
ROBIN RAUL 

NUMERICAL SOLUTION OF TURBULENT FLOWS 

A new approach to turbulence modeling based on vorticity tran port theor i de cribed. A closed form 
of turbulent Navier-Stokes equations, which are derived by carr ing out a Lagrangian analysis of the vor­
ticity transport equation, is presented. To test the prediction capabilitie of the model, two flow problems 
representing bluff body flows in two and three dimensions-around a quare pri m and around a cube-are 
simulated numerically using the model. Results are in good agreement with rele ant experimental data. 

INTRODUCTION 

Most flows in nature are turbulent. Although they are 
governed by the law of nature, flows pose a formidable 
mathematical problem. Because turbulence occurs in 
most flows of engineering and technological interest 
(around aircraft, automobiles, ubmarines, and tall truc­
tures, for example), it has interested scienti ts ince the 
sixteenth century when Leonardo da Vinci studied ed­
dies in a stream. Science has since made much progres 
in the field of turbulence. Even though advances in ex­
perimental techniques have increased our understanding 
of turbulence phenomena, theoretical analyses and pre­
diction methods have lagged. 

This article surveys the difficulties in analyzing turbu­
lence modeling and discusses state-of-the-art modeling 
techniques and solution methods. A new approach to tur­
bulence modeling is described, and examples of its appli­
cation are discussed. The article concludes with a look at 
future turbulence research. 

REYNOLDS STRESSES 
Flow of a Newtonian fluid , such as water or air, i 

described by Navier-Stokes equations that predict the 
balance of momentum acting on a fluid element because 
of various forces . In two dimensions with no external 
body force , they are 

x momentum, 

(1) 

and y momentum , 

av av av ap 1 (a1
)' a\ ,) 
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where u and \' are ve locities in x and y directions. respec­
tively; t is time; p is pre sure; and Re = uRiR/PI is the 
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Re nold number. Here. llR i the reference elocit . iR i 
a characteri tic length. and PI i the kinematic viscosity. 
The e equation and the continuit equation, which is a 
mathematical tatement of the fact that the rna s must be 
con erved and i written in t 0 dimen ions as 

(3) 

completel pecif a fluid flo\! . 
The goal of fluid d namic i to eek a complete solu­

tion to the tern of Equation 1, 2, and 3, subject to a 
given et of initial and boundar condi tions. Diffic ulties 
ari e becau e of the mathematical complexity of Navier­
Stoke equation, hich are inhomogeneous, nonlinear, 
coupled, partial diffi rentia) equation . Their nonlinearity 
i re pon ible for the main difficult in obtaining their 
solution. In turbulence calculation. nonlinearity intro­
duce new term in the equation. making the number of 
unknown greater than the number of equations. This 
condition re ult in the o-called "clo ure problem," 
which i de cribed in the folio ing paragraphs. 

The ariable ll. \ '. and p in Equation 1 and 2 are in­
tantaneou alue that con i t of a mean and a fluctuat­

ing part. Hence, the can be decompo ed in the follow­
ing manner: 

u=Ti+u'. 

)' = \' + \, ' , 

p=p+p', (4 

where an 0 erbar denote the mean value and the prime 
denote the fluctuating component. Thi i called Re -
nold decompo ition. Sub titution of Equation 4 into 
Equations I and 2 and ub equent averaging ield 
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x momentum, 

a - a-
- - (u'u') - - (u'v') , ax ay (5) 

and y momentum, 

a - a -
--(u'v')--(v 'v') . (6) ax ay 

In tensor notation, Equations 5 and 6 can be written 
jointly as 

(7) 

The terms u;uj, which are the correlations of the fluc­
tuating velocities, are known as Reynolds stresses be­
cause their form is similar to viscous stresses. As men­
tioned earlier, Reynolds stresses result from the non­
linearity of the Navier-Stokes equations and represent 
the effect of turbulence on the mean flow field. Because 
no analytical form of the new terms is available , un­
knowns outnumber the equations; consequently, the sys­
tem of equations is not closed, a problem that is at the 
heart of the difficulties in turbulence simulations. 

EDDY VISCOSITY 
Turbulence is accompanied by two major effects on 

the mean flow: diffusion (a great increase in the transport 
rate of mass , momentum, and energy) and dissipation 
(the conversion of kinetic energy into thermal energy). 
Since both phenomena are associated with viscosity in 
laminar flows , Boussinesql postulated the following 
form of Reynolds stresses: 

(8) 

where V t is called eddy or turbulent viscosity and k = 
u/uj/2 is turbulent kinetic energy. Unlike the laminar vis­
cosity Vb which depends only on the given fluid, the ed­
dy viscosity Vt can depend on flow Reynolds number, 
flow geometry, buoyancy, and so on. To specify Vt , 

Prandtl2 proposed that, analogous to the laminar diffu­
sion, the eddy viscosity must also be proportional to a 
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turbulence length scale I and a turbulence velocity scale 
q; that is, 

(9) 

where C /J. is either an empirical constant or a function of 
dimensionless parameters. Equation 9 is known as the 
"mixing length theory," and I is known as the "mixing 
length." To use the mixing-length hypothesis in compu­
tations, it is necessary to specify the turbulence scales I 
and q. 

TWO-EQUATION MODELS 
In earlier mixing-length models, q and I were speci­

fied as algebraic functions of the mean variables. These 
so-called "algebraic eddy viscosity models" are not suffi­
ciently accurate for nonsimple flows , that is, flows with 
strong shear, separation, reattachment, recirculation, and 
so on. One reason for this inadequacy is that the mixing­
length concept is based on local equilibrium; that is, it 
assumes that the production and dissipation of the turbu­
lent kinetic energy at each point in the flow are equal. 
Thus, the concept ignores the effects of turbulence trans­
port and history. 

To overcome this drawback, Jones and Launder3 pro­
posed that q and I should be obtained dynamically at ev­
ery point in the flow. In this "two-equation model," or 
k- E model, the turbulence velocity scale q = {k is ob­
tained by 

ak ak 
-+ u at I aXi 
~ 

{ I) {2) {3) 

a (Vt ak) 
+ aXi Uk aXi . 

I I 

{4} (10) 

The transport equation for k is the mathematical state­
ment of the fact that the rate of change of turbulent kinet­
ic energy is influenced by convective transport by mean 
motion (term {I}) , production by mean velocity gra­
dients (term {2) , dissipation by viscosity (term {3}) , 
and diffusion by turbulent motion (term {4). Equation 
10 is derived from Navier-Stokes equations except for 
term {4) , which has been added on the assumption that 
the diffusion of k is proportional to the gradient of k. 
Here Uk is an empirical constant. 

Since the turbulence length scale (the length over 
which dissipation occurs) is directly related to the turbu­
lent energy equation, an expression relating the two 
quantities is required. Assuming that the dissipation rate 
E is governed by turbulent motion characterized by ve-
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locity scale {k and length scale /, a dimensional analysi 
leads to 

E ex (11 ) 

Using Equation 11 and 9, the expre sion for the turbu­
lent viscosity become 

(12) 

where the constant of proportionality has been ab orbed 
in CIL" Although an exact equation for E can be derived 
from Navier- Stokes equations, and, to reduce it to a 
computable form , assumptions of a highly empirical na­
ture are required, the di sipation rate equation i u uall 
written as 

aE aE PE ? a E-
-+ U·- =CI- -C?-+ at 1 aXi k - k aXi 
~ 

{I} 

where 

L-.J ~ I 
{2} {3 } 

(
aUi + aUj) P = -u!u; aXj aXi 

(p, a, J 
aE aXi (13) 

I 
{4) 

is the dissipation rate; and C I> C2 , and aE are model con­
stants. Here the term {I} through {4} represent the 
physical processe governing the rate of diss ipation, 
transport by convection and diffusion. and production 
and dissipation , re pectively. As can be een from the 
preceding equation, the two-equation model requires 
five inputs: Cp. ab aE C I , and C2. The e con tant are de­
termined from either experiments or from numerical cal­
culations. 

The two-equation model contains many shortcom­
ings. For instance, the standard form of the model is ap­
plicable only to high Reynolds number flow . Its perfor­
mance is poor in low Reynolds number flow and re­
gions close to a olid wall (where vi cou effects domi­
nate). Another fundamental deficiency of the k-E model 
occurs with the use of the mixing-length concept. Inher­
ent in the mixing-length theory is the assumption that the 
pressure does not affect the transport of momentum , 
which is clearly unphysical. Many modifications have 
been proposed to overcome these difficultie . Excellent 
reviews are given by Ferziger,4 Lakshminarayana ,5 and 
Lumley.6 Despite its drawbacks , the k-E model is widely 
used in most engineering application for two reasons: 
no better prediction models requiring equivalent effort 
exist, and the model till provides result of engineering 
accuracy for simple flows. 
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HIGHER- ORDER MODELS A D CHAOS 

Higher-order turbulence model . uch a the Reynolds 
tre model u ed to 01 e equation for each of the Reyn­

old tre e . require con iderably greater computer re-
ource . Large edd imulation are another class of 

model through hich onl the mall - cale eddy motions 
are modeled and large eddie (coherent tructures) are 
computed. The era of up r omputer ha resulted in di­
rect numerical imulation in hich all cales of turbu­
lence are re 01 ed on an e tremel fine mesh that con­
tain everal million grid point . 

In pired b the ucce of the theory of chaos in other 
nonlinear dynamic tern. fl uid dynamists have recent­
I propo ed u ing the am theory for simulating turbu­
lence tati tic. Turbulence. which is governed by non­
linear d namical equation and exhibits coherent struc­
ture, eem particular! well-suited to the tools of the 
chao theor . Some attempts are the study of the strange 
attractor theor of turbulence,7 the prediction of chaos 
for infinite dimen ional dynamic systems,8 and the use of 
fractal in fluid mechanic .9 

VORTICITY TRA SPORT THEORY 

In 1915. G. I. Ta lor proposed an alternative ap­
proach 10 to turbulence mod ling. He argued that vortici ­
t , which i twice the angular mom ntum of a fluid ele­
ment. and not linear momentum. icon rved in a t 0-

dimen ional flow; hence. ortici hould be taken a the 
tran ferable quantit in tead of momentum. H ho d 
that orticit tran port theor icon i t nt with th ph -
ic and gi e accurate prediction. Later he e tend d hi 
theory to three dimen ion . 11 but, ince orti it i not 
con er ed in three dimen ion . he had to make e eral 
re tricti e a umption . The th ory ' final form, known 
a the modified orticit tran port theor, a impracti­
cal in a computational en e. Con equentl , vorticity 
tran port theory remained in the background. 

Becau e orticit d namic pia a major role in the 
de elopment of a fluid flo . man theoretical and ex­
peri mental inve tigation of ortical tructure in turbu­
lent flow ha e been made. The di covery of coherent 
tructure in turbulent boundary layers has further inten­

sified the e effort . Since Chorin 12 showed that a work­
able tran port model can be obtained using a coarse 
graining h pothe i , renewed interest in vorticity gra­
dient law ha re ulted. The vorticity theory has been fur­
ther de eloped b Bernard 13 and Bernard and Bergerl~ 
u ing a preci e mathematical framework. Their cherne 
relie on a Lagrangian anal i of the tran port correla­
tion that were anticipated b Ta lor but ne er complet­
ed . The re ulting three-dimen ional clo ure model i 
called the mean vortici t and covariance ( C ) clo ure, a 
brief de cription of which i g iven in the folIo ing para­
graph . 

Equation 7 can be tran formed into the orticit tran ­
port form u ing the identit 

(14 
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where Eijk is the alternating tensor and Wk'S are the fluctu­
ating vorticity components. Substituting Equation 14 in­
to Equation 7 and replacing u; u; /2 by k, Equation 7 be­
comes 

(15) 

This operation has converted the unclosed term contain­
ing the transport of linear momentum by turbulent fluc­
tuations to another unclosed term containing the trans­
port of vorticity. The MVC closure is thus used to obtain 
closed relations for the last term in Equation 15 , which is 
achieved by integrating the exact vorticity equation 
along a particle path, forming the product u; W'k> and 
analyzing each term in the ensuing expression. After 
making several appropriate assumptions, IS the following 
approximation is obtained: 

where T and Q are Lagrangian integral time scales. The 
second term on the right side represents the nongradient 
contribution to the correlation u; W'k' This expression is 
used to close the momentum equation (Eq. 15), and the 
vorticity transport equation is obtained by taking the curl 
of the closed momentum equation. 

TWO-DIMENSIONAL MVC CLOSURE 
In its most general form , the vorticity transport clo­

sure scheme used in computing two-dimensional flows 
requires the solution of dynamical equations for the vor­
ticity mean W3 and four components SII, S22' S33' and SI2 
of the vorticity covariance Sij == w(w;' If the flow is two­
dimensional in the mean, WI = W2 = 0 and S23 = SI3 = O. In 
the following discussion, the notation W = W3 will be 
used. Coupled to these equations are kinematic relations 
from which the mean velocity field (UI' U2) is determined 
from wand the Reynolds stresses u?, u6?, U )2, and U~U2 
are obtained from Sij' The mean velocity comronents can 
be determined from a mean stream function t/; by the re­
lations 

and 

- at/; 
U2=-­

aXI' 

once the Poisson equation, 

is solved for t/;. 
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(17) 

(18) 

(19) 

Numerical Solution of Turbulent Flows 

Because of the extensive computational requirements 
entailed in solving for a complex nonsteady flow field , 
just the trace S == Sii of Sij is solved instead of separate 
equations for each of the four separate components of Sij. 
Consequently, the kinematic problem of calculating ujuj 
from Sij is reduced to one of computing only the turbulent 
kinetic energy k from r-

After some approximations warranted by the replace­
ment of Sij by S, it follows that the dynamical equations 
for wand S in two dimensions are, respectively, 

and 

4 awaw - 2 
+-3 kTa--a +25wr l 

Xj Xj 

(20) 

(21) 

where the summation is for j = 1, 2. Here, T, 5, Q I , and 
Q 2 are Lagrangian integral time scales, r 1 = 4k FA 2, r 2 = 
(S - 3r 1)/ 2, and A is a microscale, which is a measure of 
the smallest eddies present in a given flow. These eddies 
are mainly responsible for the dissipation and hence are 
sometimes referred to as dissipation scale. The first and 
second terms on the right sides of Equations 20 and 21 
represent advection and diffusion processes, respective­
ly. The total diffusivity in each equation is given by "1 + 
2/3kT, which reflects a viscous and turbulent contribu­
tion. The last two terms in Equation 20 account for vor­
tex stretching and shearing phenomena. Turbulence pro­
duction arising from the mean flow is accounted for in 
the S equation by the third and fourth terms on the right 
side. The second and the third-to-last terms in Equation 
21 represent turbulence self-production effects, and the 
final term expresses dissipation. (A discussion of the 
derivation of Equations 20 and 21 can be found in Ref. 
16.) The last term in Equation 20 results from the non­
gradient term of the closure relation, Equation 16, and 
was neglected in the previous applications of the closure. 
But since it has been shown that nongradient contribu­
tions can be of considerable importance,17 they were in­
cluded in the present applications. 

A general kinematic relationship between sand k is 

S = 12k + ~ V k . V k 
",2 2k (22) 
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and is derived as a simplification of the defining equa­
tions for the microscales associated with the two-point 
Eulerian velocity correlation coefficient. Using the quan­
tities r I and r 2 defined previously, Equation 22 can be 
expressed as S = 3r I + 2r 2' 

Equations 21 and 22 make it evident that an addition­
al relation from which A can be computed is needed in 
the present approach. The relation can be developed 
from a family of solutions for the decay of isotropic tur­
bulence that was first described by Sedov. ls One part of 
the result is the microscale equation 

dA 

dt 

b 
2 

(23) 

where b is a constant proportional to the skewness factor 
of the velocity derivative fluctuations. This relation 
governs the variation of A in time from the initial state. 
The first term on the right side reduces A by vortex 
stretching, and the second is responsible for an increase 
in A because of viscous diffusion. During the isotropic 
decay process, A will change in time. In flows containing 
a source of turbulence because of a mean shear, however, 
it may be hypothesized that the opposing processes of 
vortex stretching and viscous diffusion will be in balance 
and that this equilibrium will be maintained at all times 
in the face of changes in the mean flow field. It follows 
that dA /dt = 0 and, consequently, that 

(24) 

For this study, the time scales T, Q I, Q']., and S were 
computed as in earlier applications. '9 ,2o In particular, T, 
Q 1, and Q2 were set to constants, whereas the scale S was 
given by 

(25) 

where Cs is a constant and s* == 12k/A2
, an expression 

suggested by dimensional arguments.21 An attractive fea­
ture of Equation 25 is that with it the stability of the S 
equation can be virtually guaranteed, since the turbulent 
self-production term in Equation 21 can be arranged to 
be always bounded by the dissipation term. To see this , 
note that Equations 22, 24, and 25 imply that 

if 
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Thus, finite solution to Equation 21 hould exist as long 
as 

7 2 Cs -b- - ->O 2 9 b . (26) 

Thi relation acts a a con traint on the selection of Cs 
and b that mu t alwa be ati fied. 

To ummarize, the complete et of equations to be 
sol ed consi t of d namical Equations 20 and 21lor W­
and s. re pecti el , and kinematic Equation 19 for if; and 
Equation 22 for k. Finall , A2 is given by Equation 24 
and S by Equation 25. The externally supplied quantities 
to the y tern of equation con i t of the five constants, 
T, QI, Q2, CS, and b. 

TEST PROBLEMS 
The ultimate test of an theory i its ability to predict 

accuratel problem of practical importance. Here, two­
dimensional un tead flow around a square prism and 
three-dimen ional flow around a cube are chosen as test 
problem for everal rea on : 

1. They are repre entati e of bluff bod flows in two 
and three dimensions. re pecti el . Such flow phenome­
na are as ociated with man technologically important 
flows, such as tho e around aircraft fu elages, subma­
rine automobile, and tall tructure. 

2. They contain ufficientl com pie flow phenomena 
such as separation, recirculation, reattachment, and vor­
tex hedding, and make tringent te t ca e for te ting 
turbulence model . 

3. Their imple geometry alIo the u e of a Carte-
ian grid, freeing up computer pace for other things 
uch a finer grid re olution. 

In the next ection, numerical cherne u ed to solve 
the two test problem are di cu ed. followed by results 
of the computation and coneIu ion . 

NUMERICAL SCHEME 
The governing equation , gi en here for the two­

dimensional flow and gi en el ewhere '6 for the three­
dimensional flow. were olved numerically. The com­
putational me hued for the quare flow and cube flow 
is hown in Figure 1 and 2, respectively. For the cube 
flow, it is nece ar onl to olve in the quarter domain 
because the flow i mmetric about the y and :: axe . 
Con equently, Figure 2 how only the quarter domain of 
the cube flow fie ld. 

The spatial deri ati e were approximated u ing ec­
ond-order central differences, and first -order back ard 
differences were u ed for the time derivati e . The di -
crete equations were solved iteratively using a semi-im­
plicit succes ive-over-relaxation scheme in which the 
computational space is wept in a ystematic manner and 
every alternate point i updated during each pa . Such a 
technique i well- uited for vector computer. and ig­
nificant improvement in peed can be achie ed . 

The general procedure to advance the olution in time 
i the arne for both te t ca es, except that. for the cube. 
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the stream function is replaced by its three-dimensional 
analog-namely, the vector potential. A typical solution 
cycle consists of the following steps: 

1. The mean vorticity w is advanced in time by solv­
ing Equation 20. 

2. The mean stream function tf; (the vector potential in 
three dimensions) is then updated by solving the Poisson 
equation (Eq. 19). 

3. With the new tf; field, the velocity components and 
hence the vorticity on the boundaries are obtained using 
their definitions. 

4. The covariance field t is next calculated using 
Equation 21. 
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Numerical Solution a/Turbulent Flows 

Figure 1. Computational grid , square 
flow. 

Figure 2. Computational grid, cube 
flow. 

5. Finally, the turbulent kinetic energy k cOlTespond­
ing to the new covariance field is obtained from the 
kinematic equation (Eq. 22), and the cycle is repeated. 

NUMERICAL RESULTS 

Square Flow 
The calculations were perfonned at Re = 2000 using a 

mesh with 120 by 100 grid points in the x and y direc­
tions, respectively. The computational domain, shown in 
Figure 1, extended from -10 to +20 in the x direction and 
-10 to + lOin the y direction, where the square has sides 
of unit length. The time step was t1t = 0.001, and the 
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constants u ed in the turbulence model were et to T = 
0.3, Cs = 0.07, 0 = 0.037, QI = 0.1 , and Q2 = 0.0l. 

Figure 3 how the variation of drag and lift during 
several cycle of the computed flow field. The drag, a 
expected, fluctuate at twice the shedding frequency. The 
average drag coefficient. COave = 2D/(pu~h) , where D i 
drag, p i the fluid den ity, lIoo i free- tream velocit , 
and h is the expo ed area wa 2.05, and the lift coeffi­
cient varied between ±0.39. The a erage drag compare 
well with the e peri mental re ult of Lee,22 who found 
COave = 2.05 at Re = 176,000. and of Nakaguchi et al. ,13 
who measured COave = 2.05 at Re = O( L04

) . It i al 0 rela­
tively close to the value reported by Bearman and True­
man,24 who found COa\'e = 2.2 for Re in the range from 
20,000 to 70,000. The computed peak lift icon iderably 
less than the mea ured rm alue of 1.31 at Re = 0(10") 
reported by Vicker ,25 or the peak lift of 1.4 for Re be­
tween 33,000 and 130,000 gi en b akamura and 
Mizota.26 The di crepanc ma be a Re nold number 
effect because the cunent value of 2000 i much Ie 
than that used in previou experiment. The predicted lift 
could be severely aff cted by the proximity of the outer 
boundary a well a by the coarsene of the me hued 
in the far field in the lateral direction. Such effect are of 
great imp0l1ance, particularly in two-dimen ional calcu­
lations . 

Figure 4 how the variation of l' at two location on 
the axis behind the square. It wa ob erved that the maxi­
mum magnitude of the tran er e velocity i about 0.82. 
Further, no ubharmonic were di cerned in the pre ent 
calculation a wa al 0 true in experimental ob erva­
tions. On the ba i of variation of lift. drag , and tran -
verse velocity, the average Strouhal number Sf = ja/uoo , 

where j i the hedding frequency, a i the quare ide, 
and Uoo is the free- tream velocity. wa calculated to be 
0.147. This value i a little higher than the experimental 
value of 0.135 at Re = 2000 reported by Davi and 
MooreY Some ignificant carter occur in the data 
presented for Sf. For example, the lowe t value of Sf i 
reported a 0.12 b Vicker ?5 and the highe t i 0.138 
given by Durao et al. 2 Experiment how that the quare 
cylinder flow doe not become Re-independent until af­
ter Re = 10,000, when Sf achieve a con tant alue of 
0.13.29 

Figure 5 how the in tantaneous treamline (left 
col umn) and the a ociated vorticit fields (right 
column) at everal in tant during one hedding cycle. 
The sequence how how vorticit created at the leading 
sharp corner i alternatel hed down tream. In Figure 
6, the streamline averaged over e eral c cle are 
shown . Compari on of thi figure with the re ult of 
Durao et al.28 reveals that the pre ent prediction for wake 
size at Re = 2000 i slightly larger than that at Re = 
14,000, although the qualitative agreement i good. A 
similar conclusion can be drawn from the di tribution of 
average axial velocity along the stream wi e axi of the 
square. Figure 7 how the experimental re ult of Durao 
et a1. 28 at Re = 14,000 compared with the pre ent olution 
and the numerical re ult of Durao et a1.30 u ing the k-E 
turbulence model to olve for the quare flow at Re = 
14,000. In the latter calculation, the coefficient in the 
k-E model were adju ted to obtain an accurate prediction 
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Figure 3. Variation of drag and lift with time. Black line = drag. 
Blue line = lift . 
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Figure 4. Vertical velocity in wake. Black line: X1 = 0.52. Blue 
line: x1 = 1.01. 

of the ize of th recirculation bubble. A i e ident from 
Figure 7. ho e er, the magnitude of u a underpredict­
ed, and, in fact , no paration a found to occur on the 
ide of the quare. The e defi iencie can be attributed 

to the fact that the k-E model i unable to account for the 
ani otrop . hi tor . and tran port effect in a complex 
flow uch a the pre ent one. 

Cube Flo 
The cube calculation ere performed at Reynolds 

number of _000 and 14.000 on the computational mesh 
hown in Figure _. A mentioned earlier, the computa­

tion were done on the quarter domain. The origin of the 
coordinate tern i et at the cube center. All length 
are nondimen ionalized with the cube dimen ion 0 that 
the cube i of dimen ion unit, and the finite-diff rence 
mesh extend from -5 to +5 in the x direction and - 4 to 
o in the two lateral direction . The computational me h 
wa de igned to pro ide rna imum re olution near the 
cube urface. 

The alue of the con tant appearing in the turbu­
lence equation were et to 0 = 0.037. C = 0.007. T = 
0.25, QI = 0.1. and Q2 = 0.0 I for the computation at Re 
= 2000, and to 0 = 0.01. C = 0.001 , T = 0._5. QI = 0.1. 
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Streamlines 

Numerical Solution of Turbulent Flows 

Vorticity contours 

Figure 5. Streamlines (left) and vorticity contours (right) at various stages during one shedding cycle. 
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Figure 6. Streamlines averaged over several cycles. 
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Figure 7. Averaged u1 velocity on the square axis. Solid line: 
present results . Solid circle: experiments by Durao et al.28 Open 
triangle : k-E model calculation by Durao et al.30 

and Q2 = 0.01 at Re = 14,000. The selection of the value 
was based on previou studies of channel and jet flow 
fields in which allowance was made for the differing 
Reynolds number . 

The drag coefficient calculated at Re = 2000 reached a 
steady-state value of 1.23 , whereas at Re = 14,000 it was 
1.17. These value are compared with experimental data 
in Figure 8, including a result of Nakaguchi 's,31 who 
measured drag coefficient of bars of quare cro ec­
tion aligned with the flow. Extrapolation of the re ult 
gives CD for a cube as 1.17 for Re = l.7 x 10:. 
Nakaguchi also reported that the drag value did not show 
any appreciable change for Re between 0.77 x 105 and 

2.3 x 10-. An additional data point is given by Ander­
son,32 who reported a alue of CD = 1.09 for the cube 
flow at Re = 3 x 10:. To further di play what is to be ex­
pected at other Reynold number, the drag caused by a 
quare flat plate held normal to the flow33 is also shown 

in Figure 8 a ell a orne re ults for laminar flows 
reported earlier. 3-l 

The character of the computed flow field can be 
deduced from the erie of elocity vector plots con­
tained in Figure 9 to 11 for the Re = 2000 solution. The 
flow at Re = 14.000 how man of the arne features. A 
view of the cube flo in the x-y plane through its mid­
point i hown in Figure 9. The wake is much longer here 
as compared with the laminar ca e.34 In contrast to the 
laminar olution, a region of re er e flow occurs that ex­
tends about half a along the ide of the cube. Flow 
eparation begin a little aft of the front edge and not ex­

actly at it. a ha been ob erved in earlier tudie of two­
dimen ional bluff bod flo .::-::.36 Along the ide ur­
faces of the cube, a zone of relatively stationary fluid ex­
it. The general attribute of the computed flow field 
agree with experimental observations by Anderson32 at 
Re = 3 x 10:: . who ob erved that dye placed on the side 
surfaces of the cube did not how significant motion . 

A three-dimen ional iew of the complete separation 
zone containing elocit ectors just off the surface is 
hown in Figure 10. The ie\i i from the rear of the cube 

and how that flow re er al reache a maximum along 
the central point of the ide. \ herea none occurs near 
the edge . An intere ting ortical circulation pattern is 
aloe ident a the flow negotiate pa t the front corners. 

ear the rear edge of the cube the flo i away from the 
corner . 

Figure 11 i a iew of the \ ake of the cube at x = 0.64. 
The flow here i toward th cube to fill in the wake. The 
motion on the rear face i toward the edge a a mani­
festation of the pre ence of counter-rotating vortical 
pair formed around each corner. Thi motion accounts 
for the influx of high- peed fluid toward the center of the 
rear edge of the cube. 

Experimental or numerical prediction of turbulence 
Ie els in the cube flow ith hich the present results 
rna be compared appear to be unavailable. Nonetheless, 
to give orne idea of the turbulent field computed in the 
pre ent example, contour of S in the central plane z = 0 

Figure 8. Drag versus Reynolds num­
ber. Solid circles: present calculations. 
Open triangle: Nakaguchi31 data. Solid 
square : Anderson32 data. Solid line: flat 
plates normal to the flow. Dashed line: 
experiments by Rau l. 16 
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are shown in Figure 12. Extremely high levels of turbu­
lence are evident along the front edge of the cube, with 
the greatest concentration at the sharp corner. Since the 
turbulence produced here is unable to convect or diffuse 
very far upstream of the cube, a relatively sharp interface 
between the turbulence and upstream potential regions of 
the flow is evident. The turbulence generated at the front 
face convects outward and downstream, forming a de­
caying turbulent wake. Some additional turbulence is 
generated as the fluid passes the rear edge of the cube. 

Further insight into the computed turbulent field may 
be obtained from Figure 13, which shows profiles of the 
scaled turbulent kinetic energy klu:, for the Re = 14,000 
solution at several stations along and behind the cube. 
The highest level of k occurs just off the front edge of the 
cube on the line that is flush with the front face. The re­
gion of significant turbulent activity broadens outward 
along the sides of the cube and into the wake. A slight 
narrowing of the wake can also be observed as well as 
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Figure 10. Velocity vectors just off the cube surface at a Reyn­
olds number of 2000; three-dimensional view from rear. 
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Figure 9. Velocity vectors on z = 0.0 
plane at a Reynolds number of 2000. 

the convection and diffusion of turbulence into the re­
gion directly behind the cube. Turbulence generated at 
the rear edge of the cube is responsible for the secondary 
peak in k at this location. 

Finally, to reveal the structure of the cube wake, some 
particle traces were made. They were obtained by in­
troducing massless particles in the wake and then follow­
ing their time evolution. One such trace is shown in Fig­
ure 14, where the motions of three particles introduced in 
the wake are plotted. The particles introduced in the cen­
ter plane and in a diagonal plane remain in their respec­
tive planes. A third particle introduced just above the 
center plane moves toward the nearest diagonal plane in 
a spiral motion. 

CONCLUSIONS 

A vorticity-based turbulence closure model has been 
derived using Lagrangian analysis of the vorticity trans-

Figure 11. Velocity vectors on x = 0.64 plane at a Reynolds 
number of 2000. 
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Figure 13. Cross sections of scaled turbulent kinetic energy 
klu; at a Reynolds number of 14,000 at several stations along 
and behind the cube. 

port equation. The re ulting cIo ed et of equation i 
used to solve two relatively complex flow problem : 
flow around a square prism and flow around a cube. Un­
like the previous applications of the present model , the 
nongradient terms are included in the formulation. The 
results are in good agreement with the experimental data. 
It is demonstrated that the present turbulence model can 
predict complex flow problems in two as well as three 
dimensions. 

It is argued that closure models based on vorticity 
transport (s uch as the present MVC model) have a clear 
advantage over the ones that consider momentum trans­
port (such as the k-E model) because vorticity transport 
more closely follow the actual physical process of tur­
bulence. In the future , it is proposed to carry out a more 
detailed analysis of the various terms involved in the clo­
sure to determine their relative contributions. An alterna­
tive derivation of the closure that will be applicable in 
the framework of primitive variables and its extension to 
compressible flows is also planned. 
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