
E. F. Martinez, R. M. Crockett, and I. A. Grissom

Johns Hopkins APL Technical Digest, Volume 37, Number 2 (2024), www.jhuapl.edu/techdigest134

H4H: An Open Framework for Rapid
Human–Machine Teaming Prototype Integration

Edgar F. Martinez, Rebecca M. Crockett, and Ian A. Grissom

ABSTRACT
Effective human–machine teaming systems are becoming critical to the success of the modern
warfighter. However, these systems are traditionally costly to develop because of the complex
integration of hardware and software components from disparate organizations and vendors. In
response to this challenge, Johns Hopkins University Applied Physics Laboratory (APL) researchers
developed the Human–Machine Interfaces for Human–Machine Teaming (H4H) architecture, a
platform that simplifies this complex integration. By modularizing components and simplifying
interfaces, H4H aims to reduce the overall cost to establish an initial prototype of a system while
enabling reuse of the system’s components.

proof-of-concept efforts, HMT prototypes could benefit
from these characteristics since many HMT concepts of
operations share hardware and software components.
Making these components modular and reusable could
save costs across multiple prototyping efforts.

Consider the following small-scale concept of
operations: a warfighter and an unmanned ground
vehicle (UGV), where the vehicle acts as scout that
reports nearby threats. The warfighter is equipped with
an augmented-reality (AR) display that visualizes the
threats detected by the UGV. Today, most prototype
development teams would purchase an AR display and
a viable UGV after a brief market survey and then inte-
grate these products. However, the initial system com-
ponents selected may need to be changed. For example,
the warfighter’s environment may change to terrain that
would require using an unmanned aerial vehicle (UAV)
instead of a UGV, or perhaps the development team is

INTRODUCTION
APL develops and evaluates new human–machine

teaming (HMT) technologies to augment the modern
warfighter and to enable the United States to hold a com-
petitive edge over current and future adversaries. HMT
refers to collaboration between humans and complex tech-
nologies to achieve a specific goal, and it relies on three
equally important elements: the human, the machine,
and the interactions between them. Because HMT
innovations are often a novel combination of existing
technologies, components are frequently rapidly proto-
typed and integrated so that new ideas can be evaluated
before too much time or money is invested in creating a
final design. However, improvements to current HMT
prototyping practices could lead to even more savings.

In general, developing prototypes reduces costs
because there is no concern with future modifica-
tions, extensions, or reuse when integrating compo-
nents. Although this practice makes sense for most

http://www.jhuapl.edu/techdigest

H4H: An Open Framework for Rapid Human–Machine Teaming Prototype Integration

Johns Hopkins APL Technical Digest, Volume 37, Number 2 (2024), www.jhuapl.edu/techdigest 135

asked to switch AR display vendors. In most cases, short-
term time and cost savings will discourage the team
from considering these scenarios. As a result, the initial
system implementation will be tightly integrated, and
any changes will incur reintegration costs.

To avoid these common pitfalls of prototyping, the
Human–Machine Interfaces for Human–Machine
Teaming (H4H) architecture facilitates component sub-
stitution and reuse while adding minimal design and
implementation overhead. H4H’s ultimate goal is to
lower the time and cost required to integrate, modify,
and extend HMT prototypes.

H4H OVERVIEW
H4H prototypes are built as a collection of small

components serving distinct purposes. H4H’s overall
design goals are to ensure that these components can
be replaced or updated as needed, to simplify or abstract
the interfaces between them, and to enable reliable or
semi-reliable transport of data across them. To achieve
these goals, H4H uses an open microservices architec-
ture and a publish-subscribe messaging framework built
for distributed components communicating over User
Datagram Protocol (UDP). The following subsections
summarize the concepts and the reasoning behind the
decisions that led to the final H4H design.

Open versus Closed Architectures
System architectures are categorized as open or closed.

In a closed system architecture, components are pre-
defined, and their interactions consist of proprietary pro-
tocols tailored to those specific components. Designing
the interactions between specific components, however,
usually leads to a tight coupling between components
and makes the system hard to modify or extend. In con-
trast, open architectures are designed with consideration
that existing components will possibly be replaced or new
ones introduced in the future. Instead of using proprietary
protocols and knowledge of the implementation details
of other components, the interactions between an initial
set of components in an open architecture will take place
through abstract interfaces and standardized protocols.
Designing interactions this way enables components to
remain loosely coupled and modular. Since HMT tech-
nologies are constantly evolving, it is impossible to pre-
define all the desired components in an HMT system.
Therefore, when considering rapid prototypes in the field
of human–machine systems, it is essential to consider the
use an open architecture to facilitate integration while
maintaining modularity for future development.

Microservices
With modular components, the functionality of one

component does not depend on the implementation

details of another component. This separation of logic
is the main idea behind the widespread use of microser-
vices architectures. In a microservices architecture,
software applications can be decomposed into several
loosely coupled single-function components referred to
as services. This functional organization enables each
individual service to be highly maintainable and easily
testable. Additionally, services can be tailored to specific
capabilities and to be owned by independent develop-
ment teams.1 Since HMT prototypes often use compo-
nents developed by different groups, H4H’s microservices
architecture has the potential to increase the develop-
ment speed of HMT prototypes. Instead of dwelling on
implementation and delivery details, teams will need to
agree only on the inputs and outputs of their services.
Then, they can work in parallel with minimal interde-
pendencies across components.

Publish-Subscribe Messaging
Data exchange in HMT systems tends to be event

driven. For this reason, H4H uses the publish-subscribe
messaging model to create abstract interfaces between
components. Publish-subscribe messaging involves chan-
nels in which one or more publishers can publish infor-
mation about an event. When information is published
to a channel, all of the channel’s subscribers receive the
information. In H4H, channels have predefined data
types to serve as an abstract interface through which any
number of publishers and subscribers (i.e., components)
can simultaneously interact. This quality makes extensi-
bility easier because new components need only adhere
to the data type of each channel to interact with other
components.

H4H Architecture Applied
As an example, H4H is applied to the concept of

operations of the warfighter with an AR headset and
a UGV (Figure 1). An adapter service is created and
deployed for each external hardware component (UGV
and AR display). In this context, an adapter service is
essentially software that acts as an interface between
an external component and an internal data chan-
nel. Adapter services are therefore tightly coupled to
their respective hardware but not to any other service.
The threat detection service is also decoupled from all
hardware. It consumes the data from the UGV adapter
through the sensor data channel and provides the AR
display service with data through the threat alert chan-
nel. As a result, if the UGV needed to be swapped for
a UAV, then a UAV adapter would replace the UGV
adapter and no other services would need to be modi-
fied. Similarly, if the AR display’s vendor changed, then
only the AR display adapter would need to be changed.
This approach isolates the impact of changes to a single
cohesive module, which simplifies the development and

http://www.jhuapl.edu/techdigest

E. F. Martinez, R. M. Crockett, and I. A. Grissom

Johns Hopkins APL Technical Digest, Volume 37, Number 2 (2024), www.jhuapl.edu/techdigest136

expedites the integration of a new component. The use
of publish-subscribe channels also adds the ability to
seamlessly scale the system, meaning adapter services
developed for different external hardware components,
such as two different AR displays, could be simultane-
ously deployed with significant ease. Ultimately, it pro-
vides prototyping teams with the ability to quickly test
and evaluate alternatives or vendor products.

IMPLEMENTATION
To meet the aforementioned design goals, the H4H

team selected open-source and commercial off-the-shelf
technologies. These technologies have large user com-
munities and are more likely to have existing support or
publicly available documentation that facilitates integra-
tion with our platform.

Many kinds of services could be introduced into the
architecture. Some examples are a database, a machine
learning model, or an adapter for a new hardware com-
ponent. Regardless of the functionality they provide,
all services are essentially software that any prototyp-
ing team using H4H should be able to deploy. For this
reason, H4H uses Docker, a containerization platform
for packaging applications into standardized executable
components called containers.2 Docker enables service
functionality to be wholly contained within a modular,
shareable package in a way that is largely independent
of the compute environment. If
the packaged application works
on one machine with Docker
Engine, it should work on any
other machine with a matching
version of Docker Engine and the
same CPU architecture (e.g., x86,
ARM64). Packaged applications
ready for execution, referred to as
container images, can be shared
in a repository and downloaded
on demand. Docker enables a
long-term solution for creating,
managing, and storing version-
tracked capabilities across efforts
and projects.

Complementing the ability
to containerize each service for
easy execution, Kubernetes3 pro-
vides a suite of powerful tools for
managing the networking, moni-
toring service health, or creating
the support infrastructure for the
deployed containers. Kubernetes
uses a series of resource files to
define how a container is deployed
and how its life cycle is man-
aged thereafter. The Kubernetes

Control Plane implements this functionality through
a set of core services that respond to cluster events. A
Kubernetes cluster is composed of one or more worker
machines, referred to as nodes, that can share the work-
load. H4H deployments will run a single cluster in a
single edge-compute device. When edge-devices are
networked together, communications are managed as
cluster-to-cluster, rather than node-to-node. This design
choice is necessary to enable the Kubernetes Control
Plane, which manages the service deployments, to run
independently on each device. The streamline installa-
tion and setup, Canonical, the maintainers of Ubuntu,
created MicroK8s.4 MicroK8s is a powerful, lightweight,
production-ready Kubernetes distribution. As a whole,
it has been designed with edge-computing in mind and
has a small disk and memory footprint. H4H currently
supports simple and easy-to-use installation scripts built
on MicroK8s.

HMT capabilities are expected to be deployed as a col-
lection of services (Figure 1) using Kubernetes resource
files. For larger projects integrating multiple capabilities,
resource files can become unwieldy. This is amplified
in a highly modular HMT system where varying con-
figurations of several or individual services are possible
depending on the operational need. To streamline this
process, H4H uses Helm, a Kubernetes package man-
ager.5 Helm users create “chart” files that allow a collec-
tion of Kubernetes resources to be packaged together for

Figure 1. H4H architecture. Services in the architecture interact through publish-subscribe
channels with predefined abstract data types, allowing services to remain decoupled.
Replacing a service requires only that the replacement adhere to the predefined abstract
data type of the channels it will interact with.

UGV
adapter

Services Channels

Threat
detection

model

AR display
adapter

Sensor
data

Threat
alert

Connection

Publish

Subscribe

http://www.jhuapl.edu/techdigest

H4H: An Open Framework for Rapid Human–Machine Teaming Prototype Integration

Johns Hopkins APL Technical Digest, Volume 37, Number 2 (2024), www.jhuapl.edu/techdigest 137

easy deployment. Charts offer two key features: version
tracking and templating. Version tracking enables capa-
bilities to be incrementally versioned as changes are
made, while templating enables users to supply a single
“values” file containing deployment-specific settings to
base templates of Kubernetes resource files. Templating is
a key feature H4H uses to deploy applications across dif-
ferent systems. Figure 2 shows how Docker, Kubernetes,
and Helm wrap an application. Each layer provides some
abstraction or control over the layers beneath it.

All these tools function together to provide a method
for deploying modular service elements. Meanwhile, the
Robot Operating System 2 (ROS 2) provides the frame-
work for communication between services.6 By default,
ROS 2 uses the Data Distribution Service standard for
messaging. DDS is standard backed by the Object Man-
agement Group that aims to enable dependable, high-
performance, scalable data exchange over UDP. ROS 2
allows developers to define message types, which can be
shared and versioned similarly to packaged applications,
as well as to create publish-subscribe channels, named
Topics, among many other things. H4H uses this func-
tionality to define the abstract interface through which
services communicate. A message type defines the data
structure, while the Topic provides the medium. In the
UGV example, the Threat Alert and Sensor Data Topics
would have different message types (Figure 1). If each
service were developed by a different team, the teams
would need to be aware of only the message types they
will produce or consume to integrate with other teams.

CONCLUSION
H4H provides a framework that expedites the inte-

gration of HMT prototypes. Specifically, it uses a micro-

services approach to separate com-
ponents and provides methods for
abstracting component interfaces.
These features enable modular-
ity. As a result, adding, upgrading,
replacing, and reusing hardware
and software components is more
efficient. Although still in its early
development stages, H4H has
already shown promising results
on an initial test bed integrating
AR displays, UGVs, UAVs, gesture
controllers, and more. The H4H
team plans to continue refining
the H4H framework and expand-
ing its set of tools and features in
further pursuit of the end goal of
augmenting tomorrow’s warfighter
capabilities.

ACKNOWLEDGMENTS: This paper
was written in 2021, and H4H has grown since that time.
Matthew Breiner (matthew.breiner@jhuapl.edu) or Bran-
don Filo (brandon.filo@jhuapl.edu) can be contacted for
updates.

REFERENCES
 1P. Richardson. “What are microservices?” microservices.io. https://

microservices.io/ (accessed Nov. 22, 2021).
 2“Empowering app development for developers.” Docker. Docker, Inc.

https://www.docker.com/ (accessed Nov. 22, 2021).
 3“Production-grade container orchestration.” Kubernetes. https://

kubernetes.io/ (accessed Oct. 7, 2021).
 4“MicroK8s—Zero-ops Kubernetes for developers, Edge and IOT:

MicroK8s.” microk8s.io. Canonical Ltd. https://microk8s.io/ (accessed
Nov. 22, 2021).

 5“The package manager for Kubernetes.” Helm. https://helm.sh/
(accessed Nov. 22, 2021).

 6“ROS documentation.” Open Robotics. https://docs.ros.org/ (accessed
Sep. 28, 2021).

Edgar F. Martinez, Research and
Exploratory Development Department,
Johns Hopkins University Applied
Physics Laboratory, Laurel, MD

Edgar F. Martinez is a software engi-
neer in APL’s Research and Explor-
atory Development Department. He
holds a BS in computer science with

minors in cybersecurity and astrophysics from Texas A&M
University. As part of the rotational Discovery Program,
he has rotated through multiple teams at APL and con-
tributed to projects related to full-stack web development,
modeling and simulation, and data visualization. During
his rotational assignment with the Cyber-Physical Systems
Development Group, he developed introspections tools and
services to facilitate test and evaluation efforts for the H4H
project. His email address is edgar.martinez@jhuapl.edu.

Figure 2. The multiple layers of configuration provide Docker and Kubernetes the instruc-
tions to build, execute, monitor, and manage applications. Once a capability is wrapped in a
Helm chart, it can be shared and reused across projects with little to no effort.

Helm 3 chart

Kubernetes
deployment

Enables con�guration of all inner components from a
single location

Instructions for managing a single group of pods’
behavior and state

Instructions for deploying a single or group of related
containers with shared resources

Instructions for building and executing the application
software

The application code and its dependencies

Kubernetes
pod

Docker
image

Application
software

http://www.jhuapl.edu/techdigest
mailto:matthew.breiner@jhuapl.edu
mailto:brandon.filo@jhuapl.edu
https://microservices.io/
https://microservices.io/
https://www.docker.com/
https://kubernetes.io/
https://kubernetes.io/
http://microk8s.io
https://microk8s.io/
https://helm.sh/
https://docs.ros.org/
mailto:edgar.martinez@jhuapl.edu

E. F. Martinez, R. M. Crockett, and I. A. Grissom

Johns Hopkins APL Technical Digest, Volume 37, Number 2 (2024), www.jhuapl.edu/techdigest138

Rebecca M. Crockett, Asymmetric Opera-
tions Sector, Johns Hopkins University
Applied Physics Laboratory, Laurel, MD

Rebecca M. Crockett was a process engi-
neer in APL’s Asymmetric Operations
Sector. She holds a BS in chemical engi-
neering with a concentration in cybersecu-
rity from the University of Tulsa. During

her time at APL, Rebecca contributed to a wide variety of
projects with focuses ranging from sensor fusion to robotics to
human–machine teaming and augmented reality. Rebecca was
the assistant program manager on the H4H effort.

Ian A. Grissom, Asymmetric Operations Sector, Johns Hop-
kins University Applied Physics Laboratory, Laurel, MD

Ian A. Grissom was a software engineer in APL’s Asymmetric
Operations Sector. He holds a BS in electrical engineering
from the University of Maryland, College Park and an MS
in electrical and computer engineering from Johns Hopkins
University. During his time at APL, Ian contributed to a wide
variety of projects with focuses ranging from safety criti-
cal embedded software development to robotics to software
architecture building and software reverse engineering. Ian
was the project manager and a technical contributor on the
H4H effort.

http://www.jhuapl.edu/techdigest

	H4H: An Open Framework for Rapid Human–Machine Teaming Prototype Integration
	Edgar F. Martinez, Rebecca M. Crockett, and Ian A. Grissom

	ABSTRACT
	INTRODUCTION
	H4H OVERVIEW
	Open versus Closed Architectures
	Microservices
	Publish-Subscribe Messaging
	H4H Architecture Applied

	IMPLEMENTATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	FIGURES
	Figure 1. H4H architecture.
	Figure 2. The multiple layers of configuration.

	AUTHOR BIOS

