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ABSTRACT
Acoustic emissions analysis can provide key information for monitoring the structural integrity of a 
system, such as the behavior of bone under various loading conditions and other complex biome-
chanical applications. However, when analyzing acoustic emissions data from complex systems, 
including systems that experience high-rate (103 s–1) loading, complex bending modes, unique 
shape effects, and multiple failure mechanisms, it is difficult to extract meaningful information 
and relationships because of an abundance of confounding factors. This article presents a meth-
odology developed at the Johns Hopkins Applied Physics Laboratory (APL) for understanding frac-
ture and characterizing acoustic signatures with distinct failure modes, leveraging techniques such 
as independent component analysis, self-organizing maps, and K-means clustering algorithms.

the primary frequency content in failure modes of glass/
polypropylene composites,6 and characterize bone frac-
ture in vertebrae and long bone.7 Although there are a 
variety of tools to leverage for AE analysis, there remain 
many challenges to extracting meaningful information 
from complex systems. Especially for composite materi-
als and multiple-material systems, such as biomechanical 
systems, pinpointing fracture timing and determining 
fracture properties is difficult because of nonhomoge-
neous material properties that give rise to more intricate 
wave propagation features.7,8

In composite studies, AE analysis depends on signals 
recorded during tensile tests at various orientations to 
give rise to distinct failure modes, which are then clas-
sified according to (1) a single parameter (e.g., ampli-
tude or frequency), (2) several parameters using pattern 

INTRODUCTION
Acoustic emissions (AE) techniques rely on monitor-

ing the stress waves generated by rapid, local redistribu-
tions of stress concentrations that correlate to various 
damage mechanisms, as shown in Figure 1. As a result, 
AE data can be used to monitor the structural integ-
rity of systems, and this technique is useful because of 
its high sensitivity and real-time monitoring capabil-
ity.1 The AE analysis technique has been widely used to 
monitor the structural health of concrete in civil engi-
neering applications, specifically for crack detection and 
corrosion monitoring.2,3 It has also been used to investi-
gate deformation behaviors in steels, including disloca-
tion movement and yielding in austenitic stainless steel.4 
In more recent years, AE monitoring has expanded into 
composite materials and has been used to determine fail-
ure mechanisms in carbon/epoxy composites,5 analyze 
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recognition, or (3) the extensional and flexural mode 
content.8 However, not all systems are amenable to a 
simplified component setup to discern distinct damage 
mechanisms. For instance, biomechanical modeling of 
complex trauma is needed to improve mitigation and 
protection strategies (e.g., seat belts, body armor, and 
bike helmets). Of particular interest is the phenomena 
of nonpenetrating ballistic-induced trauma, termed 
behind-armor blunt trauma (BABT). With armor stan-
dards depending on the severity of a relatively unknown 
and complex phenomena, biomechanical characteriza-
tion and advanced mechanical models are needed.

To develop robust biomechanical models for BABT, 
the entire system under study needs to be tested and 
validated to enable understanding of failure as it relates 
to injury and disease. In these scenarios, the experi-
mental setup may be noisy, and the resulting acoustic 
signals corresponding to material failure may be weak. 
This results in a major practical limitation of the AE 
technique, which is the presence of sources of AE other 
than the failure of interest. Current work in using pat-
tern recognition techniques such as supervised and 
unsupervised learning algorithms as well as statistical 
approaches on time estimation of the received signal 
is attempting to address these challenges.8,9 Although 
AE has been verified in the laboratory on small-scale 
components, practical applications using AE analysis 
for realistic, complex systems are limited. Therefore, 
an analysis pipeline that can move AE from a qualita-
tive technique to practical utility in the investigation of 
complex systems is necessary.

The analysis pipeline proposed in this research lever-
ages well-understood methodologies in signal processing 
to create a new combined processing flow to uncover 
failure in complex systems. While each individual step—
for example, deconvolution during preprocessing, inde-
pendent component analysis (ICA), and self-organizing 
maps (SOMs)—has been used in previous AE analysis, 
the strength in combining these methods is gained from 
the ability to discern underlying patterns in a limited 
acoustic data set to correlate the burst events back to 
distinct sources in the system. This pipeline can be lev-
eraged for a variety of applications where noninvasive 
acoustic monitoring can provide important insights into 
the underlying failure mechanisms of the material.

EXPERIMENTAL SETUP
BABT is the nonpene-

trating injury resulting from 
rapid deformation of armor 
covering the body.10 To 
shed light on future armor 
systems, understanding the 
underlying mechanism of 
BABT loading and building 
a knowledge base of injuries 

and mitigation strategies is crucial. In the absence of 
validated computational models, it is important to con-
duct experiments to elucidate the relationship between 
BABT loading and injury. A recent study conducted by 
APL characterized the relationships among BABT load-
ing, armor performance, and human injury outcomes by 
using experimental results from 14 instrumented post-
mortem human subject (PMHS) experiments. To verify 
the fidelity of the PMHS as a mechanical surrogate, each 
specimen was instrumented with various sensors, includ-
ing strain gauges, pressure transducers, and AE sensors. 
This instrumentation allows for robust characterization 
of the PMHS biomechanical response to BABT loading. 
Ultimately, data collected from this testing can be used 
to validate a computational model, better explain the 
biological surrogate as a mechanical system, and better 
design injury mitigations or armor.

The biological specimen was placed on a custom mount-
ing rig and positioned upright, supported by a seat, and 
strapped to the fixture. As shown in Figure 2, the impact 
location of the specimen is in the middle of the sternum, 
between the third and fourth rib levels. Each specimen 
was fitted with custom armor plates and subjected to a 
ballistic impact centered on the armor, resulting in a non-
penetrating ballistic event (i.e., the round did not fully 
penetrate the armor) striking the specimen causing BABT. 

Specimen
failure

Output acoustic
signal

Sensor

Downstream
analysis

Acoustic emission generation and 
propagation through material

Figure 1. Acoustic signal path. Acoustic signals travel from the source through some propagation 
medium. Signals are then picked up by the acoustic sensor, and the resulting waveform can be 
analyzed.

Lateral view Anterior view

Figure 2. Experimental setup and BABT loading description. 
The lateral view shows a graphical depiction of armor backface 
impacting the sternum, causing BABT injuries. The anterior view 
highlights the AE sensor installation locations on the lateral ribs 
and sternum.
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Each armor and specimen was shot once. Typical ballistic 
events induce material strains on the order of 103 s–1 (see 
Carr, Horsfall, and Malbon10). To achieve several repre-
sentative loading rates, the ballistic tests were conducted 
across a range of striking velocities, or the velocity of the 
round when striking armor. Multiple fractures of the ster-
num and ribs were observed, along with lacerations and 
abrasions of the skin at the impact. To capture informa-
tion from these fractures, 14 Nano30 miniature AE sen-
sors11 were installed in each biological specimen, with 2 
sensors on the sternum and 12 sensors on both the left 
and right sides of lateral ribs 2–7. Individual sensors were 
adhered to bone using cyanoacrylate after the periosteum 
had been cleared. The Nano30 sensor was chosen for its 
ability to capture the high-frequency response (125–750 
kHz) of bone fracture for the application. AE sensor data 
were collected using a PicoScope 5000 high-rate data 
acquisition system at a 4.8-MHz sampling rate to capture 
higher frequencies of interest.

Because of the abundance of stress wave propagation 
in the specimen in each test—including the initial pro-
jectile impact on the armor, armor deformation, poten-
tial bone fractures, soft tissue damage, and general system 
vibration—analyzing the data set to isolate bone fracture 
signals and failure mechanisms is a challenge. There is 
also redundancy in the signals captured by each sensor. 
However, understanding the underlying failure mode in 

the material is important to developing a better model of 
BABT loading and complex injury. Therefore, to assess 
whether the acoustic signature associated with distinct 
fracture events and transient stress waves could be char-
acterized from the noisy data set, a new analysis pipeline 
is required to parse the experimental results.

ANALYSIS METHODOLOGY
Preprocessing

The first step in the processing pipeline, as shown 
in Figure 3, is preprocessing the raw, measured signal to 
enable downstream analysis. For generic fracture studies, 
frequencies between 20 kHz and 1.5 MHz are of practi-
cal use, because at higher frequencies, the signal is too 
weak and attenuation is large, and at lower frequencies, 
extraneous noise dominates the system.12 Published data 
suggest that for bone fracture cases, the frequency band-
width of interest can be narrowed down even further to 
between 50 and 400 kHz.

Figure 4 highlights the range of interest, as evidenced 
in existing literature. Previous experimental data suggest 
that fracture of vertebral bodies can lie between 76.5 and 
292 kHz7,13,14 and long bone fractures between 100 and 
200 kHz.7 Therefore, a band-pass filter applied between 
50 and 300 kHz can capture the range of interest for rib 

Filtered, whitened, 
normalized,

deconvolved signal

Raw signal from
acoustic sensor

Preprocessing

ICA Estimated source 
signals

Event capture Acoustic burst 
events

Wavelet analysis
Parametric and 

waveform analysis 
parameters

Result: Distinct clusters of signals to analyze, 
extract patterns, potentially identify sources

SOM Local spacing of 
data from SOM

K-means

Figure 3. Analysis methodology flowchart. The analysis flow begins with preprocessing the received signal followed by ICA to isolate 
source signals. Parametric analysis of the burst signal via event capture in the signal provides key parameters such as amplitude and 
duration of the burst signal. The burst events are studied through wavelet analysis, which provides the time-frequency representation to 
understand the data. Finally, unsupervised learning techniques, including SOMs and k-means clustering algorithms, are used for pattern 
recognition characterizing fracture events.
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and sternum fractures while truncating the resonance 
response of the sensor, which is reported at 300 kHz.

The measured AE signals are directly affected by the 
frequency characteristics of the sensor, where certain 
frequencies are accentuated.15 To mitigate the influence 
of the nonconstant frequency characteristics, regular-
ized Tikhonov deconvolution16 was applied based on the 
manufacturer-provided sensitivity. After deconvolution, 
the data were then whitened—a technique used to make 
the data behave statistically like white noise, which is 
useful for downstream ICA—and normalized for com-
parison across data sets.17

Independent Component Analysis
In this system, multiple source events originate from 

both rib and sternum fractures to transient stress wave 
propagation. There are also multiple receivers (i.e., 14 AE 
sensors). Therefore, separating the sources out of redun-
dant, mixed received signals becomes a nontrivial chal-
lenge. This type of problem is commonly referred to as 
the “cocktail party problem,” 
where a number of people are 
talking simultaneously in a 
room at a cocktail party, and 
a listener is trying to follow 
one of the discussions.18 To 
address this problem, ICA 
attempts to decompose a mul-
tivariate signal into indepen-
dent non-Gaussian signals 
and it can derive an approxi-
mation of the source signal 
from a mixed response.17 An 
overview of the technique is 
shown in Figure 5. If we know 
the types of injury observa-
tions after testing, such as 
the presence of sternum and 
rib fractures, we can use ICA 
to estimate the source signal 
for each failure mode. In this 

system, sources will be gen-
eralized as stemming from 
(1) rib fracture, (2) sternum 
fracture, and (3) transient 
stress wave propagation.

Because of the complex-
ity in this test, there is not 
enough detail to distinguish 
between multiple rib frac-
tures in the same specimen. 
However, it is hypothesized 
that general rib fracture can 
be separated from sternum 
fracture because of the dis-

tinct material properties in the rib and the sternum. In 
this study, distinguishing between failure modes is the 
primary goal—future experimentation and analysis of 
known sensor and fracture localization and wave propa-
gation dynamics are needed to estimate signal time of 
arrival and discern between multiple events of the same 
failure type. Another important note here is that ICA 
can provide distinct results each time it is run because of 
the nature of the estimation process. As a result, batch 
studies are beneficial to identify the underlying domi-
nant mode.

Event Capture
Parametric analysis is also useful for characterizing 

AE, and this is dependent on finding “burst” events. 
Robust, accurate event capture is essential for properly 
identifying and characterizing AE that correspond to 
different stress waves. Event capture in this analysis was 
achieved through setting two thresholds and windowing 
through the data. One threshold was set via z-score 

0 50 100 150 200 250

kHz
300 350 400 450 500

Foot-ankle, lower extremity13

Hand bone13

Long bone7

Vertebral bodies7,13,14

Figure 4. Previously published characteristic fracture frequencies for bones. In previous research, 
bone fracture frequency has been studied in isolated tensile tests with acoustic monitoring. Those 
results are summarized here, and it is apparent that most studies have found bone fracture fre-
quencies between 50 and 400 kHz.
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S1
Rib fracture

X1
Observed

signal U1
Estimated
rib fracture

U3
Estimated
sternum
fracture

U4
Estimated
transient
fracture

X
2Observed

signal

X3
Observed

signal

X14
Observed

signal

S3
Sternum
fracture

S4
Transient

wave

Figure 5. ICA for blind source separation. In each test, there are up to three independent sources 
stemming from rib fracture, sternum fracture, and transient stress wave propagation. These 
signals are mixed and received by the array of 14 AE sensors. ICA can be used for blind source 
separation by estimating the mixing matrix from the received signals and taking its inverse, thus 
recovering the original source signals.
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normalization of spectral 
energy greater than 0.05, 
which will capture events 
with the highest energy, and 
another threshold looks at a 
signal-to-noise ratio greater 
than 10 dB to capture events 
out of background noise. 
Windowing through the 
signal data at 2-ms intervals 
is important to capture some 
moderate-energy events 
originating from sources 
that are physically distant 
from the sensor.

Wavelet Analysis
Because of the rich signal 

content in the frequency domain, a continuous wavelet 
transform was applied to convert the time-series signal 
into a time-frequency representation. From the many 
methods to perform this transformation (e.g., short-term 
Fourier transforms), a wavelet transform was chosen 
because of its ability to localize frequency transients and 
nonstationary signals,19 characteristics that are present 
in this AE data set. Selecting the appropriate mother 
wavelet function is dependent on the properties of that 
wavelet and its similarity to the original signal. For this 
analysis, an analytic Morlet (Gabor) wavelet was used, 
which has equal variance in time and frequency.20

Self-Organizing Maps
SOMs are artificial neural networks trained via unsu-

pervised learning techniques to produce a low-dimen-
sional discretized representation of the data set, called 
a map.21 This technique has been used in previous 
acoustic analysis to differen-
tiate between failure modes 
in composites.8 The real 
power of an SOM is its abil-
ity to elucidate underlying 
relationships in the acoustic 
events, across various sen-
sors and across tests, to show 
whether there are differences 
between fracture versus 
nonfracture events, sternum 
fracture versus rib fracture 
events, and transient stress 
wave versus fracture stress 
wave propagation. The fol-
lowing parameters of the 
selected burst events were 
fed into the SOM: ampli-
tude, rise time, duration, 

frequency centroid, and frequency spread, along with 
the next three dominant frequency tones.

K-means Clustering Algorithm
K-means clustering is another type of unsupervised 

learning that is used to group data points based on 
feature similarity.22 SOM’s local representation of the 
data provides some information on macro-clusters and 
feature relationships, and using K-means afterward can 
reduce the number of clusters to identify the ideal group-
ing configuration.23 To find the most appropriate group-
ings, a series of batch studies was run on the resulting 
SOM data.

Statistical Analysis
The resulting groupings from the K-means cluster-

ing algorithm are fed into a multivariate analysis of 
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Figure 6. Significance of deconvolution. During the preprocessing step, deconvolution of the 
sensor sensitivity is an integral component to recover important burst events and their parameters.
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Figure 7. Partitions for final clustering groups. The five clustering groups, as determined from the 
k-means algorithm, are overlaid here with a snippet of the SOM data to highlight how the group-
ings aligned. From the SOM, the local organization of the data reveals interesting information 
about how each burst event compared across the various attributes. This presents all the burst 
events (415 independent events) across all sensors, in all tests.
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variance (MANOVA) analysis, which is useful to test 
whether the independent groupings have a statistically 
significant amount of variance. Through this method, 
underlying patterns in the data set can be leveraged to 
understand how independent acoustic events correlate 
to distinct sources and damage mechanisms.

RESULTS AND DISCUSSION
With 14 AE sensors placed in each of the 14 PMHS 

tests, there were 196 streams of data to process. These 
raw signals were fed through the preprocessing flow, and 
the importance of the deconvolution step is shown in 
Figure 6. To obtain a more accurate understanding of 
the source signal, Tikhonov deconvolution of the sensor 
sensitivity from the signal data is necessary—otherwise, 
the acoustic burst parameters that are correlated to dif-
ferent failure modes would be captured incorrectly.

The results from preprocessing, ICA, event capture, 
and waveform analysis provide a set of acoustic parame-
ters that describe burst events, in terms of the amplitude, 
rise time, duration, frequency spread, frequency centroid, 
and frequency tones. This information is fed through to 
an SOM+K-means algorithm implementation to achieve 
the final clustering groups, as shown in Figure 7.

Because of the nature of signal approximation from 
ICA, and the K-means clustering algorithm implementa-
tion, which can estimate different groupings for the same 
SOM, batch studies are needed to understand the domi-
nant distribution from the data. To assess the distribution 
of final clustering groups from the pipeline, a set of batch 
results is shown in Figure 8.

In one ideal scenario, with 
three signals from the post-
ICA analysis that has been fed 
through the SOM and cluster-
ing algorithms, there should 
be three resulting clusters. 
However, given the possibil-
ity for extraneous vibrations 
and stress wave propagation 
in the system through nonho-
mogeneous materials, getting 
the precise resolution for each 
source wave may not be pos-
sible with the limited experi-
mental data.

However, even with this 
limited data set, getting five 
resulting clusters from three 
source signals is an important 
step toward understanding how 
various attributes of the burst 
event might be distinct based 
on the source. It could be that 
the characteristics of burst 

events may form subcategories, correlating to different 
failure mechanisms for the same or different sources. 
Additional data are needed to dig through this informa-
tion and validate the resulting clustering groups.

This analysis pipeline provided a way to parse the 
received signal information to estimate the source signal 
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Figure 8. Quality-control batch results. There were 1,000 runs 
to assess the distribution of final clustering groups. For each run, 
the results from the SOM were fed into a k-means clustering algo-
rithm that determined the optimal clustering based on several 
k-means partitions. The best of these for each run were selected 
based on a sum of squared errors. These results demonstrate that 
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Figure 9. MANOVA results. The grouped scatter plot is shown against the first two canonical 
variables to show the separation between the groups. The dimension of the group means was 
four, and the p-values were all less than 1e-6, so the groupings are significant.

http://www.jhuapl.edu/techdigest


Identifying Patterns and Relationships within Noisy Acoustic Data Sets

Johns Hopkins APL Technical Digest, Volume 36, Number 3 (2022), www.jhuapl.edu/techdigest 265    

and create groupings based on underlying patterns in 
the data set. When looking at the clustering groups, 
an initial test for significance was conducted using 
MANOVA, as shown in Figure 9.

Previous data indicated 
the importance of frequency 
to determine the underlying 
damage mechanism, and dis-
tinct material failures have 
different fracture frequen-
cies.17,19 Therefore, looking 
at the frequency centroids 
and frequency spreads for the 
various groups is prudent to 
characterize a burst event 
with a particular source 
damage mechanism. From 
Figure 10, it is apparent that 
the frequency centroids are 
similar across most groups, 
except for group 1, which has 
much larger frequency cen-
troids and spreads on average. 
Additionally, while there is 
overlap in the frequency cen-
troid and frequency spread of 
groups 3 and 4, the frequency 
centroid for group 3 is on 
average higher than it is for 
group 4. This information, 
coupled with other acoustic 
parameter information, can 
inform hypotheses about the 
correlation of these groups to 
a given source. Since ribs and 
sternum are similar, but dis-
tinct, materials, one hypoth-
esis is that groups 3 and 4 
can correlate to either rib or 
sternum fractures.

Understanding the ampli-
tudes of the burst events 
provides more insight into 
the groupings, and Figure 11 
shows a slice of those data. 
The amplitude of a burst 
event is correlated to the 
energy level in the traveling 
acoustic wave and highlights 
that there are some higher-
energy bursts than others. 
For instance, one potential 
hypothesis stems from the 
fact that the energy trans-
mitted from the projectile 

hitting the specimen is higher than the energy released 
during bone fracture.

Interestingly, the resulting data show that cluster 
groups 2 and 5 have higher amplitudes on average than 
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Figure 10. Clusters sliced by frequency spread vs. frequency centroid. While groups have simi-
lar frequency spreads and frequency centroids, events from group 1 have much larger frequency 
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Figure 11. Clusters sliced by duration vs. amplitude. Events from groups 2 and 5 have large nor-
malized amplitudes, and events from groups 1, 2, and 3 have short durations. Most events from 
group 3 have very small amplitudes, though not all. Events from group 4 have small amplitudes 
and durations that cover the entire range from 0 to 0.9 ms.
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cluster groups 1, 3, and 4—this could serve as a separa-
tion point between events that originate from transient 
stress wave propagation versus bone fracture.

Further slices of the data, across rise times and fre-
quency tones, reveal more details about the relationship 
between acoustic parameters and the final organization. 
Using this pipeline, even from a complex, noisy experi-
mental setup, hypothesized relationships between acous-
tic parameters and failure mechanisms can be drawn. 
Table 1 summarizes key parameters across the observed 
clustering groups.

From a deeper look into the data as a function of 
the clustering groups and various attributes, a prelimi-
nary understanding can be developed for the correlation 
of one group to a particular source signal. Earlier onset 
times and high-normalized amplitudes could correlate 
to the high-energy, initial stress wave resulting from the 
initial ballistic impact. Next, as the stress concentra-
tions from this impact prop-
agate through the skeletal 
system, bones would fracture. 
Because of the location of the 
sternum in relation to the 
energy transfer path in BABT 
loading, the sternum likely 
fractures before there are any 
rib fractures. The current 
framework for BABT loading 
in the rib cage includes tran-
sient stress wave propagation 
through the rib cage in phase 
A, local tensile and com-
pressive loading in phase B 
leading to fracture, and bulk 
engagement of the torso in 
phase C, which can also lead 
to fracture. Figure 12 demon-
strates how the acoustic data 
fit into this understanding.

Additionally, some prior 
research indicates that 

material elastic modulus affects the AE signal fre-
quency,24 and this information can be used to distin-
guish between sternum and rib fracture events. Using 
these groupings and the stated hypotheses to derive 
insights in the AE properties corresponding to the vari-
ous source events can help create labeled data sets to 
better validate injury prediction models and drive future 
analysis that can even pinpoint fracture timing.

BABT is a complex phenomenon that is still not 
fully understood—decoupling each part of the prob-
lem to verify and validate biomechanical models is dif-
ficult because of the presence of superimposed failure. 
The data collected from the APL study provide insight 
into BABT loading and its correlation to human injury, 
but the data alone are not sufficient to deepen existing 
understanding.

Processing and analyzing the resulting experimental 
data in a consistent, clear, and robust methodology to 

Table 1. Mean values for attributes selected for analysis

Group
Arrival 

(ms) Amplitude
Duration 

(ms)
Rise Time 

(ms)
Frequency

Centroid (kHz)
Frequency 

Spread (kHz)
Frequency Tones 

01 (kHz)

1 2.11 0.27 0.13 0.06 147.40 57.80 121.19
2 0.52 0.67 0.11 0.04 123.59 31.87 115.06
3 3.67 0.08 0.08 0.03 121.98 30.66 118.52
4 2.25 0.11 0.29 0.08 109.89 32.02  93.52
5 0.25 1.02 0.33 0.17 122.00 35.05 110.36
This table summarizes some of the features of a characteristic acoustic burst from each group. This information can be used to understand which 
burst events correspond to specific source signals. Note the difference between groups 1, 3, and 4 and groups 2 and 5 in terms of arrival times and 
amplitudes. Group 1 has the highest frequency centroid and largest frequency spread when compared with the rest of groupings, while group 4 
has the lowest frequency centroid.

Phase A
0–0.8 ms

Group 2

Group 5

Group 1

Group 4

Group 3

Phase B
1–2.4 ms

Phase C
>2.4 ms

Figure 12. Preliminary understanding of acoustic groups within the BABT loading framework. An 
axial view of the sternum, rib cage, and spine is shown at various stages of skeletal loading due to 
BABT. This is aligned with the acoustic groups that were determined using the analysis pipeline. 
Groups 2 and 5 are hypothesized to correlate to the transient stress wave propagation prevalent 
in phase A of BABT loading, while groups 1, 4, and 3 are hypothesized to live between phase B 
and phase C. This information is also supported by the arrival times presented for the clustering 
groups and their correlation with the current understanding of the phase durations for BABT.
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best capture the root damage mechanisms is crucial. 
Without applying adequate preprocessing, for instance 
forgoing the deconvolution as shown in Figure 6, the 
resulting conclusions from the data would not reflect an 
accurate understanding of the acoustic parameters for 
the source event. Without analyzing the acoustic bursts 
in the time-frequency domain, key insights into burst 
frequencies and frequency spreads would not be known. 
ICA is important in this pipeline because of the need 
to understand the source itself, and without that step, 
the signals would remain mixed. Without unsupervised 
learning such as SOM and K-means clustering, identify-
ing patterns in the data set would be very difficult. The 
strength of the unsupervised pattern recognition tech-
niques also depends on the quality of the data set that 
is fed in, and therefore, the application and refinement 
of robust signal processing techniques in achieving the 
parametric and waveform acoustic parameters is integral 
to developing a more comprehensive result.

While the proposed analysis methodology paves the 
way for key insights from limited acoustic data sets, it is 
not without limitations. Sensor installation and location 
introduce variance. The installation process is difficult, 
and the amount of contact between the sensor and the 
bone at the installation location, as well as the sensor’s 
contact with other tissue and potentially even the armor 
backface, can affect the results. The sensor location with 
respect to the impact location and the variation of the 
sensor installation locations across the tests also need to 
be further investigated. Further analysis into the sensor 
locations and the resulting emissions could provide an 
opportunity to understand propagation dynamics. While 
all PMHS were within the normal bone mineral density 
range, specifically –1 to +2.2 standard deviations around 
normal, this and other anthropometric variations could 
influence fracture susceptibility and the resulting AE.

Currently, there is insufficient resolution in the signal 
data to discern between multiple rib fracture events on 
the same or adjacent ribs in the same experimental test. 
Additionally, this method does not pinpoint the time 
of bone fracture or material failure; it simply identifies 
which bursts may correlate to energy released in that 
process. Further work is needed to understand the bone 
fracture process, and more data can provide insight into 
the crack initiation and growth process in this type of 
complex loading scenario. The noise from the experi-
mental setup, as well as some of the estimations in the 
signal processing pipeline, introduces additional uncer-
tainty and error—therefore, more data are needed to 
validate the clustering groups found in this initial data 
set to specifically correlate them back to fracture types 
and sources.

Further work in this area is also needed to enable 
understanding of the mechanical basis for the differ-
ences in these attributes across groups. Fundamentally, 
the material properties should drive the way stress waves 

propagate, and better understanding of composites such 
as bone can drive further work in predictive analysis or 
labeling data sets to improve methods for monitoring 
failure. Other separation models such as a nonnegative 
matrix or tensor factorization, as well as other unsu-
pervised learning and clustering techniques including 
hidden Markov, hierarchical, and paraclique methods, 
can also be used to iterate on this analysis.

CONCLUSION
AE analysis provides continuous, passive monitoring 

of the structural integrity in systems. Although it has 
been used extensively in various fields, there are limita-
tions in the practical applications of AE to detect struc-
tural changes in systems that experience a large amount 
of acoustic and electrical background noise, contain 
nonhomogeneous materials, and experience multiple 
superimposed failures. In these systems, it becomes dif-
ficult to isolate AE sources and correlate them back to 
distinct failure mechanisms.

For biomechanical systems modeling BABT loading, 
AE analysis can be a very powerful tool aiding our under-
standing of human injury by informing and validating 
injury risk and prediction models. To effectively utilize 
AE data from a complex system, robust data processing 
techniques are required. The analysis pipeline proposed 
in this research uses existing methodologies in a com-
bined pipeline to reveal relationships between acoustic 
parameters and underlying damage mechanisms in the 
system. While individual steps in the analysis are well 
established, this pipeline uses the benefits across these 
various techniques to understand complex loading phe-
nomenon and material failures. Initially applied to a 
biomechanical model, this methodology has uncovered 
new information about the acoustic parameters for tran-
sient stress wave propagation, sternum fracture, and rib 
fracture in BABT loading. Correlating acoustic bursts 
correctly with fracture events could allow for real-time 
monitoring of injury during future experimentation. 
Well-labeled acoustic data sets for fracture initiation and 
propagation, along with wave propagation models, can 
also aid predictive capabilities, such as predicting injury 
timing from BABT and predicting which bones may be 
prone to future injury upon repeated loading. Addition-
ally, AE data paired with strain and acceleration data 
can yield further insight into the system. This can be 
applied beyond BABT loading scenarios to other com-
plex human biomechanics loading models as well, where 
AE data can be used to augment various experimental 
and computational models.

Looking ahead, there is a need for future work to vali-
date the proposed groups and acoustic parameters relat-
ing to distinct failure modes. Component-level testing 
to isolate the AE sources, as well as experiments that 
can provide direct access to other imaging or sensing 
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modalities that could confirm the AE source, would con-
tribute to better understanding the relationship between 
AE and fracture initiation and propagation to failure.

Within the biomechanics field, this analysis can be 
used to create better failure modeling and validation for 
finite element analysis injury prediction models. Addi-
tionally, understanding the failure characteristics in 
complex high-rate/high-energy injuries would contrib-
ute to better understanding failure tolerances. Beyond 
biomechanics, this analysis pipeline can be leveraged to 
understand damage mechanisms in complex systems and 
move the use of acoustic parameters to more application 
spaces. It can also be used to further an understanding 
of material properties and mechanics to develop rela-
tionships on how material structure affects AE signal 
parameters, and even aid in the fabrication of new het-
erogeneous materials.
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