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hen designing missile guidance laws, all of the 
states necessary to mechanize the implementation 

are assumed to be directly available for feedback to the 
guidance law and uncorrupted by noise. In practice, however, this is not the case.  
The separation theorem states that the solution to this problem separates into the 
optimal deterministic controller driven by the output of an optimal state estimator. 
Thus, this article serves as a companion to our other article in this issue, “Modern 
Homing Missile Guidance Theory and Techniques,” wherein optimal guidance laws 
are discussed and the aforementioned assumptions hold. Here, we briefly discuss the 
general nonlinear filtering problem and then turn our focus to the linear and extended 
Kalman filtering approaches; both are popular filtering methodologies for homing 
guidance applications. 

INTRODUCTION
Our companion article in this issue, “Modern Homing 

Missile Guidance Theory and Techniques,” discusses lin-
ear-quadratic optimal control theory as it is applied to 
the derivation of a number of different homing guidance 
laws. Regardless of the specific structure of the guidance 
law—e.g., proportional navigation (PN) versus the “opti-
mal guidance law”—all of the states necessary to mech-
anize the implementation are assumed to be (directly) 
available for feedback and uncorrupted by noise. We 
refer to this case as the “perfect state information  

problem,” and the resulting linear-quadratic optimal 
controller is deterministic. For example, consider the 
Cartesian version of PN, derived in the abovementioned 
companion article and repeated below for convenience: 

 ( ) [ ( ) ( ) ] .u t
t

x t x t t3
PN

go
go2 1 2= +  (1)

Examining Eq. 1, and referring to Fig. 1, the  
states of the PN guidance law are ( ) – ,x t r rT M1 y y
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( ) –x t v vT M2 y y
_  (that is, components of relative 

position and relative velocity perpendicular to the refer-
ence x axis shown in Fig. 1). Recall from the compan-
ion article that the relative position “measurement” is 
really a pseudo-measurement composed of noisy line-of-
sight (LOS) angle and relative range measurements. In 
addition to relative position, however, this (Cartesian) 
form of the deterministic PN controller also requires 
relative velocity and time-to-go, both of which are not 
(usually) directly available quantities. Hence, in words, 
the relative position pseudo-measurement must be fil-
tered to mitigate noise effects, and a relative velocity 
state must be derived (estimated) from the noisy rela-
tive position pseudo-measurement (we dealt with how 
to obtain time-to-go in the companion article men-
tioned above). Consequently, a critical question to ask 
is: Will deterministic linear optimal control laws (such as 
those derived by using the techniques discussed in our com-
panion article in this issue) still produce optimal results 
given estimated quantities derived from noisy measure-
ments? Fortunately, the separation theorem states that 
the solution to this problem separates into the optimal  

Figure 1.	 	 Planar	 engagement	 geometry.	 The	 planar	 intercept	
problem	is	illustrated	along	with	most	of	the	angular	and	Carte-
sian	 quantities	 necessary	 to	 derive	 modern	 guidance	 laws.	 The	
x  axis	 represents	 downrange	 while	 the	 y/z	 axis	 can	 represent	
either	crossrange	or	altitude.	A	flat-Earth	model	is	assumed	with	
an	 inertial	 coordinate	 system	 that	 is	 fixed	 to	 the	 surface	 of	 the	
Earth.	The	positions	of	 the	missile	 (M)	and	target	 (T)	are	shown	
with	respect	to	the	origin	(O)	of	the	coordinate	system.	Differen-
tiation	of	the	target–missile	relative	position	vector	yields	relative	
velocity;	double	differentiation	yields	relative	acceleration.
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deterministic controller driven by the output of an opti-
mal state estimator.1–6 In this article, we will introduce 
the optimal filtering concepts necessary to meet these 
needs.

In general terms, the purpose of filtering is to develop 
estimates of certain states of the system, given a set of 
noisy measurements that contain information about the 
states to be estimated. In many instances, one wants to 
perform this estimation process in some kind of “opti-
mal” fashion. Depending on the assumptions made about 
the dynamic behavior of the states to be estimated, the 
statistics of the (noisy) measurements that are taken, and 
how optimality is defined, different types of filter struc-
tures (sometimes referred to as “observers”) and equa-
tions can be developed. In this article, Kalman filtering 
is emphasized, but we first provide some brief general 
comments about optimal filtering and the more general 
(and implementationally complex) Bayesian filter.

BAYESIAN FILTERING
Bayesian filtering is a formulation of the estimation 

problem that makes no assumptions about the nature 
(e.g., linear versus nonlinear) of the dynamic evolution of 
the states to be estimated, the structure of the uncertain-
ties involved in the state evolution, or the statistics of the 
noisy measurements used to derive the state estimates. It 
does assume, however, that models of the state evolution 
(including uncertainty) and of the measurement-noise 
distribution are available. 

In the subsequent discussions on filtering, discrete-
time models of the process and measurements will be 
the preferred representation. Discrete-time processes 
may arise in one of two ways: (i) the sequence of events 
takes place in discrete steps or (ii) the continuous-time 
process of interest is sampled at discrete times. For our 
purposes, both options come into play. For example, 
a radar system may provide measurements at discrete  
(perhaps unequally spaced) intervals. In addition, the fil-
tering algorithm is implemented in a digital computer, 
thus imposing the need to sample a continuous-time 
process. Thus, we will begin by assuming very general 
discrete-time models of the following form:

 
( , )

( , ) .
x f x w

xy c
– –1 –1k k k k

k k k k

1



=
=  (2)

In Eq. 2, xk  is the state vector at (discrete) time k, 
the process noise w –k 1  is a functional representa-
tion of the (assumed) uncertainty in the knowledge 
of the state evolution from time k – 1 to time k, y

k
 is 

the vector of measurements made at time k, and the 
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vector k  is a statistical representation of the noise 
that corrupts the measurement taken at time k. We 
will revisit continuous-to-discrete model conversion  
later.

Eq. 2 models how the states of the system are assumed 
to evolve with time. The function f –k 1 is not assumed to 
have a specific structure other than being of closed form. 
In general, it will be nonlinear. Moreover, no assump-
tion is made regarding the statistical structure of the 
uncertainty involved in the state evolution; we assume 
only that a reasonably accurate model of it is available. 
The second statement in Eq. 2 models how the measure-
ments are related to the states. Again, no assumptions 
are made regarding the structure of ck  or the statistics of 
the measurement noise.

Suppose that at time k – 1 one has a probability den-
sity that describes the knowledge of the system state at 
that time, based on all measurements up to and includ-
ing that at time k – 1. This density is referred to as the 
prior density of the state expressed as ( | )p x Y– –k k1 1
where Yk – 1 represents all measurements taken up to 
and including that at time k – 1. Then, suppose a new 
measurement becomes available at time k. The problem 
is to update the probability density of the state, given 
all measurements up to and including that at time k. 
The update is accomplished in a propagation step and a  
measurement-update step.

The propagation step predicts forward the prob-
ability density from time k – 1 to k via the Chapman–
Kolmogorov equation (Eq. 3).7

 

d
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( | ) ( | )
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– – – –
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1 2 3444 444

1 2 344 44 1 2 3444 444
#

 
(3)

Eq. 3 propagates the state probability density function 
from the prior time to the current time. The integral is 
taken of the product of the probabilistic model of the 
state evolution (sometimes called the transitional den-
sity) and the prior state density. This integration is over 
the multidimensional state vector, which can render it 
quite challenging. Moreover, in general, no closed-form 
solution will exist.

The measurement-update step is accomplished by 
applying Bayes’ theorem to the prediction shown above; 
the step is expressed in Eq. 4:
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 (4)

Given a measurement y
k
, the likelihood function (see 

Eq. 4) characterizes the probability of obtaining that 
value of the measurement, given a state xk . The likeli-
hood function is derived from the sensor-measurement 
model. Equations 3 and 4, when applied recursively, 
constitute the Bayesian nonlinear filter. The posterior 
density encapsulates all current knowledge of the system 
state and its associated uncertainty. Given the posterior 
density, optimal estimators of the state can be defined.

Generally, use of a Bayesian recursive filter para-
digm requires a methodology for estimating the prob-
ability densities involved that often is nontrivial. 
Recent research has focused on the use of particle fil-
tering techniques as a way to accomplish this. Particle 
filtering has been applied to a range of tracking prob-
lems and, in some instances, has been shown to yield 
superior performance as compared with other filtering 
techniques. For a more detailed discussion of particle 
filtering techniques, the interested reader is referred  
to Ref. 7. 

KALMAN FILTERING
For the purpose of missile guidance filtering, the more 

familiar Kalman filter is widely used.3, 6, 8, 9 The Kalman 
filter is, in fact, a special case of the Bayesian filter. Like 
the Bayesian filter, the Kalman filter (i) requires models 
of the state evolution and the relationship between states 
and measurements and (ii) is a two-step recursive pro-
cess (i.e., first predict the state evolution forward in time, 
then update the estimate with the measurements). How-
ever, Kalman revealed that a closed-form recursion for 
solution of the filtering problem could be obtained if the 
following two assumptions were made: (i) the dynam-
ics and measurement equations are linear and (ii) the 
process and measurement-noise sequences are additive, 
white, and Gaussian-distributed. Gaussian distributions 
are described rather simply with only two parameters: 
their mean value and their covariance matrix. The 
Kalman filter produces a mean value of the state esti-
mate and the covariance matrix of the state estimation 
error. The mean value provides the optimal estimate of  
the states.

As mentioned above, discrete-time models of the pro-
cess and measurements will be the preferred representa-
tion when one considers Kalman filtering applications. 
In many instances, this preference will necessitate the 
representation of an available continuous-time model of 
the dynamic system by a discrete-time equivalent. For 
that important reason, in Box 1 we review how this pro-
cess is applied. In Box 2, we provide a specific example of 
how one can discretize a constant-velocity continuous-
time model based on the results of Box 1.
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BOX 1. DEVELOPMENT OF A DISCRETE-TIME EQUIVALENT MODEL
We start with a linear continuous-time representation of a stochastic dynamic system, as shown in Eq. 5:

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) .

t t t t t t
t t t

x A x B u w

y Cx

= + +
= +

o
 (5)

In this model, x Rnd  is the state vector, u Rmd  is the (deterministic) control vector (e.g., guidance command applied to the 
missile control system at time t), y Rpd  is the measurement vector, w Rnd  and Rpd  are vector white-noise processes (with 
assumed zero cross-correlation), and t represents time. Matrices A, B, and C are compatibly dimensioned so as to support 
the vector-matrix operations in Eq. 5. The white-noise processes are assumed to have covariance matrices as given in Eq. 6:

 
[ ( ) ( )] ( – )
[ ( ) ( )] ( – ) . 

E t t
E t t
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R

T

T

� � �
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=
=

 (6)

In Eq. 6, E(·) represents the expectation operator defined as 
–3

( )E x = ( ) ,xp x dx
3#  where p(x) is the probability density 

of x. Above, note that the continuous Dirac delta function has the property that 
–3

( – ) ( )t f tf � � �� =( ) ,d
3#  for any f(·), 

continuous at t. Next, we consider samples of the continuous-time dynamic process described by Eq. 5 at the discrete 
times t0, t1, . . . , tk, and we use state-space methods to write the solution at time tk + 1

4, 6, 10:
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In Eq. 7, ( , ) t t e ( – )
k k

t tA
1 k k1=+ +  represents the system state transition matrix from time tk to tk + 1, where the matrix 

exponential can be expressed as ( – ) / ! .e t t kA( – )t t k
k k

k
k

A
10

k k1 = 3
+=

+ / 1, 3–5, 10 Note that if the dynamic system is linear 
and time-invariant, then the state transition matrix may be calculated as ( , ) [ – ] t t sI AL– –

k k1
1 1=+ " ,, where { }L–1 $  

represents the inverse Laplace transform and I is a compatibly partitioned identity matrix. Thus, using Eq. 7, we write the 
(shorthand) discrete-time representation of Eq. 5 as given below:
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In Eq. 8, the representation of the measurement equation is written directly as a sampled version of the continuous-time 
counterpart in Eq. 5. In addition, the discrete-time process and measurement-noise covariance matrices, Qk and Rk, respec-
tively, are defined as shown below:
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Here we have used the discrete Dirac delta function, defined as do = 1, dn = 0 for n  0. Thus, as part of the discretization 
process, we also seek the relationships between the continuous and discrete-time pairs {Q, Qk} and {R, Rk}. It can be shown 
that given the continuous-time process disturbance covariance matrix Q and state transition matrix , and referring to 
Eqs. 7 and 9, the discrete-time process disturbance covariance matrix Qk can be approximated as given in Eq. 104:

 ( , ) ( ) ( , ) . t t dQ Qk k
T

kt

t

1 1
k

k 1
. t t t t+ +

+#  (10)

To obtain an approximation of the measurement-noise covariance, we take the average of the continuous-time measurement 
over the time interval t = tk − tk − 1 as shown below4:
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From Eqs. 6, 9, and 11, we obtain the desired relationship between the continuous-time measurement covariance R and its 
discrete-time equivalent Rk:
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BOX 2. DISCRETIZATION EXAMPLE: CONSTANT-VELOCITY MODEL
Here, we illustrate (with an example) how one can derive a discrete-time model from the continuous-time representation. For 
this illustrative example, we consider the state-space equations associated with a constant-velocity model driven by Gaussian 
white noise (t) (i.e., the velocity state is modeled as a Weiner process4).
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(Compare the specific structure above to the general expression in Eq. 5.) In Eq. 13, the process and measurement-noise sta-
tistics are given by the following: E[(t)] = 0, E[(t)(t)] = Qd(t – t), E[(t)] = 0, E[(t)(t)] = Rd(t – t), and E[(t)(t)] = 0. We 
compute the state transition matrix k as [ – ] sI AL– –

k t T
1 1=

!
" , , where we have defined the sample time as T = tk + 1 − tk. 

Then, from Eq. 7, we obtain the following discrete-time representation for this system:
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(Compare the discrete-time representation in this example to the more general one shown in Eq. 8.) Based on the 
results of the previous subsection, the discrete-time process and measurement-noise components in Eq. 14 are given by 
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t# , respectively. Consequently, by using 

Eqs. 10 and 12, the discrete-time process and measurement-covariance matrices are computed as
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The Discrete-Time Kalman Filter
The theory says that the Kalman filter provides 

state estimates that have minimum mean square 
error.4, 11, 12 An exhaustive treatment and derivation 
of the discrete-time Kalman filter is beyond the scope 
of this article. Instead, we shall introduce the design 
problem and directly present the derivation results. To 
this end, we note that if xk  is the state vector at time 
k, and xkt  is an estimate of the state vector at time 
k, then the design problem may be stated as given 
below:
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The expressions in Eq. 16 embody the optimal design 
problem, which is to minimize the mean square esti-
mation error )}Y|{ ([ – ] [ – ]trace E x x x xk k k k

T
kt t  sub-

ject to the assumed plant dynamics and given a 
sequence of measurements up to time k represented by 
Y y y yk k1 2= , , ,f" ,.

As previously discussed, the discrete-time Kalman 
filter (algorithm) is mechanized by employing two dis-
tinct steps: (i) a prediction step (taken prior to receiv-
ing a new measurement) and (ii) a measurement-update 
step. As such, we will distinguish a state estimate that 
exists prior to a measurement at time k, x(–)

kt  (the 
a priori estimate) from one constructed after a measure-
ment at time k, x( )

k
+t  (the posteriori estimate). Moreover, 

we use the term Pk to denote the covariance of the 
estimation error, where [ – ][ – ]EP x x x x(–) (–) (–)

k k k k k
T= t t  

and ) ) )[ – ][ – ]EP x x x x( ( (
k k k k k

T=+ + +t t . In what follows, we 
denote x( )

0
+t  as our initial estimate, where [ ( )]Ex x 0( )

0 =+t .
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Based on this description, the discrete-time Kalman 
filter algorithm is encapsulated as shown in Table 1.

In Table 1, the filter operational sequence is shown in 
the order of occurrence. The filter is initialized as given 
in step a. Steps b and c are the two prediction (or extrap-
olation) steps; they are executed at each sample instant. 
Steps d, e, and f are the correction (or measurement-
update) steps; they are brought into the execution path 
when a new measurement y

k
 becomes available to the 

filter. Figure 2 illustrates the basic structure of the linear 
Kalman filter, based on the equations and sequence laid 
out in Table 1. 

Example: Missile Guidance State Estimation via Linear 
Discrete-Time Kalman Filter

In our companion article in this issue, “Modern 
Homing Missile Guidance Theory and Techniques,” 
the planar version of augmented proportional naviga-
tion (APN) guidance law, repeated below for conve-
nience (Eq. 17), requires estimates of relative position  
x1(t)  r(t), relative velocity x2(t)  v(t), and target accel-

eration x3(t)  a(t) perpendicular to the target–missile 
LOS in order to develop missile acceleration commands 
(see Fig. 1).

 ( ) ( ) ( ) ( )u t
t

x t x t t x t t3
2
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go

go go2 1 2 3
2= + +8 B (17)

Referring back to the planar engagement geom-
etry shown in Fig. 1, consider the following stochastic  
continuous-time model representing the assumed 
engagement kinematics in the y (or z) axis:
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In this example, the target acceleration state is 
driven by white noise; it is modeled as a Weiner pro-

cess.4 It can be shown that this model 
is statistically equivalent to a target 
maneuver of constant amplitude 
and random maneuver start time.13 
As in the previous discretization 
example, we assume that the process 
and measurement-noise statistics 
are given by the following relations: 
E[(t)] = 0, E[(t)(t)] = Qd(t – t), 
E[(t)] = 0, E[(t)(t)] = Rd(t – t), and 
E[(t)(t)] = 0.

If we discretize the continuous-
time system considered in Eq. 18, we 
obtain the following discrete-time 
dynamics and associated discrete-time 
process and measurement-noise cova-
riance matrices:
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Figure 2. The	block	diagram	of	the	discrete-time,	linear	Kalman	filter.

Table 1. Discrete-time Kalman filter algorithm.
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To illustrate the structure of the linear Kalman filter for the APN estimation prob-
lem, we will develop a block diagram of the filter based on the discrete-time model 
presented above. To help facilitate this, we assume that T is the rate at which mea-
surements are available and that the filter runs at this rate (in the general case, this 
assumption is not necessary). For this case, the equations presented in Table 1 can be 
used to express the estimation equation in the alternate (and intuitively appealing) 
form given below:

 [ – ] [ ] .��x I KC x u Ky( )
–

( )
k k k k1 – – –k k k1 1 1= + ++ +t t  (20)

Recall that, for APN, components of the state vector x  are defined to be relative 
position, ,x r1_  relative velocity, ,x v2_  and target acceleration, ,x aT3_  leading to 

.x x xx T
1 2 3_6 @  Therefore, using the system described by Eq. 19 in the alternate 

Kalman filter form shown in Eq. 20, we obtain the APN estimation equations below:
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Figure 3 depicts the structure dictated by the filtering equations above. Referring 
to Fig. 3, the makeup of the Kalman gain matrix, K, is shown below (see Eq. d in 
Table 1): 
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In this expression, T is the filter and measurement sample time (in seconds), Rr
2/s  

is the (continuous-time) relative position measurement variance (in practice, an esti-
mate of the actual variance), and pij represents the {i, j}th entry of the (symmetric) a 
priori error-covariance matrix P(–)

k  as given below:
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P(–)
k  is recursively computed using Eq. c in Table 1 and Eq. 19 to compute the 

Kalman gain. The a posteriori error-covariance matrix, ,P( )
k
+  is recursively computed 

by using Eq. f in Table 1 and leads to the following structure:
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To mechanize this filter, 
an estimate of the measure-
ment-noise variance, ,r

2s  is 
required. This parameter is 
important because it directly 
affects the filter bandwidth. 
There are a number of ways 
in which one may set or 
select this parameter. The 
conceptually simple thing 
to do is to set the param-
eter based on knowledge of 
the sensor characteristics, 
which may or may not be 
easy in practice because the 
noise variance may change 
as the engagement unfolds 
(depending on the type 
of targeting sensor being 
employed). Another, more 
effective, approach is to 
adaptively adjust or estimate 
the measurement variance 
in real time. See Ref. 14 for a 
more in-depth discussion on 
this topic.

Example: Discrete-Time APN 
Kalman Filter Performance

As a simple example, the 
Kalman filter shown in Fig. 3 
was implemented to estimate 
the lateral motion of a weav-
ing target. The total target 
simulation time was 5 s, 
and the filter time step (T) 
was 0.1 s. Figure 4 illustrates 
the results for this example 
problem. The target lateral 
acceleration (shown as aT 
in Fig. 3) was modeled as a 
sinusoidal function in the x1 
(lateral) direction with a 10-g 
amplitude and 5-s period. 
Motion in the x2 direc-
tion is a constant velocity 
of Mach 1 (1116.4 ft/s). The 
target initial conditions are 
x  = [0, 10,000]T (ft) and v   
= [0, 1116]T (ft/s) for position 
and velocity, respectively. 
The pseudo-measurement 
is the lateral position (x1), 
which was modeled as true 
x1 plus Gaussian white noise 
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with statistics N(0, s = 1 ft) for the “low-noise” case and 
N(0, s = 10 ft) for the “high-noise” case. The estimated 
states of the filter comprise target lateral position, veloc-
ity, and acceleration. The filter was initialized by first 
collecting four lateral position measurement samples 
{xM1(1), xM1(2), xM1(3), xM1(4)} and assigning the initial 
state values as shown below:
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As mentioned, two cases are shown in Fig. 4: (left) a 
low-noise case with a measurement standard deviation s = 
1 ft and (right) a high-noise case with measurement stan-
dard deviation of s = 10 ft. The error-covariance matrix 
was initialized as diag=| , ,P 1 225 2000ft0 1s = " ,  for the 
low-noise case and | diag= , , ,P 10 2000 50 000ft0 10s = " , 
for the high-noise case. For each case, the top plot shows 
the target position as x1 versus x2 (time is implicit). True, 
measured, and estimated positions are shown along with 
the 3s bounds. For the low-noise case, it is difficult to 
distinguish truth from measurement or estimate (given 
the resolution of the plot). For the high-noise case, the 
position estimation error is more obvious. The second-
row plots show the estimated and measured lateral posi-

Figure 3. APN	guidance	filter.	A	discrete-time	three-state	Kalman	filter	is	illustrated	here,	as	is	its	place	within	
the	guidance	loop.	The	filter	state	estimates	are	relative	position,	relative	velocity,	and	target	acceleration.	These	
estimates	are	passed	to	the	APN	guidance	law,	which	generates	the	acceleration	commands	necessary	to	achieve	
intercept.	Notice	that	a	perfect	interceptor	response	to	the	acceleration	command	is	assumed	in	this	simplified	
feedback	loop.
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tion error for each case. The third-row plots illustrate 
lateral velocity, and the bottom plots show lateral accel-
eration. It is clear that with the high-noise measurement, 
the estimates deviate from truth much more as compared 
to the low-noise case.

NONLINEAR FILTERING VIA THE EXTENDED 
KALMAN FILTER

The conventional linear Kalman filter produces an 
optimal state estimate when the system and measure-
ment equations are linear (see Eq. 5). In many filtering 
problems, however, one or both of these equations are 
nonlinear, as previously illustrated in Eq. 2. In particu-
lar, this nonlinearity can be the case for the missile 
guidance filtering problem. The standard way in which 
this issue of nonlinearity is treated is via the extended 
Kalman filter (EKF). In the EKF framework, the system 
and measurement equations are linearized about the cur-
rent state estimates of the filter. The linearized system of 
equations then is used to compute the (instantaneous) 
Kalman gain sequence (including the a priori and a pos-
teriori error covariances). However, state propagation 
is carried out by using the nonlinear equations. This  
“on-the-fly” linearization approach implies that the EKF 
gain sequence will depend on the particular series of 
(noisy) measurements as the engagement unfolds rather 
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topic.) Instead, we introduce the concept and present 
the results as a modification to the linear Kalman filter 
computations illustrated in Table 1. To start, consider 
the nonlinear dynamics and measurement equations 
given below, where the (deterministic) control and the 
process and measurement disturbances are all assumed 
to be input-affine:

 
( ) ( )

( ) .

x f x b x u w

y c x
– – – – – –k k k k k k k

k k k k

1 1 1 1 1 1


= + +

= +  (26)

As before, we assume that the system distur-
bances are zero-mean Gaussian white-noise sequences 
with the following properties: [ ]E w w Q –k i

T
k k id= , 

[ ] E R –k i
T

k k id= , and [ ] 0 ,E i kwk i
T 6= . In Eq. 26, 

, ,f b candk k k  are nonlinear vector-valued functions of 
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Consequently, we can modify the Table 1 linear Kalman 
filter calculations to implement the sequence of EKF 
equations (Table 2).

Notice that the step sequence is identical to the linear 
Kalman filter. However, unlike the linear Kalman filter, 
the EKF is not an optimal estimator. Moreover, because 
the filter uses its (instantaneous) state estimates to lin-
earize the state equations on the fly, the filter may quickly 
diverge if the estimation error becomes too great or if the 
process is modeled incorrectly. Nevertheless, the EKF is 
the standard in many navigation and GPS applications. 
The interested reader is referred to Refs. 4 and 8 for some 
additional discussion on this topic.

CLOSING REMARKS
In our companion article in this issue, “Modern 

Homing Missile Guidance Theory and Techniques,” a 
number of optimal guidance laws were derived and dis-
cussed. In each case, it was assumed that all of the states 
necessary to mechanize the implementation (e.g., rela-
tive position, relative velocity, target acceleration) were 
directly available for feedback and uncorrupted by noise 
(referred to as the perfect state information problem). In 
practice, this generally is not the case. In this article, we 
pointed to the separation theorem that states that an 
optimal solution to this problem separates into the opti-
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Figure 4. APN	Kalman	filter	results.	A	planar	linear	Kalman	filter	
is	applied	to	estimate	the	position,	velocity,	and	acceleration	of	
a	target	that	is	maneuvering	(accelerating)	perpendicular	to	the	
x1	coordinate.	The	filter	takes	a	position	measurement	in	the	x1	
direction.	 The	 (sensor)	 noise	 on	 the	 lateral	 position	 measure-
ment	 was	 modeled	 as	 true	 x1	 plus	 zero-mean	 Gaussian	 white	
noise	with	standard	deviation	σ.	The	target	maneuver	is	modeled	
as	a	sinusoid	with	a	10-g	magnitude	and	a	period	of	5	s.	Target	
motion	in	the	x2	direction	is	constant,	with	a	sea-level	velocity	of	
Mach 1	(~1116.4	ft/s).	Two	cases	are	shown:	(left)	a	low-noise	mea-
surement	 case	 (σ	=	1	ft)	 and	 (right)	 a	 high-noise	 case	 (σ	=	10	ft).	
The	 plots	 illustrate	 the	 true	 and	 estimated	 position,	 velocity,	
and	acceleration	of	the	target,	along	with	the	3σ	bounds	for	the	
respective	 estimate.	 For	 each	 case,	 the	 second-row	 plot	 shows	
the	errors	in	the	measured	and	estimated	position	compared	to	
truth	vs.	time.

than be predetermined by the process and measurement 
model assumptions (linear Kalman filter). Hence, the 
EKF may be more prone to filter divergence given a par-
ticularly poor sequence of measurements. Nevertheless, 
in many instances, the EKF can operate very well and, 
therefore, is worth consideration.

A complete derivation of the EKF is beyond the scope 
of this article. (See Refs. 3, 4, 11, and 12 for more on this 



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 1 (2010) 69

GUIDANCE FILTER FUNDAMENTALS

mal deterministic controller driven by the output of an 
optimal state estimator. Thus, we focused here on a dis-
cussion of optimal filtering techniques relevant for appli-
cation to missile guidance; this is the process of taking 
raw (targeting, inertial, and possibly other) sensor data 
as inputs and estimating the necessary signals (estimates 
of relative position, relative velocity, target acceleration, 
etc.) upon which the guidance law operates. Moreover, 
we focused primarily on (by far) the most popular of 
these, the discrete-time Kalman filter. 

We emphasized the fact that the Kalman filter shares 
two salient characteristics with the more general Bayes-
ian filter, namely, (i) models of the state dynamics and 
the relationship between states and measurements are 
needed to develop the filter and (ii) a two-step recur-
sive process is followed (prediction and measurement 
update) to estimate the states of the system. However, 
one big advantage of the Kalman filter (as compared to 
general nonlinear filtering concepts) is that a closed-
form recursion for solution of the filtering problem is 
obtained if two conditions are met: (i) the dynamics and 
measurement equations are linear and (ii) the process 
and measurement-noise sequences are additive, white, 
and Gaussian-distributed. Moreover, because discrete-
time models of the process and measurements are the  
preferred representation when one considers Kalman 
filtering applications, we also discussed (and illustrated) 
how one can discretize a continuous-time system for 
digital implementation. As part of the discretization 
process, we pointed out the necessity to determine the 
relationships between the continuous and discrete-time 
versions of the process covariance matrix {Q, Qk} and 
the measurement-covariance matrix {R, Rk}. Reasonable 
approximations of these relationships were given that are 

Table 2. Discrete-time EKF algorithm.
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appropriate for many applications. 
Finally, we recognize that most real-world dynamic 

systems are nonlinear. As such, the application of linear 
Kalman filtering methods first requires the designer to 
linearize (i.e., approximate) the nonlinear system such 
that the Kalman filter is applicable. The EKF is an 
intuitively appealing heuristic approach to tackling the 
nonlinear filtering problem, one that often works well 
in practice when tuned properly. However, unlike its 
linear counterpart, the EKF is not an optimal estima-
tor. Moreover, care must be taken when using an EKF 
because the approach is based on linearizing the state 
dynamics and output functions about the current state 
estimate and then propagating an approximation of the 
conditional expectation and covariance forward. Thus, 
if the initial estimate of the state is wrong, or if the pro-
cess is modeled incorrectly, the EKF filter may quickly 
diverge. 
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