ROBIN RAUL

NUMERICAL SOLUTION OF TURBULENT FLOWS

A new approach to turbulence modeling based on vorticity transport theory is described. A closed form
of turbulent Navier-Stokes equations, which are derived by carrying out a Lagrangian analysis of the vor-
ticity transport equation, is presented. To test the prediction capabilities of the model, two flow problems
representing bluff body flows in two and three dimensions—around a square prism and around a cube—are

simulated numerically using the model. Results are in

INTRODUCTION

Most flows in nature are turbulent. Although they are
governed by the laws of nature, flows pose a formidable
mathematical problem. Because turbulence occurs in
most flows of engineering and technological interest
(around aircraft, automobiles, submarines, and tall struc-
tures, for example), it has interested scientists since the
sixteenth century, when Leonardo da Vinci studied ed-
dies in a stream. Science has since made much progress
in the field of turbulence. Even though advances in ex-
perimental techniques have increased our understanding
of turbulence phenomena, theoretical analyses and pre-
diction methods have lagged.

This article surveys the difficulties in analyzing turbu-
lence modeling and discusses state-of-the-art modeling
techniques and solution methods. A new approach to tur-
bulence modeling is described, and examples of its appli-
cation are discussed. The article concludes with a look at
future turbulence research.

REYNOLDS STRESSES

Flow of a Newtonian fluid, such as water or air, is
described by Navier-Stokes equations that predict the
balance of momentum acting on a fluid element because
of various forces. In two dimensions with no external
body forces, they are
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and y momentum,
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where « and v are velocities in x and y directions, respec-
tively; 7 is time: p is pressure; and Re = uplp/v, is the
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good agreement with relevant experimental data.

Reynolds number. Here, uy, is the reference velocity, /i is
a characteristic length, and », is the kinematic viscosity.
These equations and the continuity equation, which is a
mathematical statement of the fact that the mass must be
conserved and is written in two dimensions as

ou  ov

completely specify a fluid flow.

The goal of fluid dynamics is to seek a complete solu-
tion to the system of Equations 1. 2, and 3, subject to a
given set of initial and boundary conditions. Difficulties
arise because of the mathematical complexity of Navier-
Stokes equations, which are inhomogeneous, nonlinear,
coupled, partial differential equations. Their nonlinearity
is responsible for the main difficulty in obtaining their
solution. In turbulence calculations, nonlinearity intro-
duces new terms in the equations, making the number of
unknowns greater than the number of equations. This
condition results in the so-called “closure problem,”
which is described in the following paragraphs.

The variables «. v. and p in Equations 1 and 2 are in-
stantaneous values that consist of a mean and a fluctuat-
ing part. Hence, they can be decomposed in the follow-
ing manner:

u=u+u’,

-
-

P

p=p+p’, (4)

where an overbar denotes the mean value and the prime
denotes the fluctuating component. This is called Rey-
nolds decomposition. Substitution of Equation 4 into
Equations 1 and 2 and subsequent averaging yield
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In tensor notation, Equations 5 and 6 can be written
jointly as
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The terms wu/, which are the correlations of the fluc-
tuating velocities, are known as Reynolds stresses be-
cause their form is similar to viscous stresses. As men-
tioned earlier, Reynolds stresses result from the non-
linearity of the Navier-Stokes equations and represent
the effect of turbulence on the mean flow field. Because
no analytical form of the new terms is available, un-
knowns outnumber the equations; consequently, the sys-
tem of equations is not closed, a problem that is at the
heart of the difficulties in turbulence simulations.

EDDY VISCOSITY

Turbulence is accompanied by two major effects on
the mean flow: diffusion (a great increase in the transport
rate of mass, momentum, and energy) and dissipation
(the conversion of kinetic energy into thermal energy).
Since both phenomena are associated with viscosity in
laminar flows, Boussinesq' postulated the following
form of Reynolds stresses:

ulu! = —v, (E + aT/j + 3 ko, (8)
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where », is called eddy or turbulent viscosity and k =
Fuj’/ 2 is turbulent kinetic energy. Unlike the laminar vis-
cosity »;, which depends only on the given fluid, the ed-
dy viscosity » can depend on flow Reynolds number,
flow geometry, buoyancy, and so on. To specify ,
Prandtl® proposed that, analogous to the laminar diffu-
sion, the eddy viscosity must also be proportional to a
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turbulence length scale / and a turbulence velocity scale
q; that is,

v.=Cuql, 9)

where C,, is either an empirical constant or a function of
dimensionless parameters. Equation 9 is known as the
“mixing length theory,” and / is known as the “mixing
length.” To use the mixing-length hypothesis in compu-
tations, it is necessary to specify the turbulence scales /
and q.

TWO-EQUATION MODELS

In earlier mixing-length models, ¢ and / were speci-
fied as algebraic functions of the mean variables. These
so-called “algebraic eddy viscosity models” are not suffi-
ciently accurate for nonsimple flows, that is, flows with
strong shear, separation, reattachment, recirculation, and
so on. One reason for this inadequacy is that the mixing-
length concept is based on local equilibrium; that is, it
assumes that the production and dissipation of the turbu-
lent kinetic energy at each point in the flow are equal.
Thus, the concept ignores the effects of turbulence trans-
port and history.

To overcome this drawback, Jones and Launder’ pro-
posed that ¢ and / should be obtained dynamically at ev-
ery point in the flow. In this “two-equation model,” or
k—e model, the turbulence velocity scale g = \/Z is ob-
tained by
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The transport equation for & is the mathematical state-
ment of the fact that the rate of change of turbulent kinet-
ic energy is influenced by convective transport by mean
motion (term {1}), production by mean velocity gra-
dients (term {2}), dissipation by viscosity (term {3}),
and diffusion by turbulent motion (term {4}). Equation
10 is derived from Navier-Stokes equations except for
term {4}, which has been added on the assumption that
the diffusion of k is proportional to the gradient of .
Here ¢, is an empirical constant.

Since the turbulence length scale (the length over
which dissipation occurs) is directly related to the turbu-
lent energy equation, an expression relating the two
quantities is required. Assuming that the dissipation rate
e is governed by turbulent motion characterized by ve-
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locity scale \/Z and length scale /. a dimensional analysis
leads to

€ o — .| (1815

Using Equations 11 and 9, the expression for the turbu-
lent viscosity becomes

v=C, —, (12)

where the constant of proportionality has been absorbed
in C,. Although an exact equation for € can be derived
from Navier-Stokes equations, and, to reduce it to a
computable form, assumptions of a highly empirical na-
ture are required, the dissipation rate equation is usually
written as
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is the dissipation rate; and C,, C,, and o, are model con-
stants. Here the terms {1} through {4} represent the
physical processes governing the rate of dissipation,
transport by convection and diffusion, and production
and dissipation, respectively. As can be seen from the
preceding equations. the two-equation model requires
five inputs: C,, oy, 0., C}, and C,. These constants are de-
termined from either experiments or from numerical cal-
culations.

The two-equation model contains many shortcom-
ings. For instance, the standard form of the model is ap-
plicable only to high Reynolds number flows. Its perfor-
mance is poor in low Reynolds number flows and re-
gions close to a solid wall (where viscous effects domi-
nate). Another fundamental deficiency of the k—e model
occurs with the use of the mixing-length concept. Inher-
ent in the mixing-length theory is the assumption that the
pressure does not affect the transport of momentum,
which is clearly unphysical. Many modifications have
been proposed to overcome these difficulties. Excellent
reviews are given by Ferziger,® Lakshminarayana,” and
Lumley.® Despite its drawbacks, the k—e model is widely
used in most engineering applications for two reasons:
no better prediction models requiring equivalent effort
exist, and the model still provides results of engineering
accuracy for simple flows.
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HIGHER-ORDER MODELS AND CHAOS

Higher-order turbulence models. such as the Reynolds
stress model used to solve equations for each of the Reyn-
olds stresses, require considerably greater computer re-
sources. Large eddy simulations are another class of
models through which only the small-scale eddy motions
are modeled and large eddies (coherent structures) are
computed. The era of supercomputers has resulted in di-
rect numerical simulations in which all scales of turbu-
lence are resolved on an extremely fine mesh that con-
tains several million grid points.

Inspired by the success of the theory of chaos in other
nonlinear dynamic systems, fluid dynamists have recent-
ly proposed using the same theory for simulating turbu-
lence statistics. Turbulence, which is governed by non-
linear dynamical equations and exhibits coherent struc-
tures, seems particularly well-suited to the tools of the
chaos theory. Some attempts are the study of the strange
attractor theory of turbulence,’ the prediction of chaos
for infinite dimensional dynamic systems,® and the use of
fractals in fluid mechanics.’

VORTICITY TRANSPORT THEORY

In 1915, G. L. Taylor proposed an alternative ap-
proach'” to turbulence modeling. He argued that vortici-
ty, which is twice the angular momentum of a fluid ele-
ment, and not linear momentum, is conserved in a two-
dimensional flow; hence, vorticity should be taken as the
transferable quantity instead of momentum. He showed
that vorticity transport theory is consistent with the phys-
ics and gives accurate predictions. Later he extended his
theory to three dimensions.'" but, since vorticity is not
conserved in three dimensions, he had to make several
restrictive assumptions. The theory’s final form. known
as the modified vorticity transport theory, was impracti-
cal in a computational sense. Consequently, vorticity
transport theory remained in the background.

Because vorticity dynamics play a major role in the
development of a fluid flow, many theoretical and ex-
perimental investigations of vortical structures in turbu-
lent flows have been made. The discovery of coherent
structures in turbulent boundary layers has further inten-
sified these efforts. Since Chorin'* showed that a work-
able transport model can be obtained using a coarse
graining hypothesis, renewed interest in vorticity gra-
dient law has resulted. The vorticity theory has been fur-
ther developed by Bernard'® and Bernard and Berger'
using a precise mathematical framework. Their scheme
relies on a Lagrangian analysis of the transport correla-
tions that were anticipated by Taylor but never complet-
ed. The resulting three-dimensional closure model is
called the mean vorticity and covariance (MVC) closure, a
brief description of which is given in the following para-
graphs.

Equation 7 can be transformed into the vorticity trans-
port form using the identity

o= d (uu/
F (1)) = —€;uf W' +X ('T’j . (14)
X b2
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where €, is the alternating tensor and w’s are the fluctu-
ating vorticity components. Substituting Equation 14 in-
to Equation 7 and replacing uu /2 by k, Equation 7 be-
comes

LT L S SN S i
a ey, T o Re 3x;0x,
+ et [ Wl . (15

This operation has converted the unclosed term contain-
ing the transport of linear momentum by turbulent fluc-
tuations to another unclosed term containing the trans-
port of vorticity. The Mvc closure is thus used to obtain
closed relations for the last term in Equation 15, which is
achieved by integrating the exact vorticity equation
along a particle path, forming the product u w}, and
analyzing each term in the ensuing expression. After
making several appropriate assumptions,'” the following
approximation is obtained:

uiwi=—uju,Tw, + Qujuy,w, , (16)

where T and Q are Lagrangian integral time scales. The
second term on the right side represents the nongradient
contribution to the correlation #w}. This expression is
used to close the momentum equanon (Eq. 15), and the
vorticity transport equation is obtained by taking the curl
of the closed momentum equation.

TWO-DIMENSIONAL MVC CLOSURE

In its most general form, the vorticity transport clo-
sure scheme used in computing two-dimensional flows
requires the solution of dynamical equations for the vor-
ticity mean w3 and four components $iis $00 $33. and {5
of the vorticity covariance {; = w/w/. If the flow is two-
dimensional in the mean, w, = w, = 0 and (3= {3=0.1In
the following discussion, the notation w = w; will be
used. Coupled to these equations are kinematic relations
from which the mean velocity field (u,, u,) is determined
from w and the Reynolds stresses u 2, 132, u%2, and uju}
are obtained from {;;. The mean velocity components can
be determined from a mean stream function ¥ by the re-
lations

. a
L= a‘:,l; (17)
and
- 6¢
h= g (18)
once the Poisson equation,
V=, (19)

is solved for .
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Because of the extensive computational requirements
entailed in solving for a complex nonsteady flow field,
just the trace { = {; of {}; is solved instead of separate
equations for each of the four separate components of {;.
Consequently, the kinematic problem of calculating uju/
from ; is reduced to one of computing only the turbulent
kinetic energy k from ¢{.

After some approximations warranted by the replace-
ment of {; by ¢, it follows that the dynamical equations
for w and { in two dimensions are, respectively,

0w dw 0 2 dw
—=—U; — +— + = kT
ot < ox; * ox; {( 3 j 6_\_,}
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where the summation is for j = 1, 2. Here, 7, S, Q,, and
Q, are Lagrangian integral time scales, I', = 4k/\%, T, =
(¢—3T'))/ 2, and A is a microscale, which is a measure of
the smallest eddies present in a given flow. These eddies
are mainly responsible for the dissipation and hence are
sometimes referred to as dissipation scale. The first and
second terms on the right sides of Equations 20 and 21
represent advection and diffusion processes, respective-
ly. The total diffusivity in each equation is given by v +
2/3kT, which reflects a viscous and turbulent contribu-
tion. The last two terms in Equation 20 account for vor-
tex stretching and shearing phenomena. Turbulence pro-
duction arising from the mean flow is accounted for in
the { equation by the third and fourth terms on the right
side. The second and the third-to-last terms in Equation
21 represent turbulence self-production effects, and the
final term expresses dissipation. (A discussion of the
derivation of Equations 20 and 21 can be found in Ref.
16.) The last term in Equation 20 results from the non-
gradient term of the closure relation, Equation 16, and
was neglected in the previous applications of the closure.
But since it has been shown that nongradient contribu-
tions can be of considerable importance,'” they were in-
cluded in the present applications.
A general kinematic relationship between { and & is

12k 1
Pesg + g V- Yk (22)
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and is derived as a simplification of the defining equa-
tions for the microscales associated with the two-point
Eulerian velocity correlation coefficient. Using the quan-
tities I', and T', defined previously, Equation 22 can be
expressed as { = 3T, + 2T,.

Equations 21 and 22 make it evident that an addition-
al relation from which N\ can be computed is needed in
the present approach. The relation can be developed
from a family of solutions for the decay of isotropic tur-
bulence that was first described by Sedov.'® One part of
the result is the microscale equation

Q=—§\/§>\+%, (23)

dt

where 6 is a constant proportional to the skewness factor
of the velocity derivative fluctuations. This relation
governs the variation of N in time from the initial state.
The first term on the right side reduces A by vortex
stretching, and the second is responsible for an increase
in A because of viscous diffusion. During the isotropic
decay process, A will change in time. In flows containing
a source of turbulence because of a mean shear, however,
it may be hypothesized that the opposing processes of
vortex stretching and viscous diffusion will be in balance
and that this equilibrium will be maintained at all times
in the face of changes in the mean flow field. It follows
that d\ /dt = 0 and, consequently, that

) 41/
)\'z l
5§

(24)

For this study, the time scales 7, Q,, O,, and S were
computed as in earlier applications.'”*" In particular, 7,
0,, and O, were set to constants, whereas the scale S was
given by

Csk

g =
v §*

(25)

where Cy is a constant and {* = 12k/ A%, an expression
suggested by dimensional arguments.>' An attractive fea-
ture of Equation 25 is that with it the stability of the {
equation can be virtually guaranteed, since the turbulent
self-production term in Equation 21 can be arranged to
be always bounded by the dissipation term. To see this,
note that Equations 22, 24, and 25 imply that

ISET, + 45T,I - 1‘;\‘2’ <0,
if
SR o T z _ggj
8- = (2‘3 53 )0
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Thus, finite solutions to Equation 21 should exist as long
as

(RSN |

=—==>0. (26)

This relation acts as a constraint on the selection of Cg
and 6 that must always be satisfied.

To summarize, the complete set of equations to be
solved consists of dynamical Equations 20 and 21 for w
and ¢, respectively, and kinematic Equation 19 for ¢ and
Equation 22 for k. Finally, N is given by Equation 24
and S by Equation 25. The externally supplied quantities
to the system of equations consist of the five constants,
T, Q. 05. Cs. and 6.

TEST PROBLEMS

The ultimate test of any theory is its ability to predict
accurately problems of practical importance. Here, two-
dimensional unsteady flow around a square prism and
three-dimensional flow around a cube are chosen as test
problems for several reasons:

1. They are representative of bluff body flows in two
and three dimensions, respectively. Such flow phenome-
na are associated with many technologically important
flows, such as those around aircraft fuselages, subma-
rines, automobiles. and tall structures.

2. They contain sufficiently complex flow phenomena
such as separation, recirculation, reattachment, and vor-
tex shedding, and make stringent test cases for testing
turbulence models.

3. Their simple geometry allows the use of a Carte-
sian grid, freeing up computer space for other things
such as finer grid resolution.

In the next section, numerical schemes used to solve
the two test problems are discussed. followed by results
of the computations and conclusions.

NUMERICAL SCHEME

The governing equations, given here for the two-
dimensional flow and given elsewhere'® for the three-
dimensional flow, were solved numerically. The com-
putational mesh used for the square flow and cube flow
is shown in Figures 1 and 2, respectively. For the cube
flow, it is necessary only to solve in the quarter domain
because the flow is symmetric about the y and : axes.
Consequently, Figure 2 shows only the quarter domain of
the cube flow field.

The spatial derivatives were approximated using sec-
ond-order central differences, and first-order backward
differences were used for the time derivatives. The dis-
crete equations were solved iteratively using a semi-im-
plicit successive-over-relaxation scheme in which the
computational space is swept in a systematic manner and
every alternate point is updated during each pass. Such a
technique is well-suited for vector computers. and sig-
nificant improvements in speed can be achieved.

The general procedure to advance the solution in time
is the same for both test cases, except that, for the cube,

Johns Hopkins APL Technical Digest, Volume 12, Number 3 (1991)



Numerical Solution of Turbulent Flows

Figure 1. Computational grid, square

flow.

cube

s
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Figure 2. Computational grid

flow.
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5. Finally, the turbulent kinetic energy k correspond-
ing to the new covariance field is obtained from the
The calculations were performed at Re = 2000 using a

mesh with 120 by 100 grid points in the x and y direc-

kinematic equation (Eq. 22), and the cycle is repeated.

Square Flow
tions, respectively. The computational domain, shown in

Figure 1, extended from —10 to +20 in the x direction and
—10 to +10 in the y direction, where the square has sides

of unit length. The time step was Ar = 0.001, and the

NUMERICAL RESULTS

Number 3 (1991)

5
<y

1. The mean vorticity w is advanced in time by solv-

ing Equation 20.
4. The covariance field { is next calculated using

3. With the new v field, the velocity components and
Equation 21.

hence the vorticity on the boundaries are obtained using

2. The mean stream function ¢ (the vector potential in
their definitions.

three dimensions) is then updated by solving the Poisson

the stream function is replaced by its three-dimensional
equation (Eq. 19).

analog—namely, the vector potential. A typical solution

cycle consists of the following steps:
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constants used in the turbulence model were set to 7' =
0.3, C5 =0.07, 6 = 0.037, Q, = 0.1, and O, = 0.01.

Figure 3 shows the variation of drag and lift during
several cycles of the computed flow field. The drag, as
expected, fluctuates at twice the shedding frequency. The
average drag coefficient, Cp, . = 2D/(pui/1). where D is
drag, p is the fluid density, u,, is free-stream velocity,
and / is the exposed area, was 2.05, and the lift coeffi-
cient varied between £0.39. The average drag compares
well with the experimental results of Lee,”” who found
Cpy.e = 2.05 at Re = 176,000, and of Nakaguchi et al..”
who measured Cp,, . = 2.05 at Re = 0(10%). It is also rela-
tively close to the values reported by Bearman and True-
man,>* who found Cp,,. = 2.2 for Re in the range from
20,000 to 70,000. The computed peak lift is considerably
less than the measured rms value of 1.31 at Re = 0(10°)
reported by Vickery,” or the peak lift of 1.4 for Re be-
tween 33,000 and 130.000 given by Nakamura and
Mizota.® The discrepancy may be a Reynolds number
effect because the current value of 2000 is much less
than that used in previous experiments. The predicted lift
could be severely affected by the proximity of the outer
boundary as well as by the coarseness of the mesh used
in the far field in the lateral direction. Such effects are of
great importance, particularly in two-dimensional calcu-
lations.

Figure 4 shows the variation of v at two locations on
the axis behind the square. It was observed that the maxi-
mum magnitude of the transverse velocity is about 0.82.
Further, no subharmonics were discerned in the present
calculations as was also true in experimental observa-
tions. On the basis of variations of lift, drag, and trans-
verse velocity, the average Strouhal number St = fa/u,,,
where f is the shedding frequency, « is the square side,
and u,, is the free-stream velocity, was calculated to be
0.147. This value is a little higher than the experimental
value of 0.135 at Re = 2000 reported by Davis and
Moore.”” Some significant scatter occurs in the data
presented for Sz. For example, the lowest value of St is
reported as 0.12 by Vickery.” and the highest is 0.138
given by Durao et al.”® Experiments show that the square
cylinder flow does not become Re-independent until af-
ter Reg= 10,000, when St achieves a constant value of
0.13.°

Figure 5 shows the instantaneous streamlines (left
column) and the associated vorticity fields (right
column) at several instants during one shedding cycle.
The sequence shows how vorticity created at the leading
sharp corners is alternately shed downstream. In Figure
6, the streamlines averaged over several cycles are
shown. Comparison of this figure with the results of
Durao et al.* reveals that the present prediction for wake
size at Re = 2000 is slightly larger than that at Re =
14,000, although the qualitative agreement is good. A
similar conclusion can be drawn from the distribution of
average axial velocity along the streamwise axis of the
square. Figure 7 shows the experimental results of Durao
etal.”® at Re = 14,000 compared with the present solution
and the numerical results of Durao et al.”’ using the k—e
turbulence model to solve for the square flow at Re =
14,000. In the latter calculation, the coefficients in the
k—e model were adjusted to obtain an accurate prediction
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Figure 3. Variation of drag and lift with time. Black line = drag.
Blue line = lift.
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Figure 4. Vertical velocity in wake. Black line: x; = 0.52. Blue
line: x; = 1.01.

of the size of the recirculation bubble. As is evident from
Figure 7, however, the magnitude of # was underpredict-
ed. and. in fact, no separation was found to occur on the
sides of the square. These deficiencies can be attributed
to the fact that the k—e model is unable to account for the
anisotropy, history, and transport effects in a complex
flow such as the present one.

Cube Flow

The cube calculations were performed at Reynolds
numbers of 2000 and 14.000 on the computational mesh
shown in Figure 2. As mentioned earlier, the computa-
tions were done on the quarter domain. The origin of the
coordinate system is set at the cube center. All lengths
are nondimensionalized with the cube dimension so that
the cube is of dimension unity, and the finite-difference
mesh extends from =5 to +5 in the x direction and — 4 to
0 in the two lateral directions. The computational mesh
was designed to provide maximum resolution near the
cube surfaces.

The values of the constants appearing in the turbu-
lence equations were set to 6 = 0.037, Cs = 0.007, T =
0.25, 0, = 0.1, and Q, = 0.01 for the computations at Re
= 2000, and to 6 = 0.01, C5 = 0.001, T = 0.25, 0, = 0.1,
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Streamlines Vorticity contours

Figure 5. Streamlines (left) and vorticity contours (right) at various stages during one shedding cycle.
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Figure 6.
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Figure 7. Averaged uy velocity on the square axis. Solid line:
present results. Solid circle: experiments by Durao et al.2® Open
triangle: k—e model calculation by Durao et al.

and O, =0.01 at Re = 14,000. The selection of the values
was based on previous studies of channel and jet flow
fields in which allowance was made for the differing
Reynolds numbers.

The drag coefficient calculated at Re = 2000 reached a
steady-state value of 1.23, whereas at Re = 14,000 it was
1.17. These values are compared with experimental data
in Figure 8, including a result of Nakaguchi’s.’’ who
measured drag coefficients of bars of square cross sec-
tion aligned with the flow. Extrapolation of the results
gives Cp for a cube as 1.17 for Re = 1.7 x 10°.
Nakaguchi also reported that the drag value did not show
any appreciable change for Re between 0.77 x 10° and

2.3 x 10°. An additional data point is given by Ander-
son,” who reported a value of Cp, = 1.09 for the cube
flow at Re = 3 x 10°. To further display what is to be ex-
pected at other Reynolds numbers, the drag caused by a
square flat plate held normal to the flow™ is also shown
in Figure 8 as well as some results for laminar flows
reported earlier.**

The character of the computed flow field can be
deduced from the series of velocity vector plots con-
tained in Figures 9 to 11 for the Re = 2000 solution. The
flow at Re = 14,000 shows many of the same features. A
view of the cube flow in the x—y plane through its mid-
point is shown in Figure 9. The wake is much longer here
as compared with the laminar case.** In contrast to the
laminar solution, a region of reverse flow occurs that ex-
tends about halfway along the sides of the cube. Flow
separation begins a little aft of the front edge and not ex-
actly at it, as has been observed in earlier studies of two-
dimensional bluff body flows.***® Along the side sur-
faces of the cube. a zone of relatively stationary fluid ex-
ists. The general attributes of the computed flow field
agree with experimental observations by Anderson™ at
Re = 3 x 10°, who observed that dye placed on the side
surfaces of the cube did not show significant motion.

A three-dimensional view of the complete separation
zone containing velocity vectors just off the surface is
shown in Figure 10. The view is from the rear of the cube
and shows that flow reversal reaches a maximum along
the central point of the sides, whereas none occurs near
the edges. An interesting vortical circulation pattern is
also evident as the flow negotiates past the front corners.
Near the rear edges of the cube the flow is away from the
corners.

Figure 11 is a view of the wake of the cube at x = 0.64.
The flow here is toward the cube to fill in the wake. The
motion on the rear face is toward the edges as a mani-
festation of the presence of counter-rotating vortical
pairs formed around each corner. This motion accounts
for the influx of high-speed fluid toward the center of the
rear edges of the cube.

Experimental or numerical predictions of turbulence
levels in the cube flow with which the present results
may be compared appear to be unavailable. Nonetheless,
to give some idea of the turbulent field computed in the
present example, contours of { in the central plane z =

l_l\lllll T T m—r‘l“rr T LI !IIII‘ T T 7T !lIHy T Y’Tﬁ_T_TTTTi T’T’YTY?‘!_
Cy ]
& - Figure 8. Drag versus Reynolds num-
iz = ber. Solid circles: present calculations.
3 _ Open triangle: Nakaguchi®! data. Solid
=L square: Anderson®? data. Solid line: flat
g _ plates normal to the flow. Dashed line:
= experiments by Raul.
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are shown in Figure 12. Extremely high levels of turbu-
lence are evident along the front edge of the cube, with
the greatest concentration at the sharp corner. Since the
turbulence produced here is unable to convect or diffuse
very far upstream of the cube, a relatively sharp interface
between the turbulence and upstream potential regions of
the flow is evident. The turbulence generated at the front
face convects outward and downstream, forming a de-
caying turbulent wake. Some additional turbulence is
generated as the fluid passes the rear edge of the cube.
Further insight into the computed turbulent field may
be obtained from Figure 13, which shows profiles of the
scaled turbulent kinetic energy k/u2, for the Re = 14,000
solution at several stations along and behind the cube.
The highest level of k occurs just off the front edge of the
cube on the line that is flush with the front face. The re-
gion of significant turbulent activity broadens outward
along the sides of the cube and into the wake. A slight
narrowing of the wake can also be observed as well as

Figure 10. Velocity vectors just off the cube surface at a Reyn-
olds number of 2000; three-dimensional view from rear.
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plane at a Reynolds number of 2000.
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the convection and diffusion of turbulence into the re-
gion directly behind the cube. Turbulence generated at
the rear edge of the cube is responsible for the secondary
peak in £ at this location.

Finally, to reveal the structure of the cube wake, some
particle traces were made. They were obtained by in-
troducing massless particles in the wake and then follow-
ing their time evolution. One such trace is shown in Fig-
ure 14, where the motions of three particles introduced in
the wake are plotted. The particles introduced in the cen-
ter plane and in a diagonal plane remain in their respec-
tive planes. A third particle introduced just above the
center plane moves toward the nearest diagonal plane in
a spiral motion.

CONCLUSIONS

A vorticity-based turbulence closure model has been
derived using Lagrangian analysis of the vorticity trans-
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Figure 13. Cross sections of scaled turbulent kinetic energy
k/u? at a Reynolds number of 14,000 at several stations along
and behind the cube.

port equation. The resulting closed set of equations is
used to solve two relatively complex flow problems:
flow around a square prism and flow around a cube. Un-
like the previous applications of the present model, the
nongradient terms are included in the formulation. The
results are in good agreement with the experimental data.
It is demonstrated that the present turbulence model can
predict complex flow problems in two as well as three
dimensions.

It is argued that closure models based on vorticity
transport (such as the present MvC model) have a clear
advantage over the ones that consider momentum trans-
port (such as the k—e model) because vorticity transport
more closely follows the actual physical process of tur-
bulence. In the future, it is proposed to carry out a more
detailed analysis of the various terms involved in the clo-
sure to determine their relative contributions. An alterna-
tive derivation of the closure that will be applicable in
the framework of primitive variables and its extension to
compressible flows is also planned.
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