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ABSTRACT
The Johns Hopkins University Applied Physics Laboratory (APL) is additively manufacturing space 
instruments to meet specific science objectives. One example is an electron collimator, built using 
additive manufacturing technology, that will fly on the European Space Agency’s JUpiter ICy 
moons Explorer (JUICE) mission set to launch in 2022. The collimator is the first-ever additively 
manufactured mechanical component to be both fabricated and qualified for spaceflight at APL. 
By using metal additive techniques, the APL team achieved complex geometries that could not 
have been obtained with conventional manufacturing. The intricate collimators, each about the 
size of a quarter and peppered with hundreds of tiny holes, are assembled in a spherically focused 
arrangement. They confine particle trajectories within the face of the detectors in the instrument. 
Extensive collaboration between APL’s Research and Exploratory Development Department and 
Space Exploration Sector led to the successful development and qualification of the flight collima-
tor in just 2 years. The innovative capabilities of additive manufacturing will become an integral 
part of future space missions.

Mission and Instrument Background
The goal of JUICE is to explore the Jovian system 

and three of its largest moons (Ganymede, Callisto, and 
Europa) for habitable environments. APL is responsible 
for two instruments in the Particle Environmental Pack-
age (PEP), one of which is the Jovian Energetic Elec-
trons (JoEE) electron particle spectrometer. JoEE’s role 
is to enable a better understanding of the processes that 
make Jupiter the solar system’s largest particle accelera-
tor by probing acceleration mechanisms, magnetic field 
topology, and boundaries.

INTRODUCTION
APL is discovering unique applications for additive 

manufacturing (AM) for space science instruments. One 
example is an electron collimator that will fly on the Euro-
pean Space Agency’s JUpiter ICy moons Explorer (JUICE) 
mission1 set to launch in 2022. By fabricating this colli-
mator using metal additive techniques, the team met sci-
ence requirements that could not have been achieved with 
conventional manufacturing. Successful inspection and 
qualification of the collimator’s complex geometry demon-
strated the usefulness of AM in space instrument design.
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Science Requirements
The JoEE instrument is a magnetic spectrometer 

with a solid-state detector stack that provides clean elec-
tron measurements between 20 and 1.5 MeV (Figure 1). 
The instrument is based on a circular design with nine 
individual sectors that create an ~100- to 600-Gauss 
closed magnetic field with minimal leakage. This design 
requires an array of highly directional, high-aspect-ratio 
holes for efficient collimation—each sector is limited to 
an azimuthal field of view of 22.5°.

A spherically focused collimator arrangement maxi-
mizes field of view and measurement fidelity. Holes 
had to be small enough to confine particle trajectories 
within the face of detectors (Figure 2) but large enough 

to provide adequate foreground signal. Magnetic optics 
were used to properly focus particles onto the sensor’s 
detector elements.

The material had to be of sufficient density to absorb 
off-vector energetic particles. Instrument size and mass 
limitations also had to be accounted for in the collima-
tor design.

COLLIMATOR DESIGN
After many iterations of computer-aided design 

(CAD) and particle simulation, the team found a 
required hole geometry for the collimator that met the 
science requirements. Because of the detectors’ arrange-
ment in the instrument, each of the nine sectors was 
limited to fields of view of 22.5° azimuth and 12° polar. 
Sufficient geometrical factor was needed to provide ade-
quate foreground signal. Based on these requirements, 
each sector required 518 tightly packed holes with an 
approximate diameter of 0.5 mm. Hexagonal holes were 
preferred for their greater packing density while main-
taining a minimum wall thickness. Fabrication of such 
a precise hole geometry proved to be a manufacturing 
challenge. Conventional machining of the collimator 
holes was time intensive, and small drill bits were prone 
to fracture. The team considered a layered approach 
involving the banded assembly of etched metal sheets, 
but this approach would make it challenging to assemble 
the collimator and ensure alignment of the many holes.

D1 D2 D3

SSD

Carrier board

Ultem interposers with 
fuzz button contacts

Mounting frame

Collimator: Array of close-
packed hexagonal holes
to control trajectories into
the spectrometer 

Electronics boards:
Preampli�er board, event
board, and power supply 
board

Spectrometer wheel: 16× NdFeB magnets creating a closed, circular
�eld con�guration (~100–600 Gauss) with very little stray �eld. Lower-
energy electrons are bent into the D123 detector, while higher-energy
ones hit the D456 stack.

D456 detector stack:
3× silicon SSDs, 150 μm,
1,500 μm, and 1,500 μm 
thick, for detecting higher- 
energy electrons 
(400–1,500 keV)

D123 detectors:
9× silicon SSD with 
three pixels, 1,500 μm 
thick, for detecting
low-energy electrons 
(20–300 keV)

Graded AI/WCu shielding:
Optional shielding for high-
radiation environments

Figure 1. Cross-sectional view of JoEE instrument. Primary components include collimator segments, spectrometer wheel, electronics 
boards, silicon solid-state detectors (SSDs), and mechanical shielding made of aluminum and tungsten copper alloy.

Figure 2. Simulated particle trajectories through the colli-
mator for different energy levels. The collimator restricts the 
velocity vectors of particles entering the instrument to a set of 
well-defined trajectories onto the sensor’s D1–D6 silicon solid-
state detectors.
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Additive Approach
The hole geometry needed to meet requirements 

that could not be met with conventional manufacturing 
techniques. The APL team turned to AM for its ability 
to produce complex geometries and lattice structures. 
AM is defined by ISO/ASTM international standards as 
“a process of joining materials to make objects from 3D 
model data, usually layer upon layer.”2 For this applica-
tion, the team investigated the metal powder bed fusion 
(PBF) process. This process involves a thermal source 
(in this case a laser) selectively fusing layers of mate-
rial to form a solid part. The material selected for the 
collimator was 316L stainless steel for its nonmagnetic 
properties and density to absorb off-vector particles. AM 
industry experience and promising material data were 
also factors in material selection.

The final collimator design is depicted in Figure 3. It 
incorporates nine individual collimator segments assem-
bled into a full collimator, one segment for each sector 
of the instrument. Building each collimator individually 
allowed the holes to be oriented vertically during the 
additive build process to achieve better hole resolution. 
The collimator segments interface each other and the 
frame via interlocking tab features, which close gaps and 
prevent unwanted particles from passing through.

Through a series of design experiments, the team 
developed new additive machine parameters to meet 
the need for thin walls. Wall thicknesses of 160 μm 
were achieved compared with the 300- to 400-μm walls 
typical for commercial applications. However, AM 
remains a complementary manufacturing method and 
requires postprocessing to achieve the tight tolerances 
required for spaceflight. To ensure the collimator mating 

interfaces were within tolerance, the team subsequently 
performed a variety of subtractive methods on the col-
limators, including milling, electrical discharge machin-
ing (EDM), and tumbling.

Calibration testing was performed at the NASA God-
dard Space Flight Center high-energy beam facility. Test 
results revealed that the AM-fabricated collimators were 
viable options to achieve the desired particle throughput 
and field of view. Figure 4 shows an example of the angular 
characteristics of the AM collimator for 130 keV energy 
in sector 4 for detector 3. Measurements were taken for 
various energy ranges and arrival angles across all sec-
tors of the collimator. The angular properties measured 
during characterization and calibration activities met 
requirements for particle throughput and field of view.

SPACEFLIGHT QUALIFICATION
Because AM is a relatively new technology, it is not 

as repeatable a process as conventional manufacturing. 

~0.5 mm

~160 μm

25.4 mm

Interlocking
tabs

Figure 3. Final collimator design with dimensions shown for 
hole diameter, wall thickness, and overall height. Each segment 
shares mounting locations with adjacent segments via interlock-
ing tabs.

Po
la

r (
De

g.
)

20

15

10

6

0

–5

–10
–20          –10             0            10            20     

Po
la

r (
De

g.
)

Ra
te

 (s
–1

)

Azimuth (Deg.)

500

400

300

200

100

0

600

Figure 4. Angular characterization of JoEE using the AM colli-
mator taken from calibration testing at the NASA Goddard high-
energy beam facility. To characterize the instrument, the count 
rates were converted into electron differential intensities and 
phase space densities for the various defined ranges of energies 
and arrival angles.

Figure 5. Flight JoEE instrument just before delivery. The dark 
gray components are the 316 stainless steel AM collimators.
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For AM parts to be qualified for spaceflight, additional 
testing and documentation are required to provide evi-
dence that the parts will pass requirements with margin. 
For the JoEE collimators, APL worked closely with 
NASA Marshall Space Flight Center to use its additive 
standards (MSFC-STD-37163 and MSFC-STD—37174; 
see also the newly released NASA-STD-60305). These 
standards provided a defined system of foundational 
and part production controls to manage risk associated 
with the current state of PBF technology. Procedural 
requirements were clearly outlined for the metallurgical 
process, machine calibration and maintenance, mate-
rial property data through tensile testing, and a formal 
production plan given part requirements. Using additive 
metal parts on JoEE involved risks. For example, the col-
limators could fracture into pieces during launch and 
damage the fragile detectors or other instruments on 
the spacecraft. Thus, the collimators had to be validated 
through proof testing and inspection before instrument 
integration. The final flight JoEE instrument is pictured 
in Figure 5.

A combination of proof testing and new inspection 
techniques were required to address the risks associated 
with metal AM. Proof testing of the collimators was 
performed before instrument integration. All testing 
(vibration, shock, thermal cycling) was performed at con-
ditions well beyond those expected at launch and during 
operation. In addition, the collimators were cleaned 
with deionized water and isopropyl alcohol in an inten-
sive ultrasonic cleaning process that concluded with 
particle counts. Inspection of the collimators involved a 

combination of coordinate-measuring machine inspec-
tion of exterior features and x-ray computed tomogra-
phy scanning of internal hole geometry (Figure 6). The 
density and depth of the holes made x-ray computed 
tomography the most viable option for inspection. The 
team developed novel methods using advanced features 
of the VGSTUDIO Max software for the visualization 

and automation of complex 
volumetric and geometric 
analyses. These methods 
allowed for the characteriza-
tion of wall thickness, focus 
location, porosity, and other 
defects critical to the struc-
tural integrity and function 
of the collimators.

FUTURE PROSPECTS
AM extends instrument 

design to include more 
complex internal features 
and compact, lightweight 
structures. The complex 
hole geometry in the JoEE 
collimator provided more 
efficient collimation and a 
greater field of view within 
a compact design. AM offers 
the advantage of rapid rede-
sign and process flexibility. 
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Figure 6. Wall thickness analysis of collimator using x-ray computed tomography software. This 
method allows for inspection of the part in cross-sectional slices useful for examining internal 
features.

Figure 7. The JoEE collimator. The instrument will fly on the 
European Space Agency’s juice mission to Jupiter, which is set to 
launch in 2022.
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The team tested multiple machine parameters and 
geometries for the JoEE collimator (Figure 7) in just a 
matter of months before settling on the flight process.

AM offers other advantages to space instruments. 
Thin-walled lattice structures generated via optimiza-
tion will produce smaller, more lightweight instruments 
that can be more easily integrated on missions. Complex 
geometries can be used to build multifunctional parts 
that will reduce instrument mass and simplify assem-
bly. For example, instrument support structures made 
of Tungsten could serve as electronics shielding. Other 
materials, like copper, could be used for both shielding 
and thermal management.

Ongoing research efforts at APL are advancing capa-
bilities in Tungsten AM for space applications. Tungsten 
was the initial preferred material for the JoEE collimator 
for its density, but it was not available at the time the 
collimator was being developed. APL recently developed 
a unique build process to fabricate a flight-like Tungsten 
collimator with ~300-μm walls. Postprocessing steps 
were tailored to maximize part quality despite some of 
the challenges of working with Tungsten: high thermal 
stresses, poor machinability, and susceptibility to crack-
ing. The Tungsten collimator survived both vibration 

and shock testing, which suggests that the material is 
spaceflight worthy.

Space programs are increasingly looking to use dense 
materials in complex geometries for collimation, shield-
ing, and support structure in instruments. APL’s success 
on JoEE (and more recently with using Tungsten for 
space applications) has demonstrated that AM can meet 
this demand. AM’s innovative capabilities for small-
scale instruments will continue to be an integral part of 
space missions, and APL will remain on the forefront of 
advancing the state of the art.
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