naval capabilities that were
already in the existing STORM. Phase II was responsible
for testing functionality within the U.S. Navy Interim
release (spirals 1 and 2). And Phase III was responsible
for testing the U.S. Navy Alpha version (spirals 3 and 4).
Spiral 5 was released after maritime capability was fully
integrated into STORM and therefore was tested under
the existing procedures for STORM. Each testing phase
followed a similar process, shown in Fig. 7. After each
spiral test, results were fed back, in case revisions to

Figure 5.  Sample of a C2 product description in the STORM+ conceptual model.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 4 (2011) 333

APPLICATION OF SYSTEMS ENGINEERING TO SOFTWARE DEVELOPMENT

the development effort and the conceptual design (the
Functional Analysis IPT) were needed.

Testers were selected from organizations that support
OPNAV N81 analysis and have extensive experience in
campaign modeling. They were challenged to develop

test cases that grouped and sufficiently investigated
each STORM+ requirement and conceptual model
functionality.

Each test case described not only the requirements
to be tested but also a scenario, including technical,

Naval
command

Side

A particular ship

A class of ship

Subordinate
to

Subordinate
to

Operates
as

Subordinate
to

Subordinate
to

Assigned
to

Is

NavalCommand

NavalUnit

Side

TypeNavalAsset TypeAirAsset

NavalAssetNaval
unit

A group of
ships operating
together, executing
a conditional C2 plan

Naval-hosted air
units (and the air units’
commands) are defined

with their ship

Air units operate
either aircraft or SSMs
and receive ATO from

their air command

Naval
asset

 Type of
naval asset

Air
command

Air
unit

 Type of
air asset

AirCommand

Figure 6.  Sample implementation of the C2 product of Fig. 5 in the conceptual model. The sample shows naval unit organizational
relationships. ATO, air tasking order; SSMs, surface-to-surface missiles.

Conceptual Model
for STORM
Maritime

Functionality

Version 1.2.101
1 July 2008

 STORM+ phase testing
• Test developed capabilities
• Acceptance criteria for
 maritime warfare capability
• Include previous testing,
 deferred and partial

 Reviewed test cases
Include assessment of:
• Traceability to requirements
• Acceptance criteria
• Scenario definition
• How well test case
 addresses requirements

Initial STORM+ requirements were:
• Partitioned into modules
• Categorized as existing (“In-STORM”)
 capability or to-be-developed
 (“Unique”) capability

 Draft test cases
Included in template:
• Mapping to requirements
• Test description
• Acceptability criteria
• Scenario definition
• Test case objectives
• Test case steps

STORM+ simulation
test cases and results

1 Metric
2 Function
3 C2 and cross-model interaction
4 Asset behavior
5 Asset attribute
6 Other

Runs for
record are
conducted

SMEs review
test casesTest cases

drafted for
required test
elements

Module requirements prioritized on
the basis of relative contribution of the

required capability to simulation
implementation and use

Internal module
prioritization

Figure 7.  Defining and scoping the spiral testing process.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 4 (2011)334

R.  L.  SWEENEY,  J.  P.  HAMMAN,  and  S.  M.  BIEMER

operational, and environmental data as well as accept-
ability criteria. The Data Integrity IPT was responsible
for identifying data transformation algorithms needed
to convert existing scenario databases within the
U.S. Navy to STORM+ data files and for developing
specific test databases that met the needs of individual
test cases. The test cases were subsequently reviewed and
accepted by OPNAV SMEs before use.

Each test case explicitly defined acceptance criteria
that established the measures against which to judge
the appropriateness of a simulation for an intended use.
These criteria were developed by testers and reviewed
by the Requirements and Functional Analysis IPTs as
needed. Some fundamental properties of good accept-
ability criteria that were applied included the following:

•	 Criteria should map to the documented require-
ments.

•	 Criteria should be quantitative when practical but
may be supplemented by qualitative values provided
by the user and SMEs.

•	 Criteria should reflect the planned uses of the simu-
lation.

•	 Criteria should support the assessment of statistical
confidence in simulation results for intended uses.

Test Case Development Process
Each test suite followed a similar process for develop-

ing the underlying test cases. This process consisted of
the following steps.

•	 Step 1: Define test cases. A detailed description of
each test case was developed and documented with
a standard template. Each test case was mapped to
one or more requirements and applicable concep-
tual model sections and contained a description of
the test scenario, the testing procedure, the tester-
defined expected result, the test acceptability cri-
teria, and the overall test results. All test cases
required model runs; however, some portions of a
test case, specifically those that related to asset attri-
butes, could be verified by inspection of STORM+
input files and output reports.

•	 Step 2: Review of test cases by Functional Analy-
sis and Requirements IPTs. Initial test case descrip-
tions were reviewed by members of the Functional
Analysis and Requirements IPTs to ensure the test-
ing procedures met the intent of the STORM+
requirement or requirements.

•	 Step 3: Modify test cases as needed. Test cases
were modified as needed based on the review results.

•	 Step 4: Refine/debug test cases. Test cases were
implemented and prepared for model runs.

•	 Step 5: Run for record. Official test runs were con-
ducted, and the results were documented.

•	 Step 6: Develop test results matrix. A results
matrix summarizing the results of the test cases was
produced.

•	 Step 7: Archive test cases. Completed test cases
were archived to capture all of the test case descrip-
tions, associated input data, reviewer comments
and associated responses, test case results, test case
traceability matrices, and test case results matrices.
Testers defined the test procedures for each test
case and provided detailed documentation of the
steps that were taken to implement the test (e.g.,
which input files were modified, which output files
were reviewed, etc.). This level of detail served two
purposes. First, it provided testers with an under-
standing of how STORM is structured and what is
required to run the simulation. Second, it provided
a basis for follow-on regression testing.

Reporting Test Case Results
The results of a test case provided evidence of how well

the required capability was implemented in STORM+.
Test results were placed into one of five categories:

1.	 Requirement met. The simulation fully supports
the required capability and meets all the acceptabil-
ity criteria.

2.	 Requirement partially met. The simulation sup-
ports some elements of the required capability but
does not provide the complete functionality and/or
does not meet all the acceptability criteria.

3.	 Requirement not met. The test results indicate
that the simulation does not provide the required
capability and either there is no trace to future
development or the results do not meet any of the
acceptability criteria.

4.	 Testing deferred. The required capability does not
currently exist in the simulation but is planned in
future STORM+ development.

5.	 Not tested. Requirement not selected for testing on
the basis of a risk assessment (probability of a prob-
lem and overall impact to the model).

Test Results
Figure 8 shows the three test phases and the cate-

gorization of requirements through the phases. Phase I
testing focused exclusively on requirements that were at
least partially implemented in STORM. Each require-
ment was tested within one or more test cases and
placed into one of the five categories defined above. The
last category, not tested, was not used in Phase I.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 4 (2011) 335

APPLICATION OF SYSTEMS ENGINEERING TO SOFTWARE DEVELOPMENT

Requirements that did not meet the conditions to be
declared met were carried forward into Phase II. Addi-
tionally, new functionality implemented in development
spirals 1 and 2 was added to the requirements set to be
tested in this phase. The results of the testing placed
this new set of requirements into one of four categories.
Again, the not tested category was not used in Phase II.

The cycle was repeated for the final Phase III, with
the four categories becoming met, partially met, not
met, and not tested. The not tested category applied to
requirements that, for one of many possible reasons, were
not included in the Phase III testing. Reasons included
that the testing effort was descoped on the basis of a risk
assessment or that the requirement was deleted from the
original list, meaning that the sponsor no longer consid-
ered it a requirement in the initial version of STORM
with maritime capability. The number of requirements
in this category was ~16%,
and they dealt almost exclu-
sively with model usability
rather than with functional
representations.

Requirements deemed as
not met by the test team were
also few, at only 3%. After
Phase III testing, the spon-
sor chaired a final adjudica-
tion process that included
the leads from the Systems
Engineering, Requirements,
Functional Analysis, CV&T,
and Development IPTs. The
purpose was to review and
obtain final sponsor interpre-

STORM+
 requirements

Phase I
Met

Partially met

Tr
an

sf
er

 to
 n

ex
t p

ha
se

Tr
an

sf
er

 to
 n

ex
t p

ha
seDeferred

Phase II
Met

Partially met

Deferred

Phase III
Met

Not met

Partially met
Not tested
Not met

In-
STORM
296

New to
STORM
231

Figure 8.  Requirements transition through test phases.

tation of all requirements categorized as either partially
met or not met. In addition to accepting the results of
Phase III testing, the sponsor dropped one requirement
as being beyond the original scope, characterized others
as coding errors to be fixed immediately before release
of STORM v2.0, and designated one requirement for
future implementation and/or correction in subsequent
releases of the simulation.

Risk Management
Finally, the Risk Management IPT was responsible

for identifying, tracking, and reporting on all risks
throughout the project. Risk management consisted of
identifying, planning, mitigating, and retiring risks to
the program. Risks were handled by a combination of
methods. Any team member could identify and propose
a risk. The Risk Management and Systems Engineer-
ing IPTs reviewed all proposed risks, and if they were
accepted, a risk manager from outside of the Risk Man-
agement IPT was assigned to develop, execute, and
monitor a mitigation plan. The Risk Management IPT
was responsible for managing and documenting the
process, while identifying and mitigating specific risks
was spread across all of the IPTs. This process ensured
that the appropriate IPT took ownership for each
significant risk.

Once the risk manager was convinced that the risk
had been successfully mitigated, he could apply to the
Risk Management IPT to retire the risk. When the Risk
Management IPT was convinced the risk was mitigated,
the IPT chair would petition the Systems Engineering
IPT for final risk retirement.

Figure 9 shows the number of risks tracked by program
phase; the correlation between testing and risk mitiga-
tion is obvious. Identification of program risk tends to
precede each test phase as test team members focus on
development products and potential testing issues. Risk
mitigation comes about through a variety of activities

Requirements
analysis

Conceptual
design Spiral 1

Phase I
testing

Phase II
testing

Phase III
testing

10

12

8

6

N
um

be
r o

f r
is

ks

4

2

Spiral 2 Spiral 3 Spiral 4 Acceptance
testing

Figure 9.  Number of program risks, by phase, tracked by the Risk IPT.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 4 (2011)336

R.  L.  SWEENEY,  J.  P.  HAMMAN,  and  S.  M.  BIEMER

and must be complemented with testing to provide
essential insights into the risk and confirm the effective-
ness of the mitigation. Although risk was assessed across
all aspects of the project—including schedule, resources,
and model performance—the dominant risk came from
the availability of qualified testers and its impact on
the number of requirements that could be tested and
retested if necessary. Mitigation for this risk involved
close monitoring of the progress, productivity, and avail-
ability of the testers to provide early visibility to man-
agement when testing organizations were experiencing
personnel turnover or resource issues. Through timely
reviews and management intervention, this risk was not
realized; sufficient experienced personnel were available
throughout the testing phases.

CONCLUSION AND LESSONS LEARNED
The APL systems engineering support to N81’s

STORM+ project was an unqualified success. The pro-
cess of taking a single-service campaign model and
modifying it to be embraced by another service was a
daunting task. The systems engineering methodologies
employed ensured that (i) requirements were identi-
fied, verified, and controlled in scope; (ii) requirements
were translated into conceptual models that could be
integrated into existing code; (iii) verification of the
implemented code was based on previously vetted
acceptability criteria; and (iv) feedback mechanisms
were in place to identify emergent modifications to
requirements and risk. Several critical lessons were
learned from the project:

•	 Systems engineering concepts are critical to manag-
ing software modification to existing applications.
This is especially true for projects of the scope and
size of STORM+.

•	 Systems engineering is compatible with and
enhances the relationship between software devel-
opment concepts (e.g., agile programming) and tra-
ditional requirements and concept development.

•	 Flexibility in applying systems engineering concepts
is key to maintaining active participation of project
participants that may have a broad range of experi-
ence with systems engineering.

•	 Systems engineering provides a framework and
environment for the various divergent support-
ing organizations to collaborate in integrating and
delivering a quality product.

Project participants were quick to recognize the role
of sound systems engineering tenets in keeping the proj-
ect on schedule and within budget, mitigating risk and
delivering the desired campaign modeling capability to
N81. We hope this example will provide future software
project teams the confidence to embrace systems engi-
neering as a dynamic framework for proactive project
management.

ACKNOWLEDGMENTS: We thank Robbin Beall, Head of
OPNAV’s Campaign Analysis Branch, for having the
vision to insist on having systems engineering involved
from the beginning, as well as Sunny Conwell and Jerry
Smith of OPNAV’s World Class Modeling Initiative for
empowering systems engineering within the project
organization at the right level to be effective. We also
thank the following APL staff members, each of whom
applied systems engineering principles in a practical
way to achieve the necessary results: Joseph Kovalchik,
the first STORM+ systems engineer, who established the
role systems engineering would play; Ngocdung Hoang,
who was instrumental in the structure and rigor of the
requirements process; Peter Pandolfini, who led the Risk
Management IPT; Simone Youngblood, who led the
CV&T IPT; and Alicia Martin, who led the Test Team. Sys-
tems engineering support for the STORM+ program was
sponsored by OPNAV.

REFERENCES
  1Kossiakoff, A., and Sweet, W. N., Systems Engineering Principles and

Practice: Wiley Series in Systems Engineering and Management, A. P. Sage
(ed.), John Wiley & Sons, Hoboken, NJ (2003).

  2Blanchard, B. S., and Fabrycky, W. J. (eds.), Systems Engineering and
Analysis (5th Ed.), Prentice Hall, Upper Saddle River, NJ (2010).

  3Kendall, K. E., and Kendall, J. E., Systems Analysis and Design
(8th Ed.), Prentice Hall, Upper Saddle River, NJ (2010).

  4Pressman, R. S., Software Engineering: A Practitioner’s Approach
(7th Ed.), McGraw Hill, New York (2009).

  5Chairman of the Joint Chiefs of Staff, The National Military Strat-
egy of the United States of America: A Strategy for Today; A Vision for
Tomorrow, http://www.defense.gov/news/mar2005/d20050318nms.pdf
(2004).

http://www.defense.gov/news/mar2005/d20050318nms.pdf

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 4 (2011) 337

APPLICATION OF SYSTEMS ENGINEERING TO SOFTWARE DEVELOPMENT

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

Robert L. Sweeney is a member of the Senior Pro-
fessional Staff in APL’s National Security Analy-
sis Department. A retired U.S. Navy officer with
experience in warfighting analysis with both the
U.S. Navy and Joint staffs, his current assignment
is as the Program Manager for the U.S. Navy’s
Resources, Requirements, and Assessment Direc-
torate (OPNAV N8), which includes their World
Class Modeling initiative. He has been an instruc-

tor in the Systems Engineering Program of The Johns Hopkins University Whiting School of Engineering since 2006.
Jeffrey P. Hamman is a member of the Senior Professional Staff in APL’s National Security Analysis Department and the
Systems Engineering IPT lead for the STORM+ task. He is an accomplished operations research analyst with more than
20 years of experience in DoD acquisition, M&S, test and evaluation, program management, operations research, systems
analysis, and military aviation weapon systems. Steven M. Biemer is a member of the Principal Professional Staff in APL’s
National Security Analysis Department. He is currently the coordinator for APL’s Systems Engineering Competency
Advancement program, with the goal of educating and training the technical staff in the latest systems engineering prin-
ciples and practices. Before taking on this role, he was the Program Area Manager for Naval Analyses and Assessments,
where he worked with U.S. Navy and U.S. Marine Corps organizations to define and conduct analytical assessments of
warfighting systems, platforms, architectures, and networks. Mr. Biemer has 25 years of systems engineering and analysis
experience with APL. Additionally, he is a curriculum developer and instructor for the Systems Engineering Program of
The Johns Hopkins University Whiting School of Engineering. For further information on the work reported here, con-
tact Robert Sweeney. His e-mail address is robert.sweeney@jhuapl.edu.

The Authors

Jeffrey P. HammanRobert L. Sweeney Steven M. Biemer

mailto:robert.sweeney@jhuapl.edu

