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ABSTRACT
The New Horizons science payload consists of seven instruments—three optical instruments, two 
plasma instruments, a dust sensor, and a radio science receiver/radiometer. These instruments 
were designed to withstand the cold conditions and low light levels in the Kuiper Belt so they could 
investigate the global geology, surface composition and temperature, and the atmospheric pres-
sure, temperature, and escape rate of Pluto and its moons. The same payload was used to explore 
Arrokoth, the most distant object ever targeted for a flyby. The instrument suite is highly power effi-
cient and represents a degree of miniaturization that is unprecedented in planetary exploration. 
This article describes the instruments and how they met challenging mission requirements with 
resounding success, making groundbreaking measurements and returning data that continues 
to shed light on the mysterious planets and smaller bodies of the outer solar system.

of power at Pluto (at 33 astronomical units, or au, from 
the Sun) in July 2015 and 190 W at the Arrokoth (pro-
visional designation 2014 MU69) flyby (at 43 au from 
the Sun) in 2019. The total instrument suite mass was 
only ~30 kg—about half the mass of the Cassini mis-
sion imager alone. And these instruments had to meet 
their mission specifications after a flight of 9.5  years 
(to Pluto).1 The New Horizons instrument suite met 
all three of these challenging requirements with flying 
colors, as described in this issue.

The New Horizons payload comprises seven 
instruments:
1. Ralph, itself consisting of two components: the 

Multispectral Visible Imaging Camera (MVIC), a 
visible-light imager with four color filters operating 

INTRODUCTION
The New Horizons instrument suite met a number of 

challenges to make essential contributions to the success 
of the mission. The instruments first had to be capable 
of collecting the data required to meet the mission’s 
scientific goals, outlined in the articles by Stern and 
Krimigis and by Weaver et al., both in this issue. The 
large heliocentric distances required a high launch C3 
(characteristic energy twice the excess specific energy in 
escape orbit) and solar arrays were nonviable for a mis-
sion going so far from the Sun, so the instruments had to 
meet stringent mass and power requirements to accom-
plish these scientific objectives. The overall mission 
design limited the power for the entire instrument suite 
to 30 W, and the mission was limited to a single radio-
isotope thermoelectric generator that produced 202 W 
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in time delay integration (TDI) mode and with pan-
chromatic imaging in both TDI and frame-transfer 
mode; and the Linear Etalon Imaging Spectral Array 
(LEISA), a near-infrared (near-IR) spectral imager 
used for compositional mapping

2. Alice, an ultraviolet (UV) imaging spectrograph 
that investigates atmospheres via solar and stellar 
occultations and airglow measurements

3. Radio Science Experiment (REX), used for atmo-
spheric occultation studies and radiometry

4. Long Range Reconnaissance Imager (LORRI), a 
panchromatic visible-light imager providing high 
spatial resolution and high sensitivity, in addition to 
optical navigation

5. Solar Wind Around Pluto (SWAP), a low-energy 
plasma instrument that measures the density and 
speed of solar wind particles

6. Pluto Energetic Particle Spectrometer Science Inves-
tigation (PEPSSI), a high-energy plasma instrument 
that measures pickup ions (PUIs)

7. Venetia Burney Student Dust Counter (VBSDC), 
an instrument designed and built by students to 
measure dust particle impacts along the spacecraft 
trajectory

Photos of the instruments are shown in Figure 1, 
and their arrangement on the spacecraft is illustrated 
in Figure 2. Technical details and the specific scientific 
objectives for each instrument are provided in Table 1. 
The pages that follow summarize each instrument’s 
design and performance. 

Alice UV spectrograph
45.5–188 nm
Mass 4.5 kg
Power 4.7 W

Long Range Reconnaissance
Imager (LORRI)
Panchromatic visible imager
Mass 8.8 kg
Power 5.8 W

Pluto Energetic Particle
Spectrometer Science
Investigation (PEPSSI)
Mass 1.5 kg
Power 2.5 W

Solar Wind Around Pluto
(SWAP)
Mass 3.3 kg
Power 2.3 W

Venetia Burney
Student Dust Counter
(VBSDC)
Mass 1.9 kg
Power 5.0 W

Ralph visible color imager (MVIC)
and IR spectral imager (LEISA)
Mass 10.3 kg
Power 7.5 W

Radio Science Experiment (REX)
Antenna (2.1 m)
+ Processing Card (0.1 kg, 0.4 W)

Figure 1. The seven instruments that make up the New Horizons payload. Approximate values for mass and power consumption are 
shown just below the picture of each instrument. The total mass of the entire science payload is ~30 kg, excluding the antenna, and the 
total power drawn by all the instruments is ~28 W. The entrance apertures of the remote sensing instruments are 4.0 cm, 7.5 cm, 20.8 cm, 
and 2.1 m across for Alice (airglow channel), Ralph, LORRI, and the and REX high-gain antenna (HGA), respectively. The SWAP and PEPSSI 
apertures are ~20 cm across. Each of the 12 polyvinylidene chloride (PVDC) panels in the VBSDC are 14.2 cm × 6.5 cm. (Adapted from 
Weaver et al. 2008.2)

PEPSSI

SWAP LORRI VBSDC
(under spacecraft)

REX

Alice

Ralph

Figure 2. The New Horizons spacecraft with instrument layout. 
The photo in the upper right provides a sense of scale of the 
spacecraft and instruments. Additional information on the posi-
tioning and orientation of the instruments is provided in the arti-
cle by Hersman et al., in this issue.
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Table 1. New Horizons instruments: Pluto system measurement objectives and characteristics

Instrument; PI; PCa Measurement Objectivesb Instrument Characteristicsc

Ralph MVIC; S. A. Stern 
(Southwest Research 
Institute [SwRI]), 
C. Olkin (SwRI), 
C. Howett (SwRI); Ball 
and SwRI

• Hemispheric panchromatic maps of Pluto and Charon at best resolution 
>0.5 km/pixel

• Hemispheric four-color maps of Pluto and Charon at best resolution 
>5 km/pixel

• Search for/map atmospheric hazes at a vertical resolution <5 km
• High-resolution panchromatic maps of the terminator region
• Panchromatic wide-phase-angle coverage, panchromatic stereo images, orbital 

parameters, and bulk parameters of Pluto, Charon, Nix, and Hydra
• Search for rings
• Search for additional satellites

• Visible imaging
• Bandpasses: 400–975 nm (panchromatic 

plus four-color filters (blue, red, methane, 
near-IR)

• 7.5-cm primary mirror
• Focal length: 65.75 cm
• Field of view (FOV): 5.7° × 0.15° (stare, 

pan) or 5.7° × arbitrary (scan)
• Instantaneous FOV (IFOV): 20 μrad/pixel

Ralph LEISA; D. Jen-
nings (Goddard Space 
Flight Center [GSFC]), 
C. Olkin (SwRI), 
C. Howett (SwRI); 
GSFC, Ball, and SwRI

• Hemispheric near-IR spectral maps of Pluto and Charon at best resolution 
>10 km/pixel

• Hemispheric distributions of N2, CO, CH4 on Pluto at a best resolution 
>10 km/pixel

• Surface temperature mapping of Pluto and Charon
• Phase-angle-dependent spectral maps of Pluto and Charon

• IR spectral imaging
• 7.5-cm primary mirror
• Focal length: 65.75 cm
• Bandpass: 1.25–2.50 μm, λ/δλ ≈ 240; 

2.10–2.25 μm, λ/δλ ≈ 550
• FOV: 0.9° × 0.9°
• IFOV: 62 μrad/pixel

Alice; S. A. Stern 
(SwRI); SwRI

• Upper atmospheric temperature and pressure profiles of Pluto
• Temperature and vertical temperature gradient measured to ~10% at a 

vertical resolution of ~100 km for atmospheric densities >~109 cm–3

• Search for atmospheric haze at a vertical resolution <5 km
• Mole fractions of N2, CO, CH4, and Ar in Pluto’s upper atmosphere
• Atmospheric escape rate from Pluto
• Minor atmospheric species at Pluto
• Search for an atmosphere of Charon
• Constrain escape rate from upper atmospheric structure

• UV spectral imaging
• Bandpass: 465–1880 Å
• 4.0 × 4.0 cm entrance aperture
• FOV: 4° × 0.1° plus 2° × 2°
• Spectral resolution 1.8 Å/spectral element
• Spatial resolution: 5 mrad/pixel
• Airglow and solar occultation channels

REX; L. Tyler (Stanford), 
I. Linscott (Stanford); 
Stanford and APL

• Temperature and pressure profiles of Pluto’s atmosphere to the surface
• Surface number density to ±1.5%, surface temperature to ±2.2 K, and 

surface pressure to ±0.3 mbar
• Surface brightness temperatures on Pluto and Charon
• Masses and chords of Pluto and Charon; detect or constrain J2s
• Detect, or place limits on, an ionosphere for Pluto

• X-band (7.182-GHz uplink, 8.438-GHz 
downlink)

• Radiometry TNoise < 150 K
• Ultra-stable oscillator (USO) frequency 

stability
• δf/f = 3 × 10–13 over 1 s

LORRI; A. Cheng (APL), 
H. Weaver (APL); 
APL and SSG Preci-
sion Optronics (since 
acquired by L3Harris)

• Hemispheric panchromatic maps of Pluto and Charon at best resolution 
>0.5 km/pixel

• Search for atmospheric haze at a vertical resolution <5 km
• Long time base of observations, extending over 10–12 Pluto rotations
• Panchromatic maps of the far-side hemisphere
• High-resolution panchromatic maps of the terminator region
• Panchromatic wide-phase-angle coverage, panchromatic stereo images, orbital 

parameters, and bulk parameters of Pluto, Charon, Nix, and Hydra
• Search for satellites and rings

• Visible panchromatic images
• Bandpass: 350–850 nm
• 20.8-cm primary mirror
• Focal length: 262 cm
• FOV: 0.29° × 0.29°
• IFOV: 5 μrad/pixel
• Framing camera with <0.3% geometrical 

distortion

SWAP; D. McComas 
(Princeton); SwRI

• Atmospheric escape rate from Pluto
• Solar wind velocity and density, low-energy plasma fluxes and angular distri-

butions, and energetic particle fluxes at Pluto–Charon
• Solar wind interaction of Pluto and Charon

• Solar wind detector
• FOV: 276° × 10°
• Energy range

 – Electrostatic analyzer (ESA):  
0.35–7.5 keV

 – Retarding potential analyzer (RPA): 
0–2,000 V

• Energy resolution
 – ESA: 0.085 ΔE/E
 – RPA: 0.5 V steps

PEPSSI; R. McNutt 
(APL); APL

• Composition and density of PUIs from Pluto, which indirectly addresses the 
atmospheric escape rate

• Energetic particle fluxes and angular distributions at the Pluto–Charon 
system

• Solar wind interaction of Pluto and Charon

• Energetic particle detector
• Energy range: 1 keV–1 MeV
• FOV: 160° × 12°
• Spatial resolution: 25° × 12°
• Mass resolution: 2–15 amu

VBSDC; M. Horányi 
(University of Colorado 
Boulder); Laboratory for 
Atmospheric and Space 
Physics at the University 
of Colorado Boulder

• Trace the density of dust in the solar system along the New Horizons trajec-
tory from Earth to Pluto and beyond

• 12 polyvinylidene fluoride (PVDF) panels 
to detect dust impacts and 2 control 
panels shielded from impacts

• Panel area: 14.2 cm × 6.5 cm
• Total area: 1,000 cm2

• Detection limit: m > 10–12 g

Updated from Weaver et al. 2008.2 
a PI, Original principal investigator. Current PI, when applicable, is in bold. PC, Primary contractor. 
b Group 1 measurement objectives are bold. 
c Instrument characteristics are summary values.
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A more detailed overview of the New Horizons instru-
ment suite is provided by Weaver et al. in Space Science 
Reviews (volume 140, 2008),2 and even more extensive 
discussions of each instrument are provided in other 
articles in that same volume.3–9  More recently, detailed 
results on the in-flight performance and calibration of 
MVIC10 and LORRI11 have been published.

Despite their relatively small size, small mass, and 
low power usage, the New Horizons instruments have 
proven to be both capable and reliable. Trending results 
over the entire mission, now exceeding 17  years, have 
shown essentially no performance degradation for 
either the instruments or the spacecraft subsystems. 
The instruments are as capable in 2023 as they were at 
launch in 2006, which is testimony to the extraordinary 
efforts of the instrument teams and their contractors in 
designing and building them. Even more important, the 
instruments and spacecraft performed flawlessly during 
all three of the mission’s planetary flybys (Jupiter, Pluto, 
and Arrokoth) and returned data that are revolution-
izing our understanding of the fascinating objects in the 
outer solar system and the processes that shaped them.

To meet the lifetime requirements, each instrument’s 
electronics interfaced with the two redundant command 
and data handling (C&DH) subsystems, and three of the 
instruments had significant internal redundancy. These 
instruments were developed in the early 2000s and took 
advantage of the technologies of that era to meet the 
stringent mass and power requirements.

As New Horizons continues on its journey beyond 
Pluto and Arrokoth, its reliability—along with the reli-
ability of the instrument suite—enables it to continue 
making substantial contributions to our understanding 
of the outer regions of the Kuiper Belt and the helio-
sphere. To better enable these measurements, a series 
of spacecraft and instrument software upgrades were 
designed and implemented in 2020–2021, as described 
below. These upgrades have now been demonstrated and 
will prove useful as the spacecraft travels even farther 
from our Sun during the next phase of its mission.

On the following pages, each instrument is described 
to provide the reader with an understanding of the basic 
design and performance; each description focuses on the 
key design elements enabling the instrument to meet 
the requirements in Table 1. The additional capabilities 
enabled by the recent software upgrades are summarized, 
and specific attention is paid to the reliability and stabil-
ity that these instruments have exhibited from launch 
in 2006 to their most recent observations and in-flight 
calibration in 2019.

RALPH
The Ralph instrument is mounted to the exterior of 

the New Horizons spacecraft,12 as illustrated in Figure 2. 
(Ralph is a name, not an acronym, taken from one of 

the main characters of the American television show 
The Honeymooners.) It has two assemblies, the telescope 
detector assembly (TDA) and the main electronics box 
(MEB; see Figure 3 and Table 1). The TDA consists of 
a single telescope that feeds two sets of focal planes, 
MVIC and LEISA. The telescope uses an unobscured, 
off-axis, three-mirror anastigmat design to achieve 
its broad FOV. The entire telescope assembly, includ-
ing the three diamond-turned off-axis aspherical mir-
rors, is constructed from a single block of grain-aligned 
6061-T6 aluminum. The housing, excluding the attached 
covers, is also diamond turned from a single aluminum 
block, ensuring that the system’s optical performance is 
insensitive to temperature and that thermal gradients 
are minimized. A dichroic beamsplitter transmits IR 
wavelengths longer than 1.1 μm to LEISA and reflects 
shorter wavelengths to MVIC. The highly baffled 
system provides excellent sensitivity, while minimizing 
size and mass. The in-flight temperature of the TDA 

Source

M1
Decontamination
heater

MVIC
detector

Color
�lter

LEISA
detector

LVF

Main
electronics

box
(MEB)

M2

M3

Di
ch
ro
ic

Thermal
radiator

Power

CMD in
TLM out

C&DH
side A

CMD in
TLM out

C&DH
side B

High-speed data out
side A
High-speed data out
side B

Figure 3. Ralph block diagram. The three-mirror anastigmatic 
optical system creates an image whose shorter wavelengths 
are reflected to the MVIC focal plane by the dichroic and whose 
longer wavelengths are transmitted to the LEISA focal plane by 
the dichroic. The signals generated by the MVIC and LEISA focal 
planes are transmitted to the MEB, and from there to the space-
craft memory. The focal plane detectors are thermally coupled to 
an external radiator to maintain the required temperature during 
operation. A heater is included in the design to ensure that the 
optical surfaces are not degraded because of contamination (e.g., 
due to spacecraft thruster firings) and is turned on as needed 
during periods when the instrument is not collecting data.
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is about 220 K to reduce the conductive and radiative 
thermal load on the focal planes and limit the back-
ground signal at the long-wavelength end of LEISA. The 
inner stage of the externally mounted passive radiator 
cools the LEISA detector to <110 K. The outer annulus 
maintains the MVIC charge-coupled devices (CCDs) at 
temperatures below 175 K and lowers the temperature of 
an f/2.4 cold shield for LEISA to below 190 K, again to 
reduce the LEISA background. The telescope provides 
diffraction-limited image quality over the 5.7°  ×  1.0° 
FOV spanned by the MVIC and LEISA arrays.

MVIC is composed of seven CCD arrays on a single 
substrate. It uses two of its large-format (5,024 × 32 pixel) 
CCD arrays, operated in time delay integration (TDI) 
mode, to provide panchromatic (400–975 nm) images. 
Four additional 5,024 × 32 CCDs, combined with the 
appropriate filters, also operated in TDI mode, map 
in blue (400–550 nm), red (540–700 nm), near-IR 
(780–975 nm), and a narrow methane absorption band 
(860–910 nm). TDI operates by synchronizing the par-
allel transfer rate of each of the CCD’s 32 rows (each 
5,024 pixels wide) to the relative motion of the image 
across the detector’s surface. The presence of 32 rows 
effectively increases the integration time by that same 
factor, allowing high signal-to-noise measurements while 
scanning quickly. Finally, the 5,024 × 128–element pan-
chromatic frame-transfer array operates in staring mode.

LEISA is an IR spectral imager that creates spectral 
maps in the compositionally important 1.25- to 2.5-μm 
shortwave IR (SWIR) spectral region. It images a scene 
through a wedged filter (linear variable filter, LVF13) 
placed about 100 μm above a 256 × 256 detector array. 
An image is formed on both the wedged filter and the 
array simultaneously. The LVF is fabricated such that the 
wavelength varies along one dimension, the scan direc-
tion. It is made in two segments: (1) 1.25–2.5 μm with  
(λ/δλ) of 240 and (2) 2.1–2.25 μm with (λ/δλ) of 560. 
LEISA forms a spectral map by scanning the 0.9° × 0.9° 
FOV across the surface in a push-broom fashion. The 
frame rate is synchronized to the rate of the scan, so that 
a frame is read out each time the image moves by the 
single-pixel IFOV. The difference between a LEISA scan 
and an MVIC TDI scan is that in LEISA, the row-to-row 
image motion builds up a spectrum, while in MVIC, the 
motion increases the signal over a single spectral interval.

Attaining the low power (6.74 W) and mass (10.67 kg) 
were especially important for the New Horizons mission, 
for which both of these resources are at a premium. The 
wide MVIC FOV was a strong driver for the optical system, 
both in terms of design and component manufacture. This 
was further complicated by the fact that the LEISA detec-
tor needed to operate at significantly lower temperatures 
than MVIC. This meant that the optical performance 
had to be stable over a range of temperatures since the 
passive system temperature was affected by pointing and 
other factors during operations. Ensuring that the thermal 

requirements were met under all conditions was also dif-
ficult because maintaining low mass meant that there 
was little margin on the radiator sizes. The low-power 
requirement was a challenge because it meant that cur-
rent levels were low, which increased the system’s sensitiv-
ity to electrical noise. In addition, at the time Ralph was 
made, LVF fabrication was not as well defined as it is now, 
and obtaining an LVF with the required transmittance, 
spectral resolution, and out-of-band blocking required sig-
nificant effort. Finally, for a long-duration mission such 
as New Horizons, electronics reliability was of paramount 
importance. To ensure that Ralph was robust, almost all 
the electronics are redundant with separate interfaces to 
the redundant C&DH subsystems.

The radiometric stability of both MVIC and LEISA 
has been measured by stellar observations made through-
out the mission. These have shown the MVIC red, blue, 
and panchromatic channels to be stable to a root mean 
squared (RMS) value of 5% or better. The stability levels 
of the lower-signal-level near-IR and CH4 channels are 
10% and 15%, respectively, which is still well within 
their requirements. LEISA stability, as measured by the 
median response in the 1.8- to 2-μm spectral range, has 
also been at the 5% level.

ALICE
The Alice instrument is a compact, low-cost, light-

weight (4.5 kg), low-power (4.7 W) UV imaging spectro-
graph. The instrument incorporates an off-axis telescope 
feeding a Rowland-circle spectrograph with a 520–1,870 Å 
spectral passband. Alice provides moderate spectral and 
spatial resolution capabilities and a peak effective area 
of ~0.3 cm2 (Figure 4). Light enters Alice’s f/3 telescope 
via either the main entrance aperture (called the airglow 
aperture, which is co-aligned with the Ralph and LORRI 
entrance apertures—refer to the aperture fields of view 
illustration in the article by Hersman et al., in this issue) 
or a small fixed pickoff mirror in the Alice solar occulta-
tion channel (SOCC, co-aligned with the New Horizons 
high-gain antenna). Light from either aperture is reflected 
off the 4 × 4-cm primary mirror, then passes through a slit 
at the entrance of the instrument’s spectrograph section, 
is reflected then off a holographic grating, and finally is 
detected using a photon-counting, microchannel plate 
double delay line device, read out as a 32 × 1,024-element 
digital array. The SOCC aperture is stepped down by a 
factor of ~6,400 relative to the airglow aperture to allow 
Alice to look directly at the Sun for solar occultations of 
flyby target atmospheres. The Alice entrance slit is a “lol-
lipop” with a 0.1° × 4° “slot” used primarily for airglow 
observations and a 2° × 2° “box” used mainly during solar 
occultation observations. The point source spectral reso-
lution is 3–6 Å, depending on wavelength, and the plate 
scale in the spatial dimension is 0.27° per pixel. During 
the Pluto and Charon occultation observations, the Sun 
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had an apparent diameter of ~1 arcmin and the spectral 
resolution is 3–3.5 Å. During filled-slit airglow aperture 
observations, the spectral resolution is ~9–10 Å. Instru-
ment performance has been stable throughout the mis-
sion, and the instrument continues to fully function, 
17+ years after launch.

The instrument electronics are internally redundant 
to ensure high reliability for the long duration of the 
mission. The internal redundancy is complemented with 

independent interfaces to the 
redundant C&DH systems, as 
shown in Figure 5.

Alice is a name, not an 
acronym, taken from one 
of the main characters of 
the American television 
show The Honeymooners. 
Alice is sometimes called 
Pluto-Alice (P-Alice) to dis-
tinguish it from its predeces-
sor, Rosetta-Alice (R-Alice, 
S.  A. Stern, principal inves-
tigator), which is a similar 
instrument flown on the 
European Space Agency Ro-
setta mission to comet 67P//
Churyumov-Gerasimenko. 
P-Alice has a somewhat dif-
ferent bandpass and various 
enhancements to improve re-
liability over R-Alice; P-Alice 
also includes the SOCC, 
which was not available on 
R-Alice. Both P-Alice and 
R-Alice are significantly im-
proved versions of the Pluto 
mission HIPPS UV spectro-
graph (HIPPS/UVSC), which 
was developed at Southwest 
Research Institute (SwRI) 
in the mid-1990s with funds 
from NASA, the Jet Pro-
pulsion Laboratory, and 
SwRI (S. A. Stern, principal 
investigator).

Alice was designed to 
measure Pluto’s upper atmo-
spheric composition and tem-
perature, which was a New 
Horizons Group  1 scientific 
objective. Alice also obtained 
model-dependent escape rate 
measurements from Pluto’s 
atmosphere, and it provided 
surface reflectance results 
in the UV. Alice’s spectral 

bandpass includes lines of CO, atomic H, Ar, and Ne, 
and the electronic bands of N2, CH4, and other hydro-
carbons and nitriles detectable during solar and stellar 
occultation observations. See Stern et al.3 for further 
details on Alice’s design and performance.

Instrument flight software allowed for modes rel-
evant to both airglow and solar occultation stud-
ies. New flight software uplinked in 2021 allows for 
higher-spatial-resolution sky H Lyman-α mapping.

Detector

Alice
electronics

Detector door
(in open position)

Zero order
baf�e

Grating

Failsafe
door

(in closed
position)

Aperture
door

(in open
position)SOC

SOC pick-off
mirror

SlitOAP mirror

Figure 4. Optomechanical schematic of Alice with central-axis light rays shown. The instrument 
passband in the far ultraviolet is particularly susceptible to hydrocarbon contamination. The 
design includes several aperture doors (and a heater) to protect the instrument from contamina-
tion prior to launch and during flight.

DPU

Photons

Detector
electronics

Aperture door
actuator

Optics heater

HVPS
High-voltage power supply

CMD in
TLM out

C&DH
side A

CMD in

Unit power

Heater power

TLM out
C&DH
side B

LVPS
Low-voltage power supply

Figure 5. Detailed Alice instrument block diagram. UV photons striking the photodetector gener-
ate pulses that the detector electronics accumulates in a position-sensitive counter (the positions 
represent wavelength spectra in one dimension and spatial position in the second dimension). 
The instrument data processing unit (DPU) provides the interface to transmit the spectra/position 
data to the spacecraft for storage and downlink. The high-voltage power supply is adjustable by 
command to compensate for gain degradation of the detector’s microchannel plates.
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REX

The New Horizons Radio Science Experiment, REX, 
is unusual in that it is a collection of the spacecraft’s 
telecommunication components operating together 
with a data collection, processing, and management pro-
cess. The components in this ensemble perform much as 
individual members of an orchestra to achieve critical 
mission objectives, such as radio occultation, radiomet-
ric thermal measurement, bistatic radar experiments, 
and radio path structural characterization.

The REX instrument incorporates a small amount 
of signal processing hardware into the spacecraft’s radio 
system communication and tracking functions. This 
architecture differs from most other US spaceflight 
missions that conduct occultation experiments where 

radio transmissions from the 
spacecraft are downlinked (i.e., 
received on the ground). For 
REX, to achieve much higher 
signal-to-noise ratios (SNRs), 
the radio signals probing the 
structure of, for example, Plu-
to’s atmosphere, are uplinked 
(i.e., signals transmitted from 
Earth to the New Horizons 
spacecraft). Because of the 
unusually large distance from 
Earth to the Pluto system, this 
uplink strategy with its higher 
SNRs was crucial to achieve 
the mission-required sensitivi-
ties, precision, and resolution. 
The architecture of the REX 
instrument is illustrated in 
Figure 6.

LORRI
The Long Range Recon-

naissance Imager (LORRI) is 
a panchromatic visible-light 
(350–850 nm) camera designed 
to provide high-spatial- 
resolution images under the 
low-ambient-light conditions 
present at the large heliocen-
tric distances of Pluto and 
Arrokoth. LORRI also serves 
as the primary optical naviga-
tion camera on New Horizons. 
LORRI comprises three sub-
systems (Figure 7): the optical 
telescope assembly (OTA), the 
focal plane unit (FPU), and 
the associated support elec-

tronics (ASE). During New Horizons’ launch on Janu-
ary 19, 2006, the OTA was protected by a one-time-open 
door mounted to the spacecraft. LORRI was allowed to 
outgas for decontamination purposes at +50°C until the 
door was opened on August  29,  2006. No evidence of 
contamination has ever been detected, and LORRI’s 
throughput and optical performance have remained 
constant at the ~1% level throughout the entire mission, 
now in its 17th year of successful operations.

The OTA was provided by SSG Precision Optron-
ics (since acquired by L3Harris) and is made of sili-
con carbide (SiC) for athermal operation; the in-flight 
OTA temperature has been within a few degrees of 
–70°C ever since the door was opened. The OTA has 
a Ritchey–Chrétien optical design with a three-element 
flat-fielding lens assembly to minimize geometrical 
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distortion (<0.3% along the full FOV of 5 mrad). The 
OTA primary mirror has a relatively large diameter of 
20.8 cm to provide both high angular resolution (5 μrad/
pixel) and high sensitivity. LORRI can achieve an SNR 
of 5 on an unresolved target having a visual magnitude 
(V) of ≈22 by combining ~25 images using its longest 
exposure time (64.967  s). LORRI is also able to probe 
down to diffuse surface reflectance values of I/F = 0.005 
with SNR  =  5 at Pluto’s heliocentric distance using a 
typical exposure time of only 100 ms.

The FPU has a high quantum efficiency (QE, 
~90% at peak), backside-illuminated, back-thinned, 
frame-transfer CCD detector (model CCD47-20 from 
e2V, now Teledyne e2V) with a 1024 × 1024-pixel opti-
cally active area (“1 × 1” format) that can be re-binned 
during readout to 256 × 256 pixels (“4 × 4” format) for 
maximum sensitivity on unresolved targets. The analog 
signal output from the CCD is processed using correlated 
double-sampling and converted to data numbers (DN) 
using a 12-bit ADC. The electronics noise is ~1.1 DN, 
and the bias level is ~540 DN, providing a single image 
dynamic range of ~3,200. Two small tungsten filament 
lamps mounted near the CCD are used to test basic 
CCD functionality and monitor any changes in debris 

on the CCD (no change has 
ever been seen).

The ASE has three elec-
tronics boards: one provides 
stable voltage outputs; one 
has a processor and memory 
for storing and executing 
the flight software; and one 
processes the output from 
the FPU, creates a 32-bin 
histogram of the digitized 
CCD stream, and passes the 
CCD image data and ancil-
lary information to the New 
Horizons C&DH system, 
which stores all data in its 
64-Gbit SSR. The C&DH 
system also reformats the 
LORRI data for downlink 
telemetry to Earth.

Several upgrades to LOR-
RI’s capabilities have been 
made during the mission. 
A special “trigger mode” 
capability, whereby LORRI 
can autonomously detect 
a target and start taking 
images, was designed, devel-
oped, and ground-tested in 
2012–2013. We expected to 
use trigger mode to save data 
volume as the spacecraft 

scanned LORRI’s boresight across Pluto’s large pointing 
error ellipse, producing many blank images, but because 
we could not perform good in-flight tests on an extended 
target, trigger mode was not used during the Pluto flyby. 
The LORRI flight software was upgraded in 2019 to 
increase the maximum available exposure time from 
29.967 s to 64.967 s, and this capability has been used 
extensively ever since. In 2020, New Horizons’ C&DH 
flight software was upgraded to enable onboard co adding 
of up to 100 LORRI 4 × 4-format images, which could be 
used to save precious SSR data volume.

SWAP
The Solar Wind Around Pluto (SWAP) instru-

ment7 was designed to measure the solar wind at large 
distances from the Sun and its interaction with Pluto, 
including Pluto-generated PUIs.14 Because of the great 
heliocentric distances and large range of viewing direc-
tions, SWAP was designed to have extremely high sen-
sitivity, a very large FOV, and very low backgrounds. 
These attributes allowed SWAP to make unprecedented 
measurements of Pluto’s interaction with the solar 
wind,15 as well as unique measurements of the Jovian 
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magnetotail to >2,500 RJ
16 and fundamental observa-

tions of interstellar PUIs.17 SWAP continues to make 
excellent observations of the solar wind and interstellar 
PUIs, now out past 53 au.18

Figure 8 schematically depicts SWAP’s principal 
electro-optics: (1)  an RPA, (2)  a deflector (DFL), and 
(3)  an electrostatic analyzer (ESA). Collectively, these 
elements select the angles and energies of the solar wind 
and PUIs to be measured. Ions with energy per charge 
(E/q) greater than the RPA voltage enter through the 
RPA. The RPA protected SWAP from the very high 

solar wind fluxes in the inner heliosphere; beyond Jupiter 
the RPA was generally left off. The ESA provides energy 
selection and rejects ions outside the selected E/q range. 
It also protects the detectors from UV light and neutral 
particles. Ions selected by the ESA are registered with a 
coincidence detector system. The voltage on the ESA 
varies from 0 to –4,000 V, enabling it to select particles 
from 35 eV/q to 7.5 keV/q with a ΔE/E of 8.5% FWHM.

Figure 9 compares SWAP’s energy-angle response 
function for a 1-keV proton beam (left) with a SIMION 
model (right). The energy and angle binning in the 
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SIMION model was set to the same values as in the 
instrument for a better comparison. Clearly, there is an 
excellent agreement between the modeling and the cali-
bration measurements with the ion beam.

On February 19, 2021, a simple flight software upgrade 
redefined the internal formatting of a large daily his-
togram into 47 sequential (~30-min) histograms with 
normal 64-step energy resolution and started producing 
the high-cadence data product. This enabled measure-
ments of individual solar wind and PUI distributions 
nearly 50  times faster than the 1-day distributions pre-
viously collected. This time resolution is sufficient to 
resolve the shock structures and quantify the particle 
heating across the shock (see McComas et al.18 for details 
and for SWAP’s current configuration and capabilities). 
The new high-resolution observations are important 
for understanding shocks in the outer heliosphere, the 
heliospheric termination shock, and more broadly for 
PUI-mediated shocks across many astrophysical systems.

PEPSSI
The PEPSSI (Pluto Energetic Particle Spectrom-

eter Science Investigation) experiment7 was designed to 
measure suprathermal ions and energetic particles asso-
ciated with neutral gas escaping from Pluto’s atmosphere 
and monitor the radiation environment (e.g., in the 
solar wind, ionosphere, magnetotail, or their analogues) 
on approach to and departure from the Pluto–Charon 
system. PEPSSI is from the first generation of low-mass 
(<1.48  kg), low-power (2.49  W), time-of-flight (TOF) 

mass spectrometers19—called pucks (from their roughly 
hockey-puck-sized TOF chambers)—designed and built 
at APL and flown to five worlds: three orbital missions, 
to Mercury, Earth, and Jupiter; and the flybys of Jupiter, 
Pluto, and Arrokoth by New Horizons. PEPSSI originally 
had a prime energy range of ~15 keV to 1 MeV, but we 
have since extended the usable, calibrated energy range 
to lower20 and higher21 energies, adding ≥2 keV/nuc ions 
(e.g., interstellar PUIs) and ~70 MeV to >1.4 GeV ions 
(e.g., galactic cosmic rays), respectively, to its capabili-
ties. Laboratory measurements with the PEPSSI engi-
neering model were made from 2016 to 2018 in support 
of this effort to broaden the impact of the flight unit’s 
scientific measurements.

Like other TOF mass spectrometers, PEPSSI uses 
TOF measurements in combination with kinetic energy 
measurements from silicon solid-state detectors (SSDs), 
as illustrated in Figure 10. The TOF measurements rely 
on thin “start” and “stop” foils to time the primary ion’s 
flight between the two foils, resulting in a velocity mea-
surement (including six sectors of angular sensitivity). 
The primary (desired foreground) ions pass through the 
foils, producing secondary electrons that are electrostati-
cally steered toward a microchannel plate for detection 
(via an electron avalanche process). The energy is deter-
mined when the primary ion enters the active volume of 
the SSD and Coulomb collisions liberate electrons from 
ions in the Si crystal lattice, which is biased by a voltage 
sufficient to separate the resulting electron-hole pairs. 
In combination with many such electron-hole pairs 
(released in a quantity roughly proportional to E since 
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the ion stops in the SSD, due to the many collisions, 
releasing all of its kinetic energy), a pulse is produced 
that is analyzed and calibrated to energy. Together, the 
measured kinetic energy, E, and velocity, v, are the quan-
tities needed to determine the primary ion’s mass, m, as 
illustrated by the nonrelativistic expression E = ½mv2.

In addition to making Pluto observations,22,23 as 
New Horizons flew through Jupiter’s magnetosphere in 
2007,24 PEPSSI made measurements during the >2,500 
RJ (Jovian radius, RJ = 71,400 km) traversal of the Jovian 
magnetotail. For example, it measured dispersive ion 
flows in filamentary structures25 and intruding inter-
planetary He ions.26 PEPSSI also made observations 
during the Arrokoth flyby,27 finding conditions consis-
tent with its years of interplanetary measurements.18,19

More recently, the PEPSSI team conducted a major 
flight software update on April 10, 2022. The primary 
goal of the update was to add a “shock” burst capability to 
permit an autonomously detected particle event (observed 
via a jump in a counting rate relative to a long average) to 
trigger the circularly buffering high-time-resolution (e.g., 
20  s) data, covering ~1.5  days before the trigger, to be 
packetized and sent to the New Horizons SSR. The trig-
ger also increases the data rate to a much higher cadence 
(e.g., 20 s versus 240 s) for an interval of ~2 days after the 
trigger. (Illustrative, nominal setting values are provided 
here, but are commandable, with constraints.) Together, 
these updates will allow the limited data volume to be 
concentrated more on events of high scientific interest, 
making more efficient use of spacecraft and Deep Space 
Network resources and thus resulting in a higher science 
return from PEPSSI and New Horizons.

PEPSSI operations remain nominal and robust. 
Despite the instrument aperture misalignment during 
spacecraft assembly (refer to section 5.1.1 of McNutt et 
al.7), PEPSSI has achieved all science requirements at 
Pluto and Arrokoth, produced significant new insights 
into the properties of Jupiter’s magnetotail following 
the early gravity assist at that planet, and continues 
to provide new and novel measurements of pickup and 
suprathermal ions in the far solar wind near the plane 
of the ecliptic (New Horizons and Voyager 2 remain at 
approximately the same heliolongitudes, but Voyager 2 is 
~50° south of the plane of the ecliptic and Voyager 1 35° 
to the north; refer to Figure 35 in McNutt et al.7)

The power supplies and associated voltages and cur-
rents remain solidly within launch specifications and 
continue to be steady. This is also true for the various 
telemetered temperature values. In coming in and out 
of lengthy (multiple-month) hibernation periods with-
out direct contact with Earth, PEPSSI continues to 
operate nominally. Between 2007 and early 2013, there 
were multiple periods during which the instrument 
was powered down and left off. Following the Pluto 
flyby, the instrument has typically been left powered 
up to take near-continuous data, and this continues 

to be the case. There have been no adverse effects in 
instrument operation.

There has been no observed difference in engi-
neering parameters whether in spin-stabilized or 
three-axis-stabilized mode. From commissioning in 
2006 through 2022, the instrument had undergone ~180 
power cycles and ~50 EEPROM writes.

The efficiency of PEPSSI is time dependent, likely due 
to charging up of the foils. The start foil uses aluminum 
that forms an insulating oxide layer so that secondary 
electrons released by the primary ions are not quickly 
replenished, so the resulting charging reduces the sec-
ondary electron yield and, therefore, the ion detection 
efficiency. The charge can equilibrate and the efficiency 
recovers when the high voltage is turned off (e.g., during 
power cycles). That behavior occurs in-flight on the tim-
escale of months and is tracked and corrected in flight 
by using a small, degraded Am-241 calibration source 
(Appendix A of Kollmann et al.19).

The design heritage of PEPSSI and the other pucks 
continues with the latest APL TOF-mass-spectrometer 
in space, EPI-Lo (Energetic Particle Instrument – Low 
Energy). This instrument uses the “mushroom” design28 
and comprises half of the Princeton-led ISOIS energetic 
particle investigation29 instrument suite on NASA’s 
APL-led Parker Solar Probe mission to the Sun.30,31

VBSDC
New Horizons is the first planetary mission to carry 

a student-built instrument. The Venetia Burney Student 
Dust Counter (VBSDC) experiment is an impact dust 
detector designed to map the spatial and size distribu-
tion of dust along the trajectory of the spacecraft across 
the solar system. The instrument was initially called the 
Student Dust Counter (SDC), but in 2006, it was named 
for Venetia Burney, who as a child offered the name 
Pluto for the newly discovered ninth planet in 1930. The 
sensors are thin (28 μm), permanently polarized PVDF 
plastic films generating an electrical signal when dust 
particles penetrate their surface. VBSDC has a total sen-
sitive surface area of ~0.1 m2, pointing most of the time 
close to the ram direction of the spacecraft. VBSDC can 
detect particles with masses greater than 10−12  g. The 
instrument was designed, built, tested, and integrated by 
students. As of this writing, seven generations of gradu-
ate students have been involved in operating VBSDC.

The VBSDC electronics are carried on two multi-
layer printed wiring assemblies (PWAs) housed in the 
VBSDC electronics box. Signals from the detectors 
come through an intra-harness onto the analog PWA 
where they are amplified, conditioned, and converted to 
digital data. The digital data are collected to registers in 
the field-programmable gate array (FPGA) on the digital 
PWA (Figure 11), and from there to the microproces-
sor, which adds timestamps to the data and stores them 
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in long-term, nonvolatile memory. The digital PWA 
also contains the power supply, system health monitor-
ing circuitry, and interface electronics for spacecraft 
communications.

While the spacecraft remains in hibernation for long 
periods of time, VBSDC remains on and collects data. 

It is preprogrammed to execute a self-checkout prior to 
a scheduled spacecraft ground contact to transmit its 
status. The VBSDC flight software manages the setup 
and data collection of the onboard calibration stimulus 
tests (Figure 12). It also performs a noise floor calibra-
tion. This consists of changing the thresholds of all 
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the channels to a series of levels sensitive enough that 
electronics noise becomes detectable. By counting the 
number of science interrupts (“dust hits”) obtained at 
each threshold over specified times, the statistical distri-
bution of the noise on each channel can be calculated 
(Figure 12). The flight software allows for up to five levels 
and test times. The test thresholds are configurable from 
the ground, but the durations are permanently set.

VBSDC has remained remarkably stable since launch, 
as indicated by both its onboard calibration and instru-
ment noise checkouts (Figure 12), and it should continue 
to contribute to the New Horizons science results for 
many years to come.

SUMMARY
The New Horizons instrument suite has demonstrated 

excellent performance, returning a set of data meeting 
the requirements for full mission success. The instru-
ments continue to be fully operational after 17 years of 
flight as of the date of this publication and give every 
evidence of being capable of excellent performance well 
into the future.
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