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ABSTRACT
This article gives an overview of New Horizons’ past, present, and future exploration of the helio-
sphere, including descriptions of the planned future investigations by the plasma and particle 
instruments Solar Wind Around Pluto (SWAP) and Pluto Energetic Particle Spectrometer Science 
Investigation (PEPSSI). These investigations include the evolution of the solar wind, pickup ions, 
energetic particles, and galactic cosmic rays in the outer heliosphere, as well as the propagation of 
the solar disturbances throughout the heliosphere. The article also presents the observation plans 
for the ultraviolet spectrograph Alice, which consist of all-sky imaging in search for signatures of 
the hydrogen wall and interstellar clouds beyond the heliopause and also measurements of the 
hydrogen column density between New Horizons and other spacecraft in the inner solar system. 
In addition, it discusses the past measurements of circumsolar dust by the Venetia Burney Student 
Dust Counter (VBSDC) and the search for interstellar dust grains. Lastly, it presents an overview of 
the planned observations by the Long Range Reconnaissance Imager (LORRI), including of distant 
Kuiper Belt objects and the cosmic optical background.

environments and supernovae, at times leaving the entire 
solar system exposed to the interstellar medium, ampli-
fying the central role of an astrosphere in the evolution 
of habitable systems.1,2,3,4,5,6,7,8,9 After traversing the 
Local Interstellar Cloud (LIC) for the past 60,000 years, 
the Sun is now about to enter the unknown environ-
ment of the neighboring G-Cloud, which will continue 
to shape the evolution of our home.10

INTRODUCTION
Our solar system was formed in a journey around 

the galaxy from the protosolar nebula plowing through 
interstellar space filled with gas, dust, plasma, and 
cosmic rays. After only a few ten million years, the Sun 
ignited and its magnetized solar wind carved out a vast 
magnetic bubble—the heliosphere. Since then our pro-
tective heliosphere has helped shape our solar system. It 
has been exposed to dramatically different interstellar 
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Our vast protective heliosphere is created by the Sun 
releasing the solar wind with structures from the small-
est kinetic scales to large-scale coronal mass ejections 
and stream interaction regions,11 which are the com-
pressions where fast wind particles run into slower ones 
emitted earlier. Fine-scale processes, such as magnetic 
reconnection, shock, and turbulent interactions, are at 
work throughout the heliosphere. Interstellar gas flow-
ing through the heliosphere is ionized, creating inter-
stellar pickup ions (PUIs)12,13 that interact with the 
evolving solar wind and its embedded structures already 
~3 astronomical units (au).14,15,16,17 All these large- and 
small-scale processes have global consequences for the 
nature and character of the solar wind that upholds 
our entire heliosphere against the very local interstellar 
medium (VLISM).

New Horizons is the only spacecraft currently in 
the outer heliosphere (Figure 1), where its instruments 
Solar Wind Around Pluto (SWAP) and Pluto Energetic 
Particle Spectrometer Science Investigation (PEPSSI) 
are making first-time measurements of H+ and He+ 
PUIs that are decisive for the entire structure of the 
heliosphere—measurements Voyager was not equipped 
to make. With its simultaneous measurements of the 
solar wind, PUIs, suprathermals, and energetic particles, 
New Horizons is well equipped to investigate the outer 
heliosphere and provide the necessary understanding 
to incorporate the physical processes missing in global 
models.18 Alice, New Horizons’ ultraviolet (UV) spec-
trograph, provides remote diagnostics of interplanetary 
and interstellar hydrogen atoms (Lyman-α) with much 
higher sensitivity than the spectrograph onboard the 
Voyager spacecraft. Venetia Burney Student Dust Coun-
ter (VBSDC) measurements are intriguingly still domi-
nated by strong fluxes of interplanetary dust created in 

the Kuiper Belt. Once those fluxes diminish, VBSDC is 
expected to make the first direct measurements in the 
distant region of interstellar dust (ISD) that penetrates 
the heliospheric shield.

EXPLORATION OF THE HELIOSPHERE AND ITS 
BOUNDARY TO THE VLISM

As New Horizons leaves the main part of the Kuiper 
Belt, it begins a new phase of exploration that will reveal 
discoveries central to understanding our global helio-
sphere. The next couple decades of exploration for New 
Horizons span solar cycles 25–27, for which each mission 
extension will have unique enduring science goals that 
will further heliophysics as a discipline.

Early in the next decade, New Horizons is expected 
to begin traversing the boundary region to the VLISM 
(Figure 2). It will take about 10 years to cross this region, 
which could be ~30 au thick. First New Horizons will 
encounter the termination shock (TS), estimated at 
~92 au,19 after which it will explore the heliosheath in 
varying solar-cycle conditions and make measurements to 
uncover plasma flows and dynamics. New Horizons has 
sufficient power to cross the heliopause (HP) in the early 
2040s and probably enough to last until ~2050, enabling 
it to make critical measurements that will shed light on 
the mysteries left behind by the Voyager mission and 
to become the third operating mission to cross into the 
VLISM. With New Horizons in the outer heliosphere, 
Voyager in the VLISM, and the fleet of inner-heliospheric 
in situ and imaging missions, the science community is 
equipped with the most widely spaced constellation of 
spacecraft to date, offering a historic opportunity to 
understand how the Sun interacts with the VLISM.20
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Figure 1. New Horizons Kuiper Belt extended mission (KEM) timeline. New Horizons has not yet reached the halfway point of its opera-
tional lifetime and is now embarking on its exploration of the vast heliospheric boundary, likely operating over the next two solar maxima.
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Solar Wind Evolution and Processes Shaping the 
Heliosphere

As the heliosphere moves through the VLISM, the 
surrounding interstellar neutral gas (mainly H and He) 
flows through the solar system and becomes photoion-
ized by solar UV or charge-exchanged with solar wind 
protons. These newly created PUIs obtain an additional 
gyration velocity as large as the local solar wind bulk 
flow speed itself and, thus, are measured in the spacecraft 
frame of reference with speeds from zero up to twice that 
of the solar wind. In obtaining this speed, PUIs extract 
momentum from the solar wind, decelerating and heat-
ing it, as seen by SWAP.17,19 PUIs are also likely heated 
by turbulence in the solar wind,21 but it is not clear how 
PUIs evolve in the supersonic solar wind. PUIs domi-
nate the energy density in the outer heliosphere22,23 and 
therefore play a central role in shaping the heliosphere.

New Horizons is uniquely equipped to address this 
interplay between interstellar neutrals and the helio-
sphere. SWAP and PEPSSI have the capabilities to mea-
sure, for the first time, H+ and He+ PUIs in the important 
region of the outer heliosphere while also observing the 
solar wind evolution (Figure  3). Alice obtains remote 
line-of-sight measurements of Lyman-α emission scat-
tered by interstellar hydrogen atoms streaming through 
the heliosphere (refer to the section on interplanetary 
and interstellar hydrogen).

In the next several years, New Horizons will approach 
the TS and enter a region where solar wind heating 
and slowdown by interstellar PUIs become increasingly 
pronounced17,24 as the PUI distributions isotropize and 
transfer their energy to the solar wind through turbu-
lent wave–particle interactions.15 Solar disturbances 
in this region preferentially accelerate PUIs to supra-
thermal energies25,26 along their path, likely resulting 
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Figure 2. Spacecraft exploring the outer heliosphere and interstellar medium and their positions. As the Sun plows through the VLISM, 
the solar wind carves out a vast magnetic bubble—the heliosphere—which interacts with galactic cosmic rays, ISD, plasma, and gas. In 
its next extended mission period, New Horizons will enter a unique region 63–69 au from the Sun where the processes upholding the 
heliospheric boundary become more pronounced. As the only spacecraft now in the outer heliosphere, New Horizons has only begun 
its exploration. Its unique instrumentation enables new discoveries in heliophysics and possibly in astrophysics and planetary sciences. 
(Adapted from Krimigis et al.20)
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in the PUIs dominating the thermal pressure in the 
outer heliosphere.23

PEPSSI resolves the He+ PUI energy spectra well 
across its energy cutoff, enabling us to study their trends 
across the outer heliosphere. While H+ PUIs can be well 
described through the phase-space-density spectrum that 
is relatively constant below the PUI cutoff energy,19,27 
heavier PUIs sometimes show rising phase space den-
sity, as measured by both PEPSSI at >5 au and Cassini’s 
Magnetospheric Imaging Instrument (MIMI) and Charge 
Energy Mass Spectrometer (CHEMS) in the <10-au 
region.25,28,29 These spectra may hold signatures of accel-
eration and transport processes in the outer heliosphere 
that are currently unknown or underappreciated.

Although New Horizons is headed along the same lon-
gitude as Voyager 2, it is remaining in the ecliptic headed 
toward the ribbon. During the recent solar minimum, the 
tilt of the current sheet was low, which directed slow wind 
toward New Horizons. New Horizons began to observe a 
solar wind slowdown at around 42 au,30 which is reminis-
cent of the slowdown Voyager 2 observed starting near 
53 au. This behavior may indicate a unique environment 
leading up to the crossing of the TS. As New Horizons 
moves away from the Sun, we need to combine data sets 
and use models to understand the context of what hap-
pens along the New Horizons trajectory. In analyzing the 
trend of the so-called solar wind power law index between 
the density and temperature determined with SWAP and 
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Figure 3. Solar wind and energetic particle measurements throughout the New Horizons mission. (a) SWAP solar wind proton speed. 
(b) SWAP proton solar wind dynamic pressure. (c) SWAP proton solar wind thermal pressure (black) and PUI pressure (purple). (d) PEPSSI 
He+ 2–200 keV/nuc (purple). (e) PEPSSI 20 keV–1 MeV protons (green), 20 keV–1 MeV CNO (red).
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comparing it with that estimated from Voyager 2, New 
Horizons’ measurements can constrain the motion and 
location of the TS17 to within about ±5 au. PEPSSI will 
determine ion anisotropies from ~40 keV to 17 MeV that 
come from field-aligned particles streaming Sunward from 
the TS. These could be used as an early indicator of the 
TS, similar to Sunward energetic particle streams Voy-
ager 1 detected ~9 au before the crossing.31,32 Not only 
are these measurements important for constraining the 
global structure of the TS, but they also provide valuable 
insight into how the PUI-mediated solar wind affects the 
location and motion of the TS. They will be compared 
with other estimates of the same—for example, from the 
Interstellar Boundary Explorer (IBEX) or the Interstellar 
Mapping and Acceleration 
Probe (IMAP).

Heliospheric models 
critically depend on New 
Horizons’ measurements 
to quantify the effects of 
neutrals and PUIs, which 
are crucial for describing 
the heliospheric shape and 
structure.15,33,34,35 These 
neutrals and PUIs also con-
trol the large-scale Energetic 
Neutral Atom (ENA) emis-
sion patterns, observed by 
IBEX, Cassini, and soon also 
IMAP.36,37 While recent 
physical models of the outer 
heliosphere are progressing, 
they still overestimate the 
thickness of the heliosheath 
by a factor of two, requir-
ing a new description of 
ion-neutral interactions that 
include PUIs and thermal 
plasma as two different com-
ponents.34 The importance 
of these measurements is 
amplified because New 
Horizons is traveling along 
the same longitude as Voy-
ager 2 but is headed toward 
the middle of the so-called 
ENA ribbon. Thus, New 
Horizons provides measures 
of PUI densities and veloc-
ity distributions that are 
critical for understanding 
the physical processes cur-
rently missing in models, 
which consistently underes-
timate observed IBEX ENA 
intensities.18

Solar Disturbances Propagating through the 
Heliosphere

Corotating interaction regions (CIR) compressions 
and coronal mass ejections originate from the Sun and 
gradually slow down and merge into global merged inter-
action regions (GMIRs) that propagate through the TS 
and even out beyond the HP. Over the next several years, 
New Horizons is expected to observe 30–60 of these 
GMIRs, shock structures, or other variable solar wind 
structures that have propagated for nearly a year from 
the inner to the outer heliosphere. Here, PEPSSI and 
SWAP determine the detailed effects on H+ and He+ 
ions from keV to MeV energies (Figure 4). Using their 
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newly (2021–2022) installed higher-time-resolution flight 
software capabilities, PEPSSI and SWAP21 will provide 
new insights into particle interactions with propagating 
solar disturbances that can also be used as a diagno-
sis to constrain their nature. The new high-resolution 
observations are extremely important for understand-
ing shocks in the outer heliosphere and especially the 
TS. In general, PUI-mediated shocks are common across 
many astrophysical systems. This makes New Horizons’ 
observations unique and critical for developing a gen-
eral physical understanding of this kind of shock for the 
broader community.

The next several years mark an important oppor-
tunity to combine data from the instruments on New 
Horizons, the only outer-heliosphere observatory, with 
Voyager data to investigate propagation of solar distur-
bances through the heliosphere and into the VLISM. 
From New Horizons, disturbances take about 4–6 years 
to reach the Voyagers. According to the current opera-
tional schedule of Voyager 1 and 2, 2025–2027 is the last 
opportunity to coordinate observations between New 
Horizons and Voyager before power is depleted on the 
Voyager spacecraft.

Although New Horizons lacks a magnetometer and 
therefore cannot characterize complete shock condi-
tions, it uses signatures of solar wind speed and particles 
to characterize solar disturbances that in some cases may 
not be shocks. Recently, McComas et al.21 used SWAP’s 
new high-resolution observations to identify seven weak 
shocks during ~10 months. This new time resolution is 
sufficient to resolve the shock structures and quantify 
the particle heating across the shocks. Comparing the 
timing and strength of solar disturbances at New Hori-
zons observed by PEPSSI and SWAP with the obser-
vations obtained by Voyager 1 and 2 places powerful 
constraints on propagation speeds and heliosheath prop-
erties between New Horizons and Voyager.

Propagating disturbances are all responsible for the 
global dynamics of the 
entire heliosphere, includ-
ing motion of the TS, heat-
ing of the heliosheath, and 
perturbations of the HP 
and VLISM, as indicated by 
Voyager observations.38,39,40 
Despite these disturbances’ 
importance for the global 
dynamics, the physics of 
the propagation and modi-
fication of these struc-
tures through the different 
heliospheric boundaries 
are far from understood 
(Figure  5).41 The timing 
and characteristics of dis-
turbances observed by New 

Horizons will be compared with in situ measurements 
from operating inner-heliospheric missions, such as 
Advanced Composition Explorer (ACE), Solar TErres-
trial RElations Observatory (STEREO),17,24 and IMAP. 
The continued remote ENA observations by IBEX,42 
and soon IMAP starting in 2025,43 will enable new com-
parisons between IMAP ENA images and disturbances 
propagating across the heliospheric boundary measured 
by New Horizons44 and Voyager.

One of the fundamental questions in space physics is 
how the charged particles found in space propagate and 
change energy. We know that particles in the magneto-
sphere of a magnetized planet perform to zeroth order a 
complicated motion that in essence drives them around 
the central body, further complicated through vari-
ous scattering processes. In the heliosphere, it is obvi-
ous that the sub-keV solar wind plasma mostly moves 
away from the Sun. Yet there is no generally accepted 
theory on how the more energetic suprathermal particles 
move in the heliosphere. With their high energy, they 
are generally able to move in any direction, but for their 
actual movements, current theories were mostly tested 
in the inner heliosphere.45,46 New Horizons’ trajectory 
takes it through CIRs, and their stable and relatively 
well-defined structures provide a natural laboratory 
that is ideal for investigating the fundamental particle 
propagation processes. There has been little opportunity 
to study such CIRs in the outer heliosphere. While the 
Voyager spacecraft passed through that same region, 
they lacked instrumentation to cover the specific energy 
range of suprathermal ions. The first measurements of 
ions in this energy range beyond the orbit of Saturn were 
made by PEPSSI.26 Only PEPSSI can provide continu-
ous He+ measurements from PUIs (~2–16 keV), through 
suprathermal ions (~16–100 keV), and into the energetic 
particle population (~100–1,000 keV). SWAP completes 
the energy coverage down into the solar wind plasma 
energy range. Therefore, both PEPSSI and SWAP can 
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track how the particle distribution functions change 
with distance to the CIRs and determine the differ-
ent particle responses during different phases of the 
solar cycle. All these transitions are critical constraints 
to theories26 that describe how the suprathermal par-
ticles in that region of the heliosphere propagate, which 
may be turbulent and diffusive47,48 or—fundamentally 
different—nearly scatter free and deterministic.49,50

Interplanetary and Interstellar Hydrogen
The Alice UV spectrograph has been regularly map-

ping the distribution of Lyman-α emissions across the 
sky.51,52,53 Most of these emissions result from the reso-
nantly backscattered solar Lyman-α radiation off the 
interstellar H flowing through the heliosphere. Inde-
pendent estimations of heliospheric neutral H densities 
are being planned for 2024 using Alice Lyman-α mea-
surements in the same direction as observations from 
the inner heliosphere, such as those from the Imaging 
Ultraviolet Spectrograph (IUVS) on Mars Atmosphere 
and Volatile EvolutioN (MAVEN), the Lyman Alpha 
Mapping Project (LAMP) on the Lunar Reconnais-
sance Orbiter (LRO), and the Ultraviolet Spectrograph 
(UVS) on the Jupiter Icy Moons Explorer (JUICE). The 
technique was validated in 2021 with MAVEN and 
New Horizons. The initial results indicate an H den-
sity at New Horizons (at 51.3 au) of about three times 
higher than that at MAVEN in Mars orbit (~1.5 au), well 
inside the ionization cavity and therefore a very reason-
able result given the strong 
depletion of H near the 
Sun.54 More analysis is 
needed to account correctly 
for the observational geom-
etries, and future opportu-
nities with other spacecraft 
are planned.

New Horizons is gradu-
ally traveling beyond this 
foreground haze of inter-
planetary Lyman-α and 
has confirmed the galac-
tic Lyman-α background 
of ~43  R,53 which had 
been hypothesized for over 
half a century.55 Given its 
500  times higher sensitivity 
over the UVS spectrograph 
onboard Voyager, Alice is 
capable of detecting also the 
faint contribution (<10  R) 
from the H gas blanketing 
the nose of the heliosphere, 
the “hydrogen wall,”56,57 
which is a consequence of 

the slowdown of interstellar H through charge-exchange 
processes beyond the HP. Therefore, understanding the 
H wall is a core part of understanding how interstellar 
neutral gas interacts with the heliosphere. The H wall is 
also one of the outstanding features seen shielding other 
“astrospheres.”58 Stellar analogs to the heliospheric 
H wall are difficult to detect because of their relatively 
weak intensities, so heliospheric observations therefore 
remain the best way to understand astrospheres around 
G-type main-sequence stars.

Being now far away from the foreground “fog” of 
solar-scattered emissions from interplanetary H, Alice 
observations provide greater sensitivity to faint helio-
spheric and local interstellar medium (LISM) structures 
detectable in the optically thin wings of the Lyman-α 
profile. Upstream excess emissions (~10  R) from the 
H wall blanketing the heliosphere at ~300 au59,60 should 
respond to solar-cycle variations, while the LISM clouds 
will instead display unchanging morphology. Alice’s sen-
sitivity to Lyman-α emissions is ~5  counts/s/Rayleigh, 
~500  times more sensitive than Voyager’s UVS, which 
first mapped Lyman-α emissions from large heliospheric 
distances.61,62 In 2024, New Horizons will have obtained 
two complete Lyman-α sky maps at 2˚ resolution to search 
for morphological signatures of the H wall. The sky maps 
will be constructed by sweeping out great circles across 
the sky by slowly moving the spin plane of the spacecraft. 
The scan planes of the two sky maps are planned at 90˚ 
angles to each other to improve the angular resolution 
of the composite sky map. Depending on the results, an 
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additional sky map in 2027 will be obtained during the 
declining phase of solar cycle 25 (should NASA choose 
to continue to extend the mission), and this map will be 
contrasted against the previous ones obtained when the 
solar Lyman-α was more intense. Any temporal inten-
sity of a morphological H-wall structure would follow the 
solar Lyman-α variation and could therefore be differen-
tiated against the constant galactic and interstellar cloud 
Lyman-α emissions. Proof-of-concept great-circle scans 
were already performed in 2021, shown by the 30 -̊wide 
“pixelated” swath in Figure 6. This discrimination was 
not possible earlier, when only six great-circle Lyman-α 
scans were made.63

Surrounding the Sun on parsec scales are several in-
terstellar clouds that have very different gas and plasma 
densities and temperatures and are believed to be rem-
nants from past supernovae. The Sun has spent its last 
60,000 years traversing the LIC,63 whose properties are 
governing the interaction, 
shape, and size of the helio-
sphere.64 Already now the 
Sun may be in the transi-
tion region to enter the un-
known environment of the 
G-Cloud,65,66 which could 
drastically change the helio-
spheric shape and interac-
tion. Most of the knowledge 
we have about our immedi-
ate interstellar neighbor-
hood is based on average 
properties obtained from 
~80 line-of-sight absorption 
measurements to the nearest 
stars. Despite the sparsity of 
these samples, a crude map 
of several clouds could be 
constructed.63

Following the same 
approach described above, 
all-sky maps obtained by 
Alice in 2027 will be con-
trasted with those obtained 
during 2023 and 2024 when 
the solar Lyman-α output 
was different. This will 
enable a search for any fea-
tures that are constant over 
time and follow the out-
lines of interstellar clouds 
obtained by the Hubble 
Space Telescope, indicated 
by the contours in Figure 6. 
The core of the Lyman-α 
spectrum is optically thick 
over the distances relevant 

to interstellar clouds, and signatures are therefore not 
expected in this wavelength range. However, in the 
wings of the spectral distribution where emissions are 
optically thin, signatures may be present. To maintain 
a low data volume, the sky maps are spectrally inte-
grated over the wavelength range. Any morphological 
signatures would appear as either an excess or reduction 
in overall intensity. Any such signatures would be the 
first continuous verification of neighboring interstellar 
clouds. Any reduction caused by obscuration or excess 
emissions would provide the important constraints on 
processes within the clouds themselves or in the inter-
action regions between clouds, as has been observed 
in x-rays.67 Any findings may warrant more detailed 
follow-up observations in dedicated wavelength ranges. 
Using the galactic Lyman-α background as a measure by 
ISD absorption, Alice can also determine dust absorp-
tion coefficients to infer ISD properties.
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Figure 7. Simulated 0.3-μm ISD densities within the heliosphere during contrasting heliospheric 
conditions. (a) Each second solar minimum, the IMF polarity defocuses the trajectories of charged 
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focuses the trajectories of charged grains. (Model of 0.316-µm grains adapted from Slavin et al.,68 
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certain times and positions, also described as “waves” of small dust “rolling” into the heliosphere. 
(Adapted from Sterken et al.,76 CC BY 4.0.)
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The Search for ISD
ISD grains penetrate the heliosphere, and their tra-

jectories are modified by solar gravity, radiation pressure, 
interplanetary magnetic fields (IMFs), and the helio-
spheric boundary, depending on their mass-to-charge 
ratio.68,69,70 ISD grains carry critical dynamical and 
compositional information about the VLISM and its 
interaction with the heliosphere.71 Currently, there is no 
agreement between in situ measurements of ISD fluxes 
by the Ulysses and Galileo spacecraft in the inner helio-
sphere (<5  au)72,73 and remote sensing observations of 
more distant ISD grain distributions.74,75 A likely reason 
for this disagreement is the role the heliosheath plays in 
filtering sub-micrometer ISD grains as they interact with 
the heliosphere.76

Previous analyses show that ISD grain fluxes in the 
inner heliosphere display long-term modulations due 
to solar-cycle variations in the IMF.77 Figure 7 shows 
simulated 0.3-μm ISD densities within the heliosphere 
during contrasting heliospheric conditions, demon-
strating the strong modulation of ISD dynamics.68 For-
tuitously, New Horizons is heading nearly upwind into 
the incoming ISD flow, allowing VBSDC to record 
impacts of ISD grains. The IMF is currently switch-
ing toward a “focusing” orientation, which will reach 
its maximum in the solar minimum of the upcoming 
solar cycle 26 (ca. 2029–2030), whereby sub-micrometer 
ISD grains will be driven toward the heliospheric cur-
rent sheet, increasing ISD densities.68 However, ISD 
grains take a little more than one solar cycle to travel 
from the HP to New Horizons, and they also interact 
with the heliospheric boundary in a complex fashion. 
Therefore, it is difficult to predict any ISD fluxes accu-
rately. Because of this complexity, three world-leading 
models68,78,79 have not yet had data to fully incorporate 
the necessary physics, and any future VBSDC measure-
ment may therefore provide useful constraints on this 
emerging field.

PLANETARY SCIENCE: UNCOVERING THE SECRETS 
OF SOLAR SYSTEM EVOLUTION
Exploration of the Kuiper Belt(s)

The distant vantage point of New Horizons has 
enabled unique observations of the photometric phase 
functions, rotational light curves, and binarity of 
Kuiper Belt objects (KBOs). Although New Horizons 
is now beyond the classical Kuiper Belt, KBOs observ-
able by the spacecraft, primarily belonging to excited 
populations, continue to be discovered by Earth-based 
programs. These discoveries hint at a possible hitherto 
undetected and possibly massive population of planetesi-
mals beyond the known Kuiper Belt.80 If confirmed, they 
would increase the sample size of KBOs available to New 

Horizons and would allow sampling of solar phase curves 
and perhaps some rotational light curves that would 
provide shape constraints from new trans-Neptunian 
populations.

Since 2007, the telescopic Long Range Reconnais-
sance Imager (LORRI) imager onboard New Hori-
zons has observed KBOs at high solar phase angles 
not attainable from Earth or Earth orbit. These con-
sist mostly of KBOs from the cold classical Kuiper Belt 
population, like Arrokoth, that have low-eccentricity, 
low-inclination orbits close to where they formed in the 
protoplanetary nebula.81,82,83 New Horizons has found 
that some KBOs exhibit both steep solar phase curves 
and rotation curves that increase in amplitude with 
increasing phase angle, similar to those of other small, 
dark objects (asteroids, comet nuclei, and many irregular 
satellites of giant planets). For KBOs closest to the space-
craft, high-resolution imaging by New Horizons has also 
found evidence for very close binaries.84 Rotational light 
curves provide evidence for elongated and flattened 
objects, a discovery that indicates that Arrokoth’s shape 
may be very common among the cold classical Kuiper 
Belt population and has important implications for 
planetesimal formation.83

High-phase observations from New Horizons con-
strain KBO surface scattering behavior and thus 
fine-scale surface texture, a source of information about 
processes driving surface evolution and potential compo-
sitional differences among the various classes of KBOs.85 
High-phase observations are also valuable for determin-
ing the energy balance between absorbed sunlight and 
thermal radiation and, thus, KBO temperatures and 
their abilities to retain volatiles.

The New Horizons ground-based KBO search team 
found dozens of KBOs that the spacecraft has already 
observed (Figure  8 plots all currently known KBOs 
with well-determined orbits). Two newly discovered 
KBOs are already known to be observable by LORRI 
in the coming years. Both are bright enough from New 
Horizons to obtain solar phase curves. By using ongo-
ing ground-based searches, we expect that at least three 
to four more distant KBOs observable by LORRI will 
be discovered in the next couple years, and it is pos-
sible that some may appear bright enough to LORRI 
that rotational light curves can be obtained, providing 
shape constraints. These objects sample the dynami-
cally excited subpopulations of objects that originally 
formed closer to the Sun before being perturbed out-
ward early in solar system history, and this new Kuiper 
Belt population offers a major addition to the current 
data set. Each distinct Kuiper Belt population holds 
valuable information about the formation of plan-
etesimals and planets in the outer solar system,86,87 as 
well as subsequent events leading to the solar system’s 
present-day configuration.88,89
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The Circumsolar Dust Disk90

Planetesimal belts and dusty debris disks are known 
as the signposts of planet formation in exo-systems. The 
overall brightness of a disk provides information on the 
amount of sourcing planetesimal material, while asymme-
tries in the shape of the disk can be used to search for per-
turbing planets. The solar system is known to house two 
such belts, the inner Jupiter-family comet (JFC) with the 
asteroid belt and the outer Edgeworth-Kuiper Belt (EKB), 
and at least one debris cloud, the zodiacal cloud, sourced 
by planetesimal collisions and comet evaporative sublima-
tion. It is not well understood how much dust is produced 
from the EKB because the near-Sun comet contributions 
dominate the inner cloud and the only spacecraft to have 
flown any dust measurement capability through the EKB 
are New Horizons91 and the Voyagers via the Plasma 
Wave System.92 New estimates from the New Horizons 
results put the EKB disk mass at 30–40 times the inner 
disk mass.93 Better understanding of how much dust is 
produced in the EKB will improve our estimates of the 
total number of bodies in the belt, especially the smallest 
ones, and their dynamical collisional state.

VBSDC measures dust fluxes and number densi-
ties of micrometer-sized (10–14–10–10 kg) interplan-
etary dust particles (IDPs) originating from the Kuiper 
Belt as well as ISD from the interstellar medium for 
sizes > ca. 300 nm.91,94,95,96 Recent achievements include 
dust flux measurements extended to 52 au91,97 (Figure 9), 
modeling of interplanetary dust densities drawing ana-
logs to exozodiacal disks,93,97,98 quantification of inter-
planetary dust mass fluxes to giant planet atmospheres 

with implications for pho-
tochemical equilibria,99 and 
quantification of exogenous 
water deposition rates in the 
atmospheres of Pluto and 
Triton with implications for 
photochemistry and haze 
formation.100

VBSDC will extend its 
measurements of IDPs that 
are produced by KBO col-
lisions and ejected from 
KBOs by ISD grains.101,102 
Its measurements will con-
strain dynamical models of 
the interplanetary dust envi-
ronment in the outer solar 
system,93,98 thereby indirectly 
characterizing the distribu-
tion of parent KBOs.

Figure 9a shows VBSDC 
measurements of grains 
with radii >0.63 μm to date, 
from 1 to >50 au, along with 
models for the expected fluxes 

of IDPs (solid lines98) and ISD model predictions.77,97

The solid red curve in Figure 9a denotes the best-fit 
IDP model to the VBSDC measurements considering 
only the main Kuiper Belt parent body components 
observed by Petit et al.103 Recent stellar occultation 
measurements have suggested the possible presence of 
an extended tail to the Kuiper Belt heliocentric distance 
distribution, consisting of smaller more distant objects, 
which would in turn result in an extended region of 
IDP dust production and fluxes. Two additional curves 
(blue and purple) show IDP fluxes with the addition of 
two hypothetical distributions of KBOs extending to 
~100 au (an “outer” Kuiper Belt). The presence of a puta-
tive outer Kuiper Belt region of dust production yields 
more extended tails to the IDP dust fluxes at distances 
>50 au. While VBSDC observed increasing dust fluxes 
out to ~40–45 au, measurements near ~50 au may have 
declined slightly, suggesting that New Horizons may 
have passed through the densest dust-producing region 
of the Kuiper Belt around 45 au. The most recent mea-
surements seem to suggest yet another upward trend that 
may, or may not, be associated with a significant outer 
KBO population beyond the main belt. Thus, continued 
VBSDC observations into the mare incognitum beyond 
55 au provide a unique opportunity to learn about the 
structure of the Kuiper Belt, including constraints on 
a possible extension of the KBO distribution >50 au, 
which may be difficult to detect otherwise.

Dust distributions in the outer solar system can 
also provide unique insights into the interpreta-
tion of remote observations of extrasolar debris 
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disks.104,105 The vast majority of these are exo- 
Kuiper Belts.106,107,108,109,110 Mature exo-Kuiper Belts 
are not just products of the early protoplanetary disk 
structure, but, like the Kuiper Belt, are also affected 
by millions to billions of years of subsequent planetary 
migration and/or scattering events. Indeed, the bright-
est known exo-disks are formed in either highly stirred 
and dynamically excited exo-Kuiper Belts,105 or systems 
plowing through locally dense interstellar medium dust 
concentrations at high relative velocities;111,112 how-
ever, detailed knowledge of the dynamical structure 
and ISM dust influx in these systems remains sparse. 

By coupling VBSDC mea-
surements of the distribu-
tion of Kuiper Belt dust with 
detailed knowledge of the 
solar system’s Kuiper Belt 
population dynamics,113 
measurement-driven models 
of dust creation in the solar 
system can be built to apply 
to other systems, advancing 
understanding of how exo-
zodiacal disks are formed 
and interact with unseen 
planets and influences from 
surrounding interstellar 
material; see comparison of 
the modeled solar system 
zodiacal cloud structure with 
remote observations of exo-
zodiacal clouds (Figure 9b).

ASTROPHYSICS: 
PEERING INTO THE 
FORMATION OF 
GALAXIES

The discovery and char-
acterization of cosmic back-
ground radiation that is 
not attributable to known 
sources has been a frontier 
of fundamental astrophysics 
since the discovery of the 
3-K microwave background 
in the 1960s.114 The analo-
gous cosmic optical back-
ground (COB) may provide 
critical information on the 
evolution of galaxies over 
the age of the universe and 
perhaps even clues to the 
nature of dark matter. How-
ever, the COB has been 

exceedingly difficult to observe from 1  au. New Hori-
zons can produce the most accurate and direct obser-
vation of the COB yet for the integrated flux from all 
extragalactic sources generating photons detected at 
optical wavelengths (accounting for any redshift). For 
LORRI, the measured flux samples redshifts z from 
0 ≤ z ≤ 6 (Lyman-α is redshifted out of the bandpass at 
earlier epochs).

The directly measured COB flux is a key diagnostic 
that can be compared with the integral over known 
sources of extragalactic light, such as integrated galac-
tic light (IGL) described by multicolor counts of faint 
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Figure 9. Dust measurements by New Horizons. (a) VBSDC flux measurements of >0.63-µm dust 
grains (filled circles) with different IDP and predicted ISD flux (lower red dashed line). (Adapted 
from Piquette et al.91 and Bernardoni et al.,97 CC BY 4.0.) (b) Atacama Large Millimeter/submillimeter 
Array (ALMA) image of the HL-Tauri system with indications of early planetary formation. (c) Simu-
lation of our own circumsolar dust disk by Poppe et al.93 (© AAS, reproduced with permission). New 
Horizons dust measurements will provide the best understanding to date of the Sun’s dust disk, 
allowing us to better understand the formation of planetary systems in general.
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background galaxies115 from the Hubble Space Tele-
scope or, shortly, from the James Webb Space Tele-
scope.116 Any confirmed excess over known sources, 
as is hinted at by current measurements, particularly 
those from New Horizons, would potentially be a 
discovery of great importance. Explanations might 
include the existence of low-luminosity stellar systems 
unanticipated by simple extrapolation of the counts,117 
a large population of stars not closely associated with 
galaxies, or novel channels of photon generation.118 
Understanding additional flux sources is vital to 
understanding the complete history of star formation 
and active galactic nuclei output over the age of the 
universe.115 Solving such problems is at the center of 
the Cosmic Ecosystems initiatives called out in the 
Astro2020 decadal report.119

Another compelling rea-
son to measure the COB is 
to test attenuation models by 
visible photons of high-energy 
(~TeV) γ-rays emitted by dis-
tant active galactic nuclei. 
The observed γ-ray attenu-
ation120 is consistent with 
estimated IGL background 
levels. Any COB flux above 
the expected IGL (Figure 10a) 
would imply a corresponding 
reduction in γ-ray attenu-
ation. This, in turn, might 
imply, for instance, that the 
γ-rays interact with axion-like 
particles, a hypothesized form 
of dark matter.121

Attempts to measure the 
COB from the inner solar 
system yielded fluxes several 
times larger than estimates 
of the IGL based on galaxy 
counts, though none with sig-
nificance >95% (Figure 10a) 
from zero, because even at the 
ecliptic poles at 1 au, zodiacal 
light is over an order of mag-
nitude stronger than the COB 
and is difficult to model.

New Horizons’ great dis-
tance from the Sun allows 
unprecedentedly sensi-
tive measurements of the 
COB,122 because the space-
craft is far beyond most 
solar-illuminated dust. Using 
LORRI observations, Lauer 
et al.123 derived a COB flux 
of 15.36 ± 1.40 nW m–2 sr−1, 

which is in ~5σ conflict with the hypothesis that the 
IGL can account for the COB, as well as with the 
simplest models of the γ-ray attenuation. The excess 
over the IGL may validate arguments that the present 
galaxy counts have not included the full variety of stel-
lar systems.124

In the next year, New Horizons will obtain COB 
measurements of multiple fields (Figure 10b) to estab-
lish that the fluxes are sufficiently accurate to provide a 
strong test of the COB fluxes inferred from galaxy counts 
and the attenuation of cosmologically distant very 
high-energy γ-ray sources. The number of the fields also 
allows them to be tested for homogeneity of the COB, a 
key diagnostic for whether the unknown component is 
generated on cosmological scales.
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New Horizons’ large heliocentric distance also opens 
a unique window into cosmical UV background radia-
tion from outside the heliosphere. The background UV 
spectrum observed is a combination of contributions 
from the outer heliosphere, the LISM, and more dis-
tant sources out to z<~1, which New Horizons can help 
to disentangle with a combination of Lyman-α imag-
ing and spectroscopy. Data from the Galaxy Evolution 
Explorer (GALEX) in the range of 130 nm < λ < 180 nm 
obtained at 1 au suggested significant emission from 
unknown sources,125 although Kulkarni126 argues that 
about two-thirds of this unknown component can be 
explained as emission from weak shocks, H2 fluores-
cence, or two-photon continuum emission. Given its dis-
tant position, New Horizons can test these contributions 
using Alice127 to obtain deep spectra at several fields.

SUMMARY
New Horizons, currently at 56.5 au from the Sun (as 

of July 14, 2023), is the only spacecraft in the Kuiper Belt 
and outer heliosphere. SWAP’s and PEPSSI’s unique 
measurements of the solar wind, interstellar PUIs, and 
energetic particles are becoming increasingly impor-
tant to understanding the formation of the heliospheric 
boundary that New Horizons may begin to cross into, 
perhaps as soon as the end of this decade (the 2020s). 
New Horizons may be past the densest peak of the 
Kuiper Belt, but there are indications (at the time of this 
writing) that the Kuiper Belt is much more extended 
than once thought, with possible secondary populations 
of KBOs, some of which may be sufficiently bright to be 
observed by the LORRI camera. Being beyond the fore-
ground haze of interplanetary hydrogen and dust, the 
LORRI camera and Alice spectrograph are also making 
critical contributions to understanding the cosmic back-
ground, the heliospheric hydrogen wall and, potentially, 
interstellar clouds. New Horizons is projected to have 
sufficient power to make scientific observations until 
~2050, which would make it the third operational space-
craft to reach the VLISM after the Voyager mission. 
New Horizons is therefore also a cross-divisional path-
finder for a future Interstellar Probe.128,129
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erties of solar wind and energetic particles within both the 
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for Team Achievement Awards (awarded to the Parker Solar 
Probe team in 2021, the New Horizons team in 2016, and the 
MESSENGER team in 2012), and 13 NASA Group Achieve-
ment Awards. Minor planet 172191 Ralphmcnutt is named for 
him. His email address is ralph.mcnutt@jhuapl.edu.

Fran Bagenal, Laboratory for Atmospheric 
and Space Physics, University of Colorado, 
Boulder, CO

Fran Bagenal is a research scientist and 
the assistant director for planetary sciences 
at the Laboratory for Atmospheric and 
Space Physics (LASP). She studied physics 
and geophysics at the University of Lan-

caster and then, inspired by NASA’s missions to Mars and the 
prospect of the Voyager mission, moved to the United States 
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planets and the charged particles trapped therein. She has par-
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gravity from the outer planets) perturbs the orbits of these dust 
grains. Andrew also investigates the influx of these grains into 
the atmospheres and onto the moons and rings of the outer 
planets, and how this influx might affect the outer planets. His 
email address is poppe@berkeley.edu.

Veerle J. Sterken, Department of Physics, 
ETH Zurich, Zurich, Switzerland

Veerle J. Sterken is a research scientist and 
group leader at the ETH Zürich in Swit-
zerland. After high school in Belgium, she 
studied aerospace engineering at the TU 
Delft and obtained a PhD in geophysics at 
the TU Braunschweig. Her main focus of 
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Prize in 2021. Her email address is vsterken@ethz.ch.

http://www.jhuapl.edu/techdigest
mailto:parisa.mostafavi@jhuapl.edu
mailto:ralph.mcnutt@jhuapl.edu
mailto:bagenal@colorado.edu
mailto:poppe@berkeley.edu
mailto:vsterken@ethz.ch


New Horizons’ Future Exploration

Johns Hopkins APL Technical Digest, Volume 37, Number 1 (2023), www.jhuapl.edu/techdigest 121    

Jonathan D. Slavin, Smithsonian Astro-
physical Observatory, Harvard and Smith-
sonian Center for Astrophysics, Cam-
bridge, MA

Jonathan D. Slavin is an astrophysicist 
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Division of the Smithsonian Astrophysi-
cal Observatory. He has a PhD in physics 

from the University of Wisconsin-Madison. His research inter-
ests center on the diffuse interstellar medium (ISM), especially 
supernova remnants and dust. Supernovae inject energy into 
the ISM and their shock waves destroy dust. A particular inter-
est is the nature of the local interstellar medium (LISM), the 
region of the ISM that is closest to us, including the gas and 
dust that is able to penetrate into the solar system from the 
surrounding Local Interstellar Cloud. Jonathan’s work includes 
numerical hydrodynamics and modeling the dust and gas pro-
cesses in shocks. His email address is jslavin@cfa.harvard.edu.
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four large “Galilean” satellites of Jupiter, and other small outer 
solar system bodies, using theoretical models, Earth-based tele-
scopes, close-up spacecraft observations, and the Hubble Space 
Telescope. John is a New Horizons science team member and a 
deputy project scientist for its extended mission into the Kuiper 
Belt. He coordinated the search for Kuiper Belt object (KBO) 
flyby targets beyond Pluto, which led to the discovery of New 
Horizons’ next target, the small KBO Arrokoth. He also led 
New Horizons’ search, during Pluto approach, for potential 
debris hazards in the Pluto system and led the science plan-
ning of the successful 2019 flyby of Arrokoth. In 2016 he won 
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