
Behavior Anomaly Detection

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest 175

Behavior Anomaly Detection

Kristofor B. Gibson

ABSTRACT
Modern warfare demands situational awareness of entities in the environment. To enhance the
warfighter’s situational awareness, we developed an algorithm that detects anomalous behavior
in the warfare environment. Changes in entities’ behavior can be an indicator that existing predic-
tion models or assumptions must be updated to remain useful for decision-making. Specifically,
we introduce a new classification method—sequential sample consensus (SeqSAC)—that identi-
fies anomalous behavior based on a series of observations of an entity. SeqSAC can support a
wide variety of models from simple to complex. We first demonstrate the utility of SeqSAC with
a simple limited-degree-of-freedom kinematic model of a moving body, and then we demon-
strate the ability to incorporate more complex models using the finite-state machine in Advanced
Framework for Simulation, Integration and Modeling (AFSIM). Finally, we discuss the ability to
extend SeqSAC to identify anomalies in coordinated entity behaviors.

a mental model of “normal” traffic. However, a vehicle
traveling in the opposite direction of the vehicles near
it might, therefore, constitute anomalous behavior and
mandate increased attention or decisions or actions.

A common approach to anomaly detection (see the
extensive survey by Chandola, Banerjee, and Kumar1)
requires data that contain both normal and abnormal
(anomalous) behavior and that the normal behavior can
be defined by a model with a set of parameters in one
or more dimensions. Anomalies in a two-dimensional
space are depicted in Figure 1. Two clusters of data that
are considered “normal” or “inliers” are the regions

INTRODUCTION
Chandola, Banerjee, and Kumar succinctly define

anomaly detection as “finding patterns in data that do
not conform to expected behavior.’’1 A number of terms
are used interchangeably to refer to deviations from
expected behavior—“of these, anomalies and outliers
are two terms used most commonly in the context of
anomaly detection; sometimes interchangeably.’’1 In
detecting an anomaly, one must be able to observe a
pattern and assess that pattern relative to a reference
case of “normal’’ or “expected” behavior. Motor vehicle
traffic offers a common example: an observed pattern—
vehicles traveling in one direction—compares well with

http://www.jhuapl.edu/techdigest

K. B. Gibson

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest176

labeled i1 and i2. The “outliers” or anomalies are reflected
as data points far away from the inlier regions, and are
labeled o2 and o3. The dimensions, x1 and x2, represent
the observation space.

Detecting anomalies requires a model or knowl-
edge of the expected normal behavior and a method of
measuring distance from the expected normal regions.
Figure 1 depicts a clear and simple case in which two
decision boundary lines, b1 and b2, are positioned such
that they separate the clusters into four distinct regions.
For this example, normal behavior would be classified
if the new sample falls within the upper-right or lower-
left regions subtended by lines b1 and b2. Samples that
fall within the upper-left or lower-right regions would be
classified as anomalous. To revisit the example of vehicle
driving behavior, consider the road direction parameter
to be x1 (e.g., x1 � 0 = north, x1 ~ 0 = south), and like-
wise the vehicle travel direction parameter to be x2 (e.g.,
x2 � 0 = north, x2 ~ 0 = south). Similar to the exam-
ple illustrated in Figure 1, a vehicle would be classified
anomalous if traveling north on a southbound road.

The type of data set shown in Figure 1 is a uniquely
tractable data set for anomaly detection because the
expected normal regions are clearly defined and anoma-
lies are also clearly separated from the normal regions
with decision boundaries. However, the real world, and
particularly modern warfare, often present scenarios
where uncertainty and data scarcity demand a more
robust approach to anomaly detection. When anomalous
data points are exceedingly infrequent and boundaries
are unknown or ambiguous, it becomes more difficult to
develop and test anomaly detection algorithms. Collect-
ing useful data in adequate quantities may be expensive

or impossible, and assumptions may be required to char-
acterize the regions of normal behavior.

To be adequately robust and useful, anomaly detec-
tion algorithms must be insensitive to changing envi-
ronments. In the example of motor vehicle traffic, a
useful anomaly detector should identify aberrant motor-
ist behavior on all roadways (i.e., it should not be limited
to cardinal directions). Additionally, a useful anomaly
detector should be dynamic and support adjusting
behavioral boundaries over time and space. By compari-
son, Figure 1 represents a mean ergodic case (i.e., clusters
are independent of time) requiring only a static frame-
work for anomaly detection.

In a combat scenario, and particularly in cases imme-
diately preceding the commencement of hostilities,
detecting anomalous behavior that might indicate mali-
cious intent is particularly challenging because entities
will likely exhibit “normal” behavior for as long as pos-
sible to avoid undue attention and thus preserve the ele-
ment of surprise. Or an entity could behave in a way
that deviates from “normal” or expected patterns specifi-
cally to confuse the combat decision-maker. Such “pol-
lution” of the observed track history can add noise to
the data set that can make it difficult to establish clear
boundaries between normal and abnormal regions of the
entity state-space.

In this article, we present a behavior anomaly
detection algorithm for entities traveling in three-
dimensional space over time (e.g., a track history of an
aircraft). We relax the data requirements in the track
history by assuming that the history provides only first-
order dynamics (position and time). Thus, our problem
is reduced to detecting a behavior change given only a
history of locations and a behavior model (or models).
It is assumed that the anomaly behavior is scarce in
data or not known. We generalize our behavior anomaly
detection algorithm such that it is robust to changing
environments (i.e., can detect anomalies independent of
time and location).

Building on anomaly detection methods that are
application agnostic and rely heavily on an abundance
of data, in recent work to detect anomalies from flight
data, Janakiraman and Nielsen2 explore using extreme
learning machines using higher-level parameters. Our
approach is an alternative to a more robust solution,
one in which empirical data (e.g., track position) are
exclusively used, and measured behavior parameters
are hidden. Given multivariate, time-series data and
a behavior model or models, we can identify anoma-
lies using a unique sequential sample and consensus
(SeqSAC) algorithm. We classify tracks as inlier or out-
lier with a small amount of data online and determine
anomalies based on the first occurrence of outliers. This
approach serves as a foundation for dynamic, simultane-
ous construction of complex behavior models that can
then be applied to classify subsequent track behavior.

x2
o2

b1

i2

b2

03

x1

i1

Figure 1.  Example of two-dimensional data samples that are
inliers and outliers (anomalies). The expected normal data points
are labeled with i1 and i2. The anomalies are in the regions labeled
o2 and o3. The boundaries, b1 and b2, represent possible decision
boundaries.

http://www.jhuapl.edu/techdigest

Behavior Anomaly Detection

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest 177

PROPOSED METHOD
In developing a behavior anomaly detector, our goal

is to identify the location and time in data where and
when an entity exhibited a behavior change that would
be considered anomalous or would satisfy the criteria for
alerting a human observer or autonomous systems to a
potentially critical change. We accomplish this by using
a behavior estimator that updates as more data points are
observed (as time increases) and labels data as outliers
when they do not support the estimated behavior. This
sequential behavior is the foundation of our proposed
method—the SeqSAC algorithm. This method is simi-
lar to the random sample and consensus (RANSAC)
paradigm presented by Fischler and Bolles3 wherein they
iteratively sampled and classified inlier data to obtain a
robust location determination. Similarly, given aircraft
position and time data points, SeqSAC is used to deter-
mine whether the new data points are inliers or outliers.
When inlier data points are classified, a more refined
behavior model can be developed, against which future
observations can be compared and anomalous activity
detected. SeqSAC uses the inlier and outlier labeled
data points to learn the behavior of the entity as new
data arrive.

Introduction of Terms
First we present a few terms and functions to sup-

port the development of SeqSAC and its usefulness in
behavior anomaly detection. Let the 3 × M matrix X be
the track history of an entity, where X = (x0, x1, …, xM).
The kth column of X is the entity’s three-dimensional
position in time,

Page 2 of 10

First we present a few terms and functions to support the development of SeqSAC and its usefulness in behavior anomaly
detection. Let the 3 × 𝑀𝑀𝑀𝑀 matrix 𝑿𝑿𝑿𝑿 be the track history of an entity, where 𝑿𝑿𝑿𝑿 = (𝒙𝒙𝒙𝒙0, 𝒙𝒙𝒙𝒙1, … , 𝒙𝒙𝒙𝒙𝑀𝑀𝑀𝑀). The 𝑘𝑘𝑘𝑘th column of 𝑿𝑿𝑿𝑿 is the
entity’s three-dimensional position in time, 𝒙𝒙𝒙𝒙𝑘𝑘𝑘𝑘 = (𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘1, 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘2, 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘3)𝑇𝑇𝑇𝑇1. The absolute time associated with the 𝑘𝑘𝑘𝑘th observation, 𝒙𝒙𝒙𝒙𝑘𝑘𝑘𝑘, is
𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘 ∈ ℝ. In this paper, we will model a behavior of an entity with a function 𝑓𝑓𝑓𝑓 that maps a time 𝑡𝑡𝑡𝑡 and 𝑝𝑝𝑝𝑝 × 1 parameter vector 𝜽𝜽𝜽𝜽 𝜽
ℝ𝑷𝑷𝑷𝑷 to a position,

1 In this paper, without loss of generality, we use the East-North-Up (ENU) coordinate system for three-space positions.

. (In this article,
without loss of generality, we use the East-North-Up, or
ENU, coordinate system for three-space positions.) The
absolute time associated with the kth observation, xk, is
tk � �. In this article, we will model a behavior of an
entity with a function f that maps a time t and p × 1
parameter vector θ � �P to a position,

	 fθ : t � x � �3.	 (1)

For convenience, we also allow the model to operate on
a vector of time samples (t) to generate a track history
matrix, X,

	 fθ : t � X � �3×M,	 (2)

where t � �M. Note that it is assumed that if the track
history in the matrix X is known, then the time series
in t is known. The X is not known if only t is provided.
Given the nth behavior model function, fθn

( · ), a com-
panion behavior estimator, g

n
( · ), approximates the

inverse function of fθn
( · ) and is needed to generate a

best-guess parameter given a track history. The behavior
model estimator in a general form is an approximation of
the inverse model function,

	

Page 3 of 10

𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛
−1 ≈ 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛: 𝑿𝑿𝑿𝑿 𝑿 𝑿𝑿𝑿𝑿𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛� ,

For this work, we use a weighted norm for minimizing a distance cost to represent the behavior model estimator,
.	 (3)

For this work, we use a weighted norm for minimizing a
distance cost to represent the behavior model estimator,

	

Page 3 of 10

 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝑿𝑿𝑿𝑿) = min
𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛

 �𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘�𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝒙𝒙𝒙𝒙𝒌𝒌𝒌𝒌��2
2 ∀ 𝑘𝑘𝑘𝑘, ,	 (4)

where in Eq. 4 the Euclidean distance between the kth
model prediction and kth sample is minimized for all
samples. The SeqSAC algorithm changes the values of
wk to find the inliers and outliers in the data, X. We rep-
resent the weight values for each sample with the vector
w � �M×1 and can more compactly denote Eq. 4 with

	

Page 3 of 10

 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝑿𝑿𝑿𝑿) = min
𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛

 �𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛(𝒕𝒕𝒕𝒕) − 𝑿𝑿𝑿𝑿𝑿
𝒘𝒘𝒘𝒘

2
. .	 (5)

SeqSAC Algorithm
The SeqSAC algorithm uses the same paradigm as

the RANSAC algorithm described by Fischler and
Bolles3 where a consensus metric is used to determine
which model best fits the data by sampling small sub-
sets of the data. SeqSAC also uses an e-ball metric,
which defines the maximum distance a sample must be
to be assigned as an inliear. But SeqSAC differs from
RANSAC in two ways. First, the samples are not ran-
domly selected at each iteration but are sequentially
sampled over time with a sampling overlap. Second, as
we show later, we can use SeqSAC recursively to build a
sequence of behaviors that best match the track history.

RANSAC is useful in solving the problem of estimat-
ing a model when the choice of any data point has equal
probability of contributing to the estimate. For example,
a linear regression model can work with any two points
selected at random. Estimating a behavior of an entity
that has a time-dependent set of data is dependent on
the relative time differences of selected samples. The
behavior of the entity may change over time, introducing
sample selection dependency when estimating a behav-
ior. Therefore, RANSAC would randomly settle on an
inlier set and outlier set; an entity that changes its behav-
ior halfway through the data would cause RANSAC to
choose the first half of the data to be either inliers or
outliers 50% of the time if the random selection was uni-
formly distributed. SeqSAC—with sequential sampling
over time—would be consistent in its inlier/outlier clas-
sifications, thus offering a consistent anomaly detection
mechanism. Also, SeqSAC requires significantly fewer
samples for search than RANSAC and will achieve the
same results. If there are N � 4 total samples, with four
samples minimum to estimate a model and for SeqSAC,
a two-sample overlap, RANSAC’s entire sample space
would be

Page 3 of 10

the inverse function of 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛(⋅) and is needed to generate a best guess parameter given a track history. The behavior model estimator
in a general form is an approximation of the inverse model function,

 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛
−1 ≈ 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛: 𝑿𝑿𝑿𝑿 ↦ 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛� , (3)

For this work, we use a weighted norm for minimizing a distance cost to represent the behavior model estimator,

 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝑿𝑿𝑿𝑿) = min
𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛

 �𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘�𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝒙𝒙𝒙𝒙𝒌𝒌𝒌𝒌��2
2 ∀ 𝑘𝑘𝑘𝑘, (4)

where in Eq. (4), the Euclidean distance between the 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ model prediction and 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ sample is minimized for all samples. The
SeqSAC algorithm changes the values of 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 to find the inliers and outliers in the data, 𝑿𝑿𝑿𝑿. We represent the weight values for each
sample with the vector 𝒘𝒘𝒘𝒘 ∈ ℝ𝑀𝑀𝑀𝑀×1 and can more compactly denote Eq. (4) with

 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝑿𝑿𝑿𝑿) = min
𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛

 �𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛(𝒕𝒕𝒕𝒕) − 𝑿𝑿𝑿𝑿�
𝒘𝒘𝒘𝒘

2
. (5)

B. SeqSAC Algorithm
The SeqSAC algorithm uses the same paradigm as the RANSAC algorithm in [2] where a consensus metric is used to determine

which model best fits the data by sampling small subsets of the data. But SeqSAC differs from RANSAC in two characteristics.
First, the samples are not randomly selected at each iteration but sequentially sampled over time with a sampling overlap. Second,
as we later show, we can use SeqSAC recursively to build a sequence of behaviors that best match the track history.

RANSAC is useful in solving the problem of estimating a model when the choice of any datapoint has equal probability of
contributing to the estimate. For example, a linear regression model can work with any two points selected at random. Estimating
a behavior of an entity that has time dependent set of data is dependent on the relative time differences of selected samples. The
behavior of the entity may change over time which introduces sample selection dependency when estimating a behavior. Therefore
RANSAC would randomly settle on an inlier set and outlier set; an entity that changes its behavior halfway through the data would
cause RANSAC to choose the first half subset of the data to be either inliers or outliers, 50% of the time if the random selection
was uniformly distributed. SeqSAC—with sequentially sampling over time—would be consistent in its inlier/outlier classifications
thus having a consistent anomaly detection mechanism. Also, the number of samples needed for search is significantly less than
RANSAC and SeqSAC will achieve the same results. If there are 𝑁𝑁𝑁𝑁 ≫ 4 total samples, 4 samples minimum to estimate a model
and for SeqSAC, a 2 sample overlap, RANSAC’s entire sample space would be �𝑁𝑁𝑁𝑁4� = (𝑁𝑁𝑁𝑁−3)(𝑁𝑁𝑁𝑁−2)(𝑁𝑁𝑁𝑁−1)𝑁𝑁𝑁𝑁

4!
 samples. SeqSAC sample

space would only be 𝑁𝑁𝑁𝑁
2

. So for this example, RANSAC sample complexity is 𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁4) and SeqSAC is 𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁).

In a basic form (no recursion), the inputs SeqSAC are the track history, 𝑿𝑿𝑿𝑿, a behavior model function, 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 , and the behavior

estimator function 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛. The output from SeqSAC is a vector of weights 𝒘𝒘𝒘𝒘 where each 𝑘𝑘𝑘𝑘th component, 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘, is either a value of 1 to
indicate the 𝑘𝑘𝑘𝑘th datapoint, 𝒙𝒙𝒙𝒙𝑘𝑘𝑘𝑘, is an inlier or a value of 0 to indicate the datapoint as an outlier according to the estimated model
𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛. All anomalies in 𝑿𝑿𝑿𝑿 are all data-points where 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 = 0. The first occurrence of the anomaly in time, 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎, is the earliest occurrence
of 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 = 0:

 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 = inf {𝒕𝒕𝒕𝒕 |𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 = 0}. (6)

The recursive form of SeqSAC sequentially extracts samples from 𝐗𝐗𝐗𝐗 with the previous weight vector 𝐰𝐰𝐰𝐰s−1 and proceeds to

determine a consensus with only datapoints associated with 𝐰𝐰𝐰𝐰�s−1,

 𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠 = SEQSAQ�𝐗𝐗𝐗𝐗(𝐰𝐰𝐰𝐰�s−1), 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 , 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛�, (7)
where the input data matrix, 𝐗𝐗𝐗𝐗(𝐰𝐰𝐰𝐰�s−1), indicates SEQSAQ will only consider samples where wk,s−1 = 0. The recursion ends when
the length of 𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠 is zero or too small for 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 to make a valid estimate of 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 . Since the inliers are known from the vector 𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠, a robust
estimate of 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 comes free with the SeqSAC algorithm by using 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛 = 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛�𝑋𝑋𝑋𝑋(𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠)�.

The details of the SeqSAC algorithm are in the Appendix. The following sections provide applications of SeqSAC with multiple
behavior types.

C. SeqSAC with Polynomial Trajectory Example
In this section, we will use a polynomial trajectory model to demonstrate SeqSAC. The trajectory model,

 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑 (𝒕𝒕𝒕𝒕) = 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑𝑻𝑻𝑻𝑻[𝟏𝟏𝟏𝟏, 𝒕𝒕𝒕𝒕, 𝒕𝒕𝒕𝒕𝟐𝟐𝟐𝟐] = 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺, (8)

 samples. SeqSAC's
sample space would only be

Page 3 of 10

the inverse function of 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛(⋅) and is needed to generate a best guess parameter given a track history. The behavior model estimator
in a general form is an approximation of the inverse model function,

 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛
−1 ≈ 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛: 𝑿𝑿𝑿𝑿 ↦ 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛� , (3)

For this work, we use a weighted norm for minimizing a distance cost to represent the behavior model estimator,

 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝑿𝑿𝑿𝑿) = min
𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛

 �𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘�𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝒙𝒙𝒙𝒙𝒌𝒌𝒌𝒌��2
2 ∀ 𝑘𝑘𝑘𝑘, (4)

where in Eq. (4), the Euclidean distance between the 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ model prediction and 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ sample is minimized for all samples. The
SeqSAC algorithm changes the values of 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 to find the inliers and outliers in the data, 𝑿𝑿𝑿𝑿. We represent the weight values for each
sample with the vector 𝒘𝒘𝒘𝒘 ∈ ℝ𝑀𝑀𝑀𝑀×1 and can more compactly denote Eq. (4) with

 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝑿𝑿𝑿𝑿) = min
𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛

 �𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛(𝒕𝒕𝒕𝒕) − 𝑿𝑿𝑿𝑿�
𝒘𝒘𝒘𝒘

2
. (5)

B. SeqSAC Algorithm
The SeqSAC algorithm uses the same paradigm as the RANSAC algorithm in [2] where a consensus metric is used to determine

which model best fits the data by sampling small subsets of the data. But SeqSAC differs from RANSAC in two characteristics.
First, the samples are not randomly selected at each iteration but sequentially sampled over time with a sampling overlap. Second,
as we later show, we can use SeqSAC recursively to build a sequence of behaviors that best match the track history.

RANSAC is useful in solving the problem of estimating a model when the choice of any datapoint has equal probability of
contributing to the estimate. For example, a linear regression model can work with any two points selected at random. Estimating
a behavior of an entity that has time dependent set of data is dependent on the relative time differences of selected samples. The
behavior of the entity may change over time which introduces sample selection dependency when estimating a behavior. Therefore
RANSAC would randomly settle on an inlier set and outlier set; an entity that changes its behavior halfway through the data would
cause RANSAC to choose the first half subset of the data to be either inliers or outliers, 50% of the time if the random selection
was uniformly distributed. SeqSAC—with sequentially sampling over time—would be consistent in its inlier/outlier classifications
thus having a consistent anomaly detection mechanism. Also, the number of samples needed for search is significantly less than
RANSAC and SeqSAC will achieve the same results. If there are 𝑁𝑁𝑁𝑁 ≫ 4 total samples, 4 samples minimum to estimate a model
and for SeqSAC, a 2 sample overlap, RANSAC’s entire sample space would be �𝑁𝑁𝑁𝑁4� = (𝑁𝑁𝑁𝑁−3)(𝑁𝑁𝑁𝑁−2)(𝑁𝑁𝑁𝑁−1)𝑁𝑁𝑁𝑁

4!
 samples. SeqSAC sample

space would only be 𝑁𝑁𝑁𝑁
2

. So for this example, RANSAC sample complexity is 𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁4) and SeqSAC is 𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁).

In a basic form (no recursion), the inputs SeqSAC are the track history, 𝑿𝑿𝑿𝑿, a behavior model function, 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 , and the behavior

estimator function 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛. The output from SeqSAC is a vector of weights 𝒘𝒘𝒘𝒘 where each 𝑘𝑘𝑘𝑘th component, 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘, is either a value of 1 to
indicate the 𝑘𝑘𝑘𝑘th datapoint, 𝒙𝒙𝒙𝒙𝑘𝑘𝑘𝑘, is an inlier or a value of 0 to indicate the datapoint as an outlier according to the estimated model
𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛. All anomalies in 𝑿𝑿𝑿𝑿 are all data-points where 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 = 0. The first occurrence of the anomaly in time, 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎, is the earliest occurrence
of 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 = 0:

 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 = inf {𝒕𝒕𝒕𝒕 |𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 = 0}. (6)

The recursive form of SeqSAC sequentially extracts samples from 𝐗𝐗𝐗𝐗 with the previous weight vector 𝐰𝐰𝐰𝐰s−1 and proceeds to

determine a consensus with only datapoints associated with 𝐰𝐰𝐰𝐰�s−1,

 𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠 = SEQSAQ�𝐗𝐗𝐗𝐗(𝐰𝐰𝐰𝐰�s−1), 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 , 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛�, (7)
where the input data matrix, 𝐗𝐗𝐗𝐗(𝐰𝐰𝐰𝐰�s−1), indicates SEQSAQ will only consider samples where wk,s−1 = 0. The recursion ends when
the length of 𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠 is zero or too small for 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 to make a valid estimate of 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 . Since the inliers are known from the vector 𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠, a robust
estimate of 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 comes free with the SeqSAC algorithm by using 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛 = 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛�𝑋𝑋𝑋𝑋(𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠)�.

The details of the SeqSAC algorithm are in the Appendix. The following sections provide applications of SeqSAC with multiple
behavior types.

C. SeqSAC with Polynomial Trajectory Example
In this section, we will use a polynomial trajectory model to demonstrate SeqSAC. The trajectory model,

 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑 (𝒕𝒕𝒕𝒕) = 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑𝑻𝑻𝑻𝑻[𝟏𝟏𝟏𝟏, 𝒕𝒕𝒕𝒕, 𝒕𝒕𝒕𝒕𝟐𝟐𝟐𝟐] = 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺, (8)

. So for this example,

http://www.jhuapl.edu/techdigest

K. B. Gibson

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest178

RANSAC sample complex-
ity is O(N4) and SeqSAC is
O(N).

In a basic form (no recur-
sion), the inputs to SeqSAC
are the track history, X; a
behavior model function,
fθn

; and the behavior estima-
tor function, gn. The output
from SeqSAC is a vector of
weights w, where each kth
component, wk, is either a
value of 1 to indicate the
kth data point, xk, is an inlier or a value of 0 to indicate
the data point is an outlier according to the estimated
model fθn

. All anomalies in X are all data points where
wk = 0. The first occurrence of the anomaly in time, ta,
is the earliest occurrence of wk = 0:

	 ta = inf {t | wk = 0},	 (6)

where the inf {t | wk = 0} operator selects the minimum
value within the vector, t, for only components associ-
ated with wk = 0.

The recursive form of SeqSAC sequentially extracts
samples from X with the previous weight vector ws–1 and
proceeds to determine a consensus with only data points
associated with ws–1,

	 ws = SeqSAC(X(ws–1), fθn
, gn),	 (7)

where the input data matrix, X(ws–1), indicates SeqSAC
will only consider samples where wk,s–1 = 0. The recur-
sion ends when the length of ws is 0 or too small for gn to
make a valid estimate of fθn

. Since the inliers are known
from the vector ws, a robust estimate of fθn

 comes free
with the SeqSAC algorithm by using

Page 3 of 10

the inverse function of 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛(⋅) and is needed to generate a best guess parameter given a track history. The behavior model estimator
in a general form is an approximation of the inverse model function,

 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛
−1 ≈ 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛: 𝑿𝑿𝑿𝑿 ↦ 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛� , (3)

For this work, we use a weighted norm for minimizing a distance cost to represent the behavior model estimator,

 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝑿𝑿𝑿𝑿) = min
𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛

 �𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘�𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘) − 𝒙𝒙𝒙𝒙𝒌𝒌𝒌𝒌��2
2 ∀ 𝑘𝑘𝑘𝑘, (4)

where in Eq. (4), the Euclidean distance between the 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ model prediction and 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡ℎ sample is minimized for all samples. The
SeqSAC algorithm changes the values of 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 to find the inliers and outliers in the data, 𝑿𝑿𝑿𝑿. We represent the weight values for each
sample with the vector 𝒘𝒘𝒘𝒘 ∈ ℝ𝑀𝑀𝑀𝑀×1 and can more compactly denote Eq. (4) with

 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛(𝑿𝑿𝑿𝑿) = min
𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛

 �𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛(𝒕𝒕𝒕𝒕) − 𝑿𝑿𝑿𝑿�
𝒘𝒘𝒘𝒘

2
. (5)

B. SeqSAC Algorithm
The SeqSAC algorithm uses the same paradigm as the RANSAC algorithm in [2] where a consensus metric is used to determine

which model best fits the data by sampling small subsets of the data. But SeqSAC differs from RANSAC in two characteristics.
First, the samples are not randomly selected at each iteration but sequentially sampled over time with a sampling overlap. Second,
as we later show, we can use SeqSAC recursively to build a sequence of behaviors that best match the track history.

RANSAC is useful in solving the problem of estimating a model when the choice of any datapoint has equal probability of
contributing to the estimate. For example, a linear regression model can work with any two points selected at random. Estimating
a behavior of an entity that has time dependent set of data is dependent on the relative time differences of selected samples. The
behavior of the entity may change over time which introduces sample selection dependency when estimating a behavior. Therefore
RANSAC would randomly settle on an inlier set and outlier set; an entity that changes its behavior halfway through the data would
cause RANSAC to choose the first half subset of the data to be either inliers or outliers, 50% of the time if the random selection
was uniformly distributed. SeqSAC—with sequentially sampling over time—would be consistent in its inlier/outlier classifications
thus having a consistent anomaly detection mechanism. Also, the number of samples needed for search is significantly less than
RANSAC and SeqSAC will achieve the same results. If there are 𝑁𝑁𝑁𝑁 ≫ 4 total samples, 4 samples minimum to estimate a model
and for SeqSAC, a 2 sample overlap, RANSAC’s entire sample space would be �𝑁𝑁𝑁𝑁4� = (𝑁𝑁𝑁𝑁−3)(𝑁𝑁𝑁𝑁−2)(𝑁𝑁𝑁𝑁−1)𝑁𝑁𝑁𝑁

4!
 samples. SeqSAC sample

space would only be 𝑁𝑁𝑁𝑁
2

. So for this example, RANSAC sample complexity is 𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁4) and SeqSAC is 𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁).

In a basic form (no recursion), the inputs SeqSAC are the track history, 𝑿𝑿𝑿𝑿, a behavior model function, 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 , and the behavior

estimator function 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛. The output from SeqSAC is a vector of weights 𝒘𝒘𝒘𝒘 where each 𝑘𝑘𝑘𝑘th component, 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘, is either a value of 1 to
indicate the 𝑘𝑘𝑘𝑘th datapoint, 𝒙𝒙𝒙𝒙𝑘𝑘𝑘𝑘, is an inlier or a value of 0 to indicate the datapoint as an outlier according to the estimated model
𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛. All anomalies in 𝑿𝑿𝑿𝑿 are all data-points where 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 = 0. The first occurrence of the anomaly in time, 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎, is the earliest occurrence
of 𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 = 0:

 𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 = inf {𝒕𝒕𝒕𝒕 |𝑤𝑤𝑤𝑤𝑘𝑘𝑘𝑘 = 0}. (6)

The recursive form of SeqSAC sequentially extracts samples from 𝐗𝐗𝐗𝐗 with the previous weight vector 𝐰𝐰𝐰𝐰s−1 and proceeds to

determine a consensus with only datapoints associated with 𝐰𝐰𝐰𝐰�s−1,

 𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠 = SEQSAQ�𝐗𝐗𝐗𝐗(𝐰𝐰𝐰𝐰�s−1), 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 , 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛�, (7)
where the input data matrix, 𝐗𝐗𝐗𝐗(𝐰𝐰𝐰𝐰�s−1), indicates SEQSAQ will only consider samples where wk,s−1 = 0. The recursion ends when
the length of 𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠 is zero or too small for 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛 to make a valid estimate of 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 . Since the inliers are known from the vector 𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠, a robust
estimate of 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒏𝒏𝒏𝒏 comes free with the SeqSAC algorithm by using 𝑓𝑓𝑓𝑓𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛 = 𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛�𝑋𝑋𝑋𝑋(𝒘𝒘𝒘𝒘𝑠𝑠𝑠𝑠)�.

The details of the SeqSAC algorithm are in the Appendix. The following sections provide applications of SeqSAC with multiple
behavior types.

C. SeqSAC with Polynomial Trajectory Example
In this section, we will use a polynomial trajectory model to demonstrate SeqSAC. The trajectory model,

 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑 (𝒕𝒕𝒕𝒕) = 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑𝑻𝑻𝑻𝑻[𝟏𝟏𝟏𝟏, 𝒕𝒕𝒕𝒕, 𝒕𝒕𝒕𝒕𝟐𝟐𝟐𝟐] = 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺, (8)

.
SeqSAC algorithm details are presented at the end of

this article. The following sections provide applications
of SeqSAC with multiple behavior types.

SeqSAC with Polynomial Trajectory Example
In this section, we use a polynomial trajectory model

to demonstrate SeqSAC. The trajectory model,

	 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑 (𝒕𝒕𝒕𝒕) = 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑𝑻𝑻𝑻𝑻[𝟏𝟏𝟏𝟏, 𝒕𝒕𝒕𝒕, 𝒕𝒕𝒕𝒕𝟐𝟐𝟐𝟐] = 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑𝑻𝑻𝑻𝑻𝑺𝑺𝑺𝑺, ,	 (8)

is dependent on θp � �3×1, which is the parameter vector
that defines the initial position, velocity, and accelera-
tion. (The column vector, t2, is the time vector with all
components squared.) If we ignore the third component
of

is dependent on 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑 ∈ ℝ𝟑𝟑𝟑𝟑×𝟏𝟏𝟏𝟏 which is the parameter vector that defines the initial position, velocity, and acceleration. (The column
vector, 𝒕𝒕𝒕𝒕𝟐𝟐𝟐𝟐, is the time vector with all components squared.) If we ignore the third component of 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑𝑻𝑻𝑻𝑻, then this model is similar to dead
reckoning on track data. Using (8), a closed form solution to the behavior parameter that minimizes (5) is

𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝(𝑿𝑿𝑿𝑿) = (𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆)−1𝑆𝑆𝑆𝑆𝑿𝑿𝑿𝑿 = 𝜽𝜽𝜽𝜽�𝒑𝒑𝒑𝒑 . (9)
 Consider the example of an aircraft traveling northeast for a period of time and then abruptly changes its trajectory to be at a
slower speed and direction towards east-northeast as shown in the left plot in Figure 2. To demonstrate SeqSAC’s ability to identify
different types of anomalies, we inject a spurious signal at 11 km, 3 km (East, North) that would represent a signal degradation or
adversarial signal exploitation. The goal in our proposed method is to identify which tracks are anomalies as in the figure on the right
in Figure 2. Here the spurious signal and positions associated with the aircraft traveling at a different speed and heading are labeled
as outliers.

, then this model is similar to dead reckoning on
track data. Using Eq. 8, a closed-form solution to the
behavior parameter that minimizes Eq. 5 is

	

is dependent on 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑 ∈ ℝ𝟑𝟑𝟑𝟑×𝟏𝟏𝟏𝟏 which is the parameter vector that defines the initial position, velocity, and acceleration. (The column
vector, 𝒕𝒕𝒕𝒕𝟐𝟐𝟐𝟐, is the time vector with all components squared.) If we ignore the third component of 𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑𝑻𝑻𝑻𝑻, then this model is similar to dead
reckoning on track data. Using (8), a closed form solution to the behavior parameter that minimizes (5) is

𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝(𝑿𝑿𝑿𝑿) = (𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆)−1𝑆𝑆𝑆𝑆𝑿𝑿𝑿𝑿 = 𝜽𝜽𝜽𝜽�𝒑𝒑𝒑𝒑 . (9)
 Consider the example of an aircraft traveling northeast for a period of time and then abruptly changes its trajectory to be at a
slower speed and direction towards east-northeast as shown in the left plot in Figure 2. To demonstrate SeqSAC’s ability to identify
different types of anomalies, we inject a spurious signal at 11 km, 3 km (East, North) that would represent a signal degradation or
adversarial signal exploitation. The goal in our proposed method is to identify which tracks are anomalies as in the figure on the right
in Figure 2. Here the spurious signal and positions associated with the aircraft traveling at a different speed and heading are labeled
as outliers.

.	 (9)

Consider the example of an aircraft traveling north-
east for a period of time and then abruptly changing its
trajectory to travel at a slower speed and direction toward
east-northeast, as shown in the left plot in Figure 2. To
demonstrate SeqSAC’s ability to identify different types
of anomalies, we inject a spurious signal at 11 km, 3 km
(east, north) that would represent a signal degradation
or adversarial signal exploitation. The goal in our pro-
posed method is to identify which tracks are anomalies,
as in the plot on the right in Figure 2. Here the spurious
signal and positions associated with the aircraft traveling
at a different speed and heading are labeled as outliers.

Designing a behavior anomaly detector for the exam-
ple in Figure 2 may be simple at first glance, but using
existing methods is intractable when the detector must
be robust to change. Suppose one builds an estimator
that detects when the pilot is banking right given the
data. To trigger an anomaly, a 30° turn for example,
what would the threshold be for the banking rate—10°?
What if we now need to detect when an aircraft begins
to bank left? Because SeqSAC is robust to noise in data
and flexible in its definition of behavior models, it is able
to detect all classes of behavioral changes. The key to
accomplishing this robustness and flexibility is that our
approach assumes that the majority of the data observed
are considered “normal;” thus, SeqSAC learns a normal
behavior as more data arrive over time.

In Figure 3, we demonstrate the sequential process
of SeqSAC as it builds a model over time (nonrecursive
method). The figure shows observations of SeqSAC at
four different iterations, where the plots in panels a and
d are the first and last iterations, respectively. On the
first iteration in Figure 3a, SeqSAC uses a few sequen-
tial tracks and estimates a model (green line). All tracks
within an e-ball (500 m for this example) about the
green line are considered inliers; here it finds 90 inli-
ers. For the next iteration, another sample set is selected
in sequential order with 50% overlap. In Figure 3b, the
iteration is on a sample set that overlaps the spurious
signal. Here the model fits only 28 samples with the gen-
erous 500-m e-ball. Figure 3c shows the moment of the
turn and velocity change, and the estimated model has

SeqSACX w

fθn
gn

Track history

N
o

rt
h

(k
m

)

0
1
2
3
4
5
6

East (km)
9 10 11 12 13 14 15

Track history
All outliers

N
o

rt
h

(k
m

)

0
1
2
3
4
5
6

East (km)
9 10 11 12 13 14 15

Figure 2.  SeqSAC fundamental algorithm overview. The left plot is the input track history of a
single entity that is traveling northeast. The input parameters to SeqSAC are X, fθn

, g
n

 and the
output is the vector w that classifies all data in X as an inlier or outlier.

http://www.jhuapl.edu/techdigest

Behavior Anomaly Detection

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest 179

45 inliers. Finally, the last iteration, shown in Figure 3d,
ends with 52 inliers. After sampling all the data, the best
model in this example was determined to be at the first
iteration with 90 inliers. All inliers, w, are then used
to refine the model estimate and determine the final
inlier–outlier set. The outliers for this example are indi-
cated with a red icon in the plot on the right of Figure 2.

Although we use a polynomial behavior model
fθp

 and behavior estimator gp for the development of
SeqSAC in this section, we are not limited to only this
model. We demonstrate in the next sections how we
can extend SeqSAC to use more complex ground-path
models, dynamic (guidance and control) models, and a
nonlinear model.

SENSITIVITY ANALYSIS WITH DYNAMIC MODEL
We now use a dynamic model for an aircraft body

using state and control parameters to observe the sensi-
tivity of the SeqSAC algorithm when there is noise in
the data. The state of the vehicle is time and position,
X, just as in previous sections. Although it is common
to include the heading of the vehicle, ψ, in the aircraft
state vector, for this article we assume the measured state
of the heading is unknown; we only incorporate head-
ing change (rate of turn) when estimating the behavior
model. The control parameters that are represented by
θd are the aircraft’s ground speed, �; heading, ψ; rate

of turn,

Page 5 of 10

Figure 3 Demonstration of SeqSAC. (a) First iteration where 90 inliers are found with the model.. (b) Sample set on the spurious signal with 28 inliers. (c)
Iteration where the samples are at the turn. (d) Last iteration where 52 inliers are found with this sample set.

 In Figure 3, we demonstrate the sequential process of SeqSAC as it builds a model over time (non-recursive method).
Figure 3 (a) – (d) are observations of SeqSAC at four different iterations where the first and last plots are the first and last iterations,
respectively. On the first iteration in Figure 3 (a), SeqSAC uses a few sequential tracks and estimates a model (green line). All
tracks within an epsilon ball (500 meters for this example) about the green line are considered inliers; here it finds 90 inliers. The
next iteration, another sample set is selected chosen in sequential order with 50% overlap. In Figure 3 (b), the iteration is on a
sample set that overlaps the spurious signal. Here the model fits only 28 samples with the generous 500 meter epsilon ball. Figure
3 (c) is at the moment of the turn and velocity change and the estimated model has 45 inliers. Finally, the last iteration in Figure 3
(d) ends with 52 inliers. After sampling all the data, the best model in this example was determined at the first iteration with 90
inliers. All inliers, 𝒘𝒘𝒘𝒘, are then used to refine the model estimate and determine the final inlier-outlier set. The outliers for this
example are in the plot on the right of Figure 2 where the outliers are indicated with a red icon.

Although we use a polynomial behavior model 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑 and behavior estimator 𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝 for the development of SeqSAC in this section,
we are not limited to only this model. We demonstrate in the next sections how we can extend SEQSAQ to use more complex
ground-path models, dynamic (guidance and control) models and a non-linear model.

III. SENSITIVITY ANALYSIS WITH DYNAMIC MODEL
We now use a dynamical model for an aircraft body using a state and control parameters in order to observe the sensitivity of

the SeqSAC algorithm when noise in the data is present. The state of the vehicle is time and position, 𝑿𝑿𝑿𝑿, just as in previous sections.
Although it is common to include the heading of the vehicle, 𝜓𝜓𝜓𝜓, in the aircraft state vector, for this article we assume the measured
state of the heading is not known; we only incorporate heading change (rate of turn) when estimating the behavior model. The
control parameters that are represented by 𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑, are the aircraft’s ground speed, 𝑣𝑣𝑣𝑣, heading, 𝜓𝜓𝜓𝜓, rate of turn, 𝜓̇𝜓𝜓𝜓, and altitude velocity
𝑧𝑧𝑧𝑧𝑧. More compactly, 𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑 = �𝑣𝑣𝑣𝑣, 𝜓𝜓𝜓𝜓, 𝜓̇𝜓𝜓𝜓, 𝑧𝑧𝑧𝑧𝑧𝑧𝑇𝑇𝑇𝑇. A non-linear solver is used in Eq. (5) to estimate the aircraft model, 𝜃𝜃𝜃𝜃�𝑑𝑑𝑑𝑑.

We simulated 100 trajectories with varying the ground speeds between 70 and 200 m/s, altitude velocity between -100 and 100
m/s, headings are any direction and heading rate between 0 and 5 degrees/second. All trajectories start from the same location.

(a) (b)

(c) (d)

; and altitude velocity, ż.
More compactly, θd = (�, ψ,

Page 5 of 10

Figure 3 Demonstration of SeqSAC. (a) First iteration where 90 inliers are found with the model.. (b) Sample set on the spurious signal with 28 inliers. (c)
Iteration where the samples are at the turn. (d) Last iteration where 52 inliers are found with this sample set.

 In Figure 3, we demonstrate the sequential process of SeqSAC as it builds a model over time (non-recursive method).
Figure 3 (a) – (d) are observations of SeqSAC at four different iterations where the first and last plots are the first and last iterations,
respectively. On the first iteration in Figure 3 (a), SeqSAC uses a few sequential tracks and estimates a model (green line). All
tracks within an epsilon ball (500 meters for this example) about the green line are considered inliers; here it finds 90 inliers. The
next iteration, another sample set is selected chosen in sequential order with 50% overlap. In Figure 3 (b), the iteration is on a
sample set that overlaps the spurious signal. Here the model fits only 28 samples with the generous 500 meter epsilon ball. Figure
3 (c) is at the moment of the turn and velocity change and the estimated model has 45 inliers. Finally, the last iteration in Figure 3
(d) ends with 52 inliers. After sampling all the data, the best model in this example was determined at the first iteration with 90
inliers. All inliers, 𝒘𝒘𝒘𝒘, are then used to refine the model estimate and determine the final inlier-outlier set. The outliers for this
example are in the plot on the right of Figure 2 where the outliers are indicated with a red icon.

Although we use a polynomial behavior model 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑 and behavior estimator 𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝 for the development of SeqSAC in this section,
we are not limited to only this model. We demonstrate in the next sections how we can extend SEQSAQ to use more complex
ground-path models, dynamic (guidance and control) models and a non-linear model.

III. SENSITIVITY ANALYSIS WITH DYNAMIC MODEL
We now use a dynamical model for an aircraft body using a state and control parameters in order to observe the sensitivity of

the SeqSAC algorithm when noise in the data is present. The state of the vehicle is time and position, 𝑿𝑿𝑿𝑿, just as in previous sections.
Although it is common to include the heading of the vehicle, 𝜓𝜓𝜓𝜓, in the aircraft state vector, for this article we assume the measured
state of the heading is not known; we only incorporate heading change (rate of turn) when estimating the behavior model. The
control parameters that are represented by 𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑, are the aircraft’s ground speed, 𝑣𝑣𝑣𝑣, heading, 𝜓𝜓𝜓𝜓, rate of turn, 𝜓̇𝜓𝜓𝜓, and altitude velocity
𝑧𝑧𝑧𝑧𝑧. More compactly, 𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑 = �𝑣𝑣𝑣𝑣, 𝜓𝜓𝜓𝜓, 𝜓̇𝜓𝜓𝜓, 𝑧𝑧𝑧𝑧𝑧𝑧𝑇𝑇𝑇𝑇. A non-linear solver is used in Eq. (5) to estimate the aircraft model, 𝜃𝜃𝜃𝜃�𝑑𝑑𝑑𝑑.

We simulated 100 trajectories with varying the ground speeds between 70 and 200 m/s, altitude velocity between -100 and 100
m/s, headings are any direction and heading rate between 0 and 5 degrees/second. All trajectories start from the same location.

(a) (b)

(c) (d)

, ż)T.
A nonlinear solver is used in Eq. 5
to estimate the aircraft model,

Page 5 of 10

Figure 3 Demonstration of SeqSAC. (a) First iteration where 90 inliers are found with the model.. (b) Sample set on the spurious signal with 28 inliers. (c)
Iteration where the samples are at the turn. (d) Last iteration where 52 inliers are found with this sample set.

 In Figure 3, we demonstrate the sequential process of SeqSAC as it builds a model over time (non-recursive method).
Figure 3 (a) – (d) are observations of SeqSAC at four different iterations where the first and last plots are the first and last iterations,
respectively. On the first iteration in Figure 3 (a), SeqSAC uses a few sequential tracks and estimates a model (green line). All
tracks within an epsilon ball (500 meters for this example) about the green line are considered inliers; here it finds 90 inliers. The
next iteration, another sample set is selected chosen in sequential order with 50% overlap. In Figure 3 (b), the iteration is on a
sample set that overlaps the spurious signal. Here the model fits only 28 samples with the generous 500 meter epsilon ball. Figure
3 (c) is at the moment of the turn and velocity change and the estimated model has 45 inliers. Finally, the last iteration in Figure 3
(d) ends with 52 inliers. After sampling all the data, the best model in this example was determined at the first iteration with 90
inliers. All inliers, 𝒘𝒘𝒘𝒘, are then used to refine the model estimate and determine the final inlier-outlier set. The outliers for this
example are in the plot on the right of Figure 2 where the outliers are indicated with a red icon.

Although we use a polynomial behavior model 𝑓𝑓𝑓𝑓𝜽𝜽𝜽𝜽𝒑𝒑𝒑𝒑 and behavior estimator 𝑔𝑔𝑔𝑔𝑝𝑝𝑝𝑝 for the development of SeqSAC in this section,
we are not limited to only this model. We demonstrate in the next sections how we can extend SEQSAQ to use more complex
ground-path models, dynamic (guidance and control) models and a non-linear model.

III. SENSITIVITY ANALYSIS WITH DYNAMIC MODEL
We now use a dynamical model for an aircraft body using a state and control parameters in order to observe the sensitivity of

the SeqSAC algorithm when noise in the data is present. The state of the vehicle is time and position, 𝑿𝑿𝑿𝑿, just as in previous sections.
Although it is common to include the heading of the vehicle, 𝜓𝜓𝜓𝜓, in the aircraft state vector, for this article we assume the measured
state of the heading is not known; we only incorporate heading change (rate of turn) when estimating the behavior model. The
control parameters that are represented by 𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑, are the aircraft’s ground speed, 𝑣𝑣𝑣𝑣, heading, 𝜓𝜓𝜓𝜓, rate of turn, 𝜓̇𝜓𝜓𝜓, and altitude velocity
𝑧𝑧𝑧𝑧𝑧. More compactly, 𝜃𝜃𝜃𝜃𝑑𝑑𝑑𝑑 = �𝑣𝑣𝑣𝑣, 𝜓𝜓𝜓𝜓, 𝜓̇𝜓𝜓𝜓, 𝑧𝑧𝑧𝑧𝑧𝑧𝑇𝑇𝑇𝑇. A non-linear solver is used in Eq. (5) to estimate the aircraft model, 𝜃𝜃𝜃𝜃�𝑑𝑑𝑑𝑑.

We simulated 100 trajectories with varying the ground speeds between 70 and 200 m/s, altitude velocity between -100 and 100
m/s, headings are any direction and heading rate between 0 and 5 degrees/second. All trajectories start from the same location.

(a) (b)

(c) (d)

.
We simulated 100 trajecto-

ries with varying ground speeds
between 70 and 200 m/s, alti-
tude velocities between –100 and
100 m/s, headings in any direction,
and heading rates between 0°/s and
5°/s. All trajectories start from the
same location. With a probability
of 50%, we assign an anomaly to a
trajectory with the anomaly times
between 55 and 75 samples. For
this simulation, 1 sample = 1 s. If
a trajectory is to have a change in
behavior, we randomly select the
behavior change to be (uniformly
distributed) a deviation of ±20 m/s
in ground speed, ±3°/s rate of
turn, and ±10 m/s altitude veloc-
ity. It is possible that some trajec-
tories have a behavior change but
the change is almost miniscule.
Figure 4 is an overlay of all the
trajectory prototypes used for the

Monte Carlo simulation. Each true anomaly location is
indicated with a red square.

For each trajectory, we add Gaussian noise with zero
mean and variances from 0 to 16 m2 with 2 m2 intervals.
Thus, we have 100 trajectories with no noise but a total
(including those with noise) of 900 trajectories. For each
trajectory, we apply the SeqSAC algorithm to estimate

No. inliers, 90; best 90(a)

N
o

rt
h

(k
m

)

0

1

2

3

4

5

6

East (km)
9 10 11 12 13 14 15 16

Tracks
Samples
Model estimate

No. inliers, 28; best 90(b)

N
o

rt
h

(k
m

)

0

1

2

3

4

5

6

East (km)
9 10 11 12 13 14 15 16

Tracks
Samples
Model estimate

No. inliers, 45; best 90(c)

N
o

rt
h

(k
m

)

0

1

2

3

4

5

6

East (km)
9 10 11 12 13 14 15 16

Tracks
Samples
Model estimate

No. inliers, 52; best 90(d)

N
o

rt
h

(k
m

)

0

1

2

3

4

5

6

East (km)
9 10 11 12 13 14 15 16

Tracks
Samples
Model estimate

Figure 3.  Demonstration of SeqSAC. (a) First iteration where 90 inliers are found with the
model. (b) Sample set on the spurious signal with 28 inliers. (c) Iteration where the samples
are at the turn. (d) Last iteration where 52 inliers are found with this sample set.

10

5

0

10

0

–10
–5

0
5

10
15

U
p

 (k
m

)

North (km) East (km)

Figure 4.  Overlay of all 100 trajectories used for the Monte Carlo
simulations. Trajectories randomly selected to have an anomaly,
as well as the location of start of the anomaly, are indicated with
red squares.

http://www.jhuapl.edu/techdigest

K. B. Gibson

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest180

outliers. To demonstrate receiver operating characteris-
tic (ROC) curves, we change the SeqSAC parameter,
e-ball, which is the minimum distance a data point must
be from the model to be considered an inlier. (See algo-
rithm details at the end of this article and Ref. 2). The
11 e-ball values used for the simulations are 0, 2, 4, 10,
20, 50, 80, 100, 200, 300, and 400 m. (These values were
only selected to support the analysis; any values could
be chosen for e-ball.) For the 900 trajectories, SeqSAC
was used to estimate outliers with the 11 e-ball values. In
total, SeqSAC was called 9,900 times. The results from
all the trials are shown in Figure 5.

For each simulation, the SeqSAC algorithm attempts
to find anomalies in the data under the constraint of
the e-ball parameter. Just under half the trajectories
have an anomalous behavior simulated with a change
in a random combination of ground speed, rate of turn,
and elevation speed vector. The SeqSAC algorithm
returns a vector of inliers w, for which in turn the outli-
ers, w, are found. If the outlier vector is not empty, then
it is recorded as an anomaly detection. Under the con-
struction of this Monte Carlo simulation, SeqSAC can
be viewed as a binary classifier with a trajectory either
having or not having an anomaly. With a true positive
meaning that the SeqSAC algorithm successfully clas-
sifies an anomaly is present and a false positive mean-
ing that the SeqSAC algorithm incorrectly classifies a
trajectory having an anomaly, we generate a plot of the
false positive rate versus the true positive rate (ROC
curve) in Figure 5a. The area under the ROC curve is
0.932. This demonstrates that SeqSAC has high preci-
sion and high recall under this simulation environment.

SeqSAC not only classifies whether an anomaly
is present but also estimates when the first anomaly
occurs in the samples. For every trajectory, we measure
the absolute difference in time (samples) between the
true anomaly time, w0, and the estimated time from
SeqSAC,

SeqSAC not only classifies if an anomaly is present but also estimates when the first anomaly occurs in the samples. For every
trajectory, we measure the absolute difference in time (samples) between the true anomaly time, 𝑤𝑤𝑤𝑤0, and the estimated time from
SeqSAC, 𝑤𝑤𝑤𝑤𝑤0. If SeqSAC did not find an anomaly, then the sample time was set to zero which is the same time used for trajectories
that, in truth, did not have an anomaly. At each 𝜖𝜖𝜖𝜖-ball parameter, the estimation error, |𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜 − 𝑤𝑤𝑤𝑤𝑤0|, was averaged over all trials and
is shown in Figure 5 (b). With small 𝜖𝜖𝜖𝜖-ball values (less than 100), the estimation is high which reflects how selective SeqSAC is in
determining inliers (i.e. consensus must be satisfied). As the 𝜖𝜖𝜖𝜖-ball value is increased, more samples are included in a consensus
measurement which in turn provides SeqSAC the flexibility to more accurately find and classify both inliers and outliers. As 𝜖𝜖𝜖𝜖-ball
increases, the estimation error decreases. However, the error does not asymptotically decrease as 𝜖𝜖𝜖𝜖-ball is increased because more
and more samples are included in a consensus; eventually over-classification occurs and all samples are deemed to be in-consensus.
We see this occur in Figure 5 (b) where the error increases from 𝜖𝜖𝜖𝜖-ball = 350 to 400. Even with the gradual increase in error with
𝜖𝜖𝜖𝜖-ball, SeqSAC is robust to noise variation in observed track data with 𝜖𝜖𝜖𝜖-ball greater than 200 meters having an absolute error in
estimating the anomaly time less than 14 samples. In Figure 5 (c), the absolute difference in anomaly sample times plots for three
𝜖𝜖𝜖𝜖-ball reflects a similar story as in Figure 5 (b). With 𝜖𝜖𝜖𝜖-ball unreasonably low at 2 meters, the error is flat at 33 samples. As 𝜖𝜖𝜖𝜖-ball
is increased, the errors decrease. As expected, there’s an upward trend in error as the sample noise variance increases.

. If SeqSAC does not find an anomaly,
then the sample time is set to zero, which is the same
time used for trajectories that, in truth, do not have an
anomaly. At each e-ball parameter, the estimation error,

SeqSAC not only classifies if an anomaly is present but also estimates when the first anomaly occurs in the samples. For every
trajectory, we measure the absolute difference in time (samples) between the true anomaly time, 𝑤𝑤𝑤𝑤0, and the estimated time from
SeqSAC, 𝑤𝑤𝑤𝑤𝑤0. If SeqSAC did not find an anomaly, then the sample time was set to zero which is the same time used for trajectories
that, in truth, did not have an anomaly. At each 𝜖𝜖𝜖𝜖-ball parameter, the estimation error, |𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜 − 𝑤𝑤𝑤𝑤𝑤0|, was averaged over all trials and
is shown in Figure 5 (b). With small 𝜖𝜖𝜖𝜖-ball values (less than 100), the estimation is high which reflects how selective SeqSAC is in
determining inliers (i.e. consensus must be satisfied). As the 𝜖𝜖𝜖𝜖-ball value is increased, more samples are included in a consensus
measurement which in turn provides SeqSAC the flexibility to more accurately find and classify both inliers and outliers. As 𝜖𝜖𝜖𝜖-ball
increases, the estimation error decreases. However, the error does not asymptotically decrease as 𝜖𝜖𝜖𝜖-ball is increased because more
and more samples are included in a consensus; eventually over-classification occurs and all samples are deemed to be in-consensus.
We see this occur in Figure 5 (b) where the error increases from 𝜖𝜖𝜖𝜖-ball = 350 to 400. Even with the gradual increase in error with
𝜖𝜖𝜖𝜖-ball, SeqSAC is robust to noise variation in observed track data with 𝜖𝜖𝜖𝜖-ball greater than 200 meters having an absolute error in
estimating the anomaly time less than 14 samples. In Figure 5 (c), the absolute difference in anomaly sample times plots for three
𝜖𝜖𝜖𝜖-ball reflects a similar story as in Figure 5 (b). With 𝜖𝜖𝜖𝜖-ball unreasonably low at 2 meters, the error is flat at 33 samples. As 𝜖𝜖𝜖𝜖-ball
is increased, the errors decrease. As expected, there’s an upward trend in error as the sample noise variance increases.

, is averaged over all trials, shown in Figure 5b.

With small e-ball values (less than 100), the estima-
tion is high, which reflects how selective SeqSAC is in
determining inliers (i.e., consensus must be satisfied). As
the e-ball value is increased, more samples are included
in a consensus measurement, which in turn provides
SeqSAC the flexibility to more accurately find and clas-
sify both inliers and outliers. As e-ball increases, the
estimation error decreases. However, the error does not
asymptotically decrease as e-ball is increased because
more and more samples are included in a consensus;
eventually overclassification occurs and all samples
are deemed to be in consensus. We see this occur in
Figure 5b where the error increases from e-ball = 350 to
400. Figure 5b demonstrates that SeqSAC can be robust
to noise when a large enough value for e-ball is selected.
In Figure 5c, the absolute difference in plots of anomaly
sample times for three e-ball reflects a similar story as
Figure 5b. With e-ball unreasonably low at 2 m, the error
is flat at 33 samples. As e-ball is increased, the errors
decrease. As expected, there is an upward trend in error
as the sample noise variance increases.

SeqSAC WITH RECURSION
The results described in the previous sections were

all achieved by using SeqSAC without the recursion
functionality. Next we briefly demonstrate the utility of
recursive SeqSAC. With the ability to recursively search
for anomalies in a data sequence, X, a chain of behaviors
can be estimated over time. In this example, a chain of
anomalies and behaviors are built with Eq. 7 using the
dynamic model from the previous section, fθd

 and gd.
We use two different data sets. The first we generate by
simulating an aircraft that begins with a left turn, pro-
ceeds to fly straight, and then makes another left turn,
decreasing elevation and flying down. SeqSAC is able to
detect and estimate these behavior changes, as indicated
by the colored segments in Figure 6a. Then, using data
from NASA, we run a simulation of an aircraft taking
off, climbing to an altitude of 10 km, and descending to
a landing.4 Again, all the behavior changes are detected

Tr
ue

 p
os

iti
ve

 ra
te

1.0

0.8

0.6

0.4

0.2

0

False positive rate
0 0.2 0.4 0.6 0.8 1.0

ROC

Es
tim

at
io

n
er

ro
r i

n
sa

m
pl

es

30

25

20

15

10

�-ball size
0 50 100 150 200 250 300 350 400

�-ball vs. estimation error

Es
tim

at
io

n
er

ro
r i

n
sa

m
pl

es

40

35

40

25

20

15

10

Noise variance
0 2 4 6 8 10 12 14 16

Noise variance vs. estimation error

�-ball = 2
�-ball = 500
�-ball = 300

(a) (b) (c)

Figure 5.  Results from Monte Carlo simulations. (a) ROC curve with an area under the curve of 0.932. (b) SeqSAC anomaly estimate dis-
tance error (in samples) for each e-ball trial. (c) SeqSAC estimation error with increasing sample noise variance.

http://www.jhuapl.edu/techdigest

Behavior Anomaly Detection

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest 181

by recursive SeqSAC and demonstrated by the different
colored segments in Figure 6b.

HIGHER-ORDER MODELING WITH FINITE-STATE
MACHINES

We have demonstrated that given a behavior model
fθn

( · ), and companion estimator, gn( · ), SeqSAC can
accurately locate behavior anomalies with a reasonable
selection of e-ball. SeqSAC is flexible enough to support
any model or even suite of models used. Here we briefly
explore the concept of modeling and estimating a behav-
ior with a higher-level behavior model using Advanced
Framework for Simulation, Integration, and Modeling
(AFSIM). Although we do not show SeqSAC detect-
ing anomalies, we demonstrate the possible extension of
SeqSAC to finite-state machine (FSM) modeling.

In this example, an entity model is built using an
FSM. The entity FSM is designed to fly toward a target
until it reaches a distance of 60 km and then turn away
from the target. The entity will then turn toward the
target again when it reaches 120 km from the target, and
the cycle repeats. This effectively is a “racetrack” behav-
ior but is dependent on higher-level parameters, θa:
target position and speed,
minimum and maximum
ranges from target, and
turning radius. Given only
entity position data, X, we
estimate the FSM parameter
vector, θa, using a nonlin-
ear search method5 to find
the values that best choose
a model that matches the
data. Because the search
space could be infinite and
the estimation intractable,
the search is limited to
known constraints with rea-
sonable speed values, turn

radius, and maximum and
minimum ranges from the
target.

The results of the experi-
ment with FSM behavior
estimation are depicted in
Figure 7. The top view of
the entity in Figure 7a shows
that the entity begins with
flying away from the target
(blue circle) then turns at
max range from the target
to its left with a 2-km radius
until it is heading toward
the target. When the entity

reaches a minimum range from the target, it turns left
again away from the target. The position versus time
plot of this behavior is depicted in Figure 7b. What we
also show, with black circles, are the estimated positions
of the entity using only the estimated parameter,

Page 8 of 10

Figure 7 FSM parameter estimation with AFSIM. (a) The red line is the true entity positions. The blue circle is the target. The black circles are the positions from
the estimated FSM parameter. Black arcs are the estimated minimum and maximum ranges. (b) Position vs. time view of the true and estimated values.

The results of the experiment with FSM behavior estimation is Figure 7. The top-view of the entity in Figure 7 (a) shows the
entity begins with flying away from the target (blue circle) then turns at max range from the target to its left with a 2 km radius
until it is heading toward the target. When the entity reaches a minimum range from the target, the entity turns left again away from
the target. The position vs. time plot of this behavior is in Figure 7 (b). What we also show is the black circles are the estimated
positions of the entity using only the estimated parameter, 𝜃𝜃𝜃𝜃�𝑝𝑝𝑝𝑝, which matches well with the true data.

The estimated model in Figure 7 demonstrates an important capability. Given only positions of an entity over time, it is possible
to find what their behavior is at a high level via FSM. In this example, all datapoints were in consensus with the model, even when
the entity made multiple turns. A higher level model, like this FSM, enables SeqSAC to identify complicated anomalous behavior.
In our future work—with FSMs and other complex models [2]—can be trained to support anomaly detection with SeqSAC.

,
which matches well with the true data.

The estimated model in Figure 7 demonstrates an
important capability. Given only positions of an entity
over time, it is possible to find what their behavior is at
a high level via FSM. In this example, all data points
were in consensus with the model, even when the entity
made multiple turns. A higher-level model, like this
FSM, enables SeqSAC to identify complicated anoma-
lous behavior. In future work—with FSMs and other
complex models2—models can be trained to support
anomaly detection with SeqSAC.

DISCUSSION AND CONCLUSION
In this article, we introduced a new behavior anom-

aly detection algorithm, SeqSAC, which is based on the
RANSAC2 paradigm. SeqSAC is designed to estimate a
vector of inliers, w (and outliers w) in data, X, given a
model fθn

 and model estimator gn. With this sequential

5,000
4,800
4,600

Up

0
1,000

2,000
North

East8,000

7,000

6,000

5,000

(a) (b)

North

East

10,000
5,000

0

–3
–2
–1
0
1

–10 –2 –3
×104

×104

Up

Figure 6.  Segmented behaviors using recursive SeqSAC in Eq. 7. All colored data points are behav-
iors classified by recursive SeqSAC. (a) Segmentation from flight simulation with four distinct
behavior changes. (b) Segmentation from simulated takeoff and landing data from NASA.4

(a) (b)
32.0˚

31.8˚

31.6˚

31.4˚

31.2˚

31.0˚

La
t

La
t

La
t

–118.4˚
–118.6˚
–118.6˚

–119.0˚

31.6˚
31.5˚
31.4˚
31.3˚
31.2˚–119.5˚ –119˚ –118.5˚ –118˚ –117.5˚

Track history
Estimate
Min/max range estimates

True
Estimate

0 100 200 300 400 500 600
Lat

True
Estimate

t (seconds)

0 100 200 300 400 500 600

Figure 7.  FSM parameter estimation with AFSIM. (a) The red line is the true entity positions. The
blue circle is the target. The black circles are the positions from the estimated FSM parameter. Black
arcs are the estimated minimum and maximum ranges. (b) Position vs. time view of the true and
estimated values.

http://www.jhuapl.edu/techdigest

K. B. Gibson

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest182

construct, anomalies due to noise or behavior changes
can be detected (Figure 3). We demonstrated in Monte
Carlo simulations (Figure 5) that SeqSAC is accurate in
classifying anomalies in data as well as in identifying the
sample time of the first anomaly. We also showed how
a complex flight trajectory can be segmented into mul-
tiple behaviors using the recursive SeqSAC algorithm
in Eq. 7.

We demonstrated SeqSAC working with a polyno-
mial behavior model, fθp

, and a dynamic model, fθd
, and

work is ongoing to extend its application to expected and
recognized flight patterns. We explored possibly extend-
ing SeqSAC to FSM modeling using AFSIM and an
entity “pursue” and “evade” behavior. We demonstrated
the ability to estimate an entity behavior, ga, given an
entity FSM model fθa

. Although we did not demonstrate
the performance of SeqSAC, the same model and esti-
mator can be used in an FSM framework to be demon-
strated in future work.

The amount of time for SeqSAC to process data and
find anomalies depends on the models it uses. To con-
struct the behavior anomaly detection with SeqSAC,
a set of models and model parameter estimators are
needed. Without recursion, SeqSAC is O(N) complex
with N samples. The complexity is higher with recursion
but is data dependent. More recursion steps are needed
if an entity changes its behavior frequently over the N
samples, and vice versa. The processing time of SeqSAC
is also dependent on the complexity of the model esti-
mators, gn. For each sample, a call to gn is made. For
example, the FSM estimation used in the previous sec-
tion required over a minute to estimate ga, whereas
the model estimator for the dynamic model, gd (see
the sections on sensitivity analysis and SeqSAC with
recursion), only required seconds to process all the data
samples—even with recursion.

The accuracy—in time—in finding anomalies by
SeqSAC depends on the time resolution in the data
samples and SeqSAC design parameters. If the samples
are separated by 5 min, then SeqSAC can only estimate
within 5 min when an anomaly occurs. The more subtle
the behavior change, the less accurate SeqSAC can be.
This can be accounted for by selecting smaller e-ball
values at the risk of increasing the false positive rate.

Recursive SeqSAC is powerful in building a chain of
simple behaviors to represent a complex behavior, but
there are limitations. We have observed that without a
properly designed exit criteria, the recursion could fall
into an infinite loop, continually leaving a few data
points as outliers. This infinite recursion is a trivial
problem to solve but must be accounted for in designing
SeqSAC.

Recursive SeqSAC enables multiple applications in
incorporating flight plans, coordinated behavior detec-
tion, and compression and decompression (CODEC) of
data. As shown in Figure 6b, we used SeqSAC to find
multiple behavior changes in a complete flight (take-
off and landing). In this example, each small turn was
treated as an anomaly, resulting in several anomalies.
Although several anomalies were detected, this chained
sequence of behaviors (from the anomalies) via recur-
sive SeqSAC is a flight plan learning mechanism. Thus,
the number of anomalies may be reduced by feeding
SeqSAC with the learned flight plan model. More gen-
erally, a flight plan can be fed into SeqSAC as a model
for identifying flight plan deviations. If the pilot devi-
ates from the flight path, whether by position or speed
or a combination, anomalies arise. Finally, incorporat-
ing the impact of wind in the models can also reduce
the number of false anomaly detections and yet iden-
tify anomalous behavior in flight patterns. Extended
application of SeqSAC to identify coordinated behavior
changes among many entities is an intriguing prospect.
The high precision and recall afforded by SeqSAC sup-
ports detection of behavior changes that occur simul-
taneously across multiple entities, potentially indicating
coordination. (Reference the 100-entity Monte Carlo
simulation depicted in Figure 4.) Additionally, with the
method of applying SeqSAC recursively to segment a
trajectory that spans several samples, SeqSAC affords
the ability to compress and decode location histories
of entities.

ACKNOWLEDGMENTS: Many thanks to Debora Arena,
Dr. Michael Hassien, Dr. Bryan Herdlick, and Justin Shoger
for the guidance, thought-provoking questions, and
reviews during the development of this article.

REFERENCES
  1V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A

survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009, https://
doi.org/10.1145/1541880.1541882.

  2V. M. Janakiraman and D. Nielsen, “Anomaly detection in aviation
data using extreme learning machines,” in Int. Joint Conf. Neural
Netw. (IJCNN), Vancouver, BC, Canada, Jul. 24–29, 2016, pp. 1993–
2000, https://doi.org/10.1109/IJCNN.2016.7727444.

  3M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography.” Commun. ACM, vol. 24, no. 6, pp. 381–395,
Jun. 1981, https://doi.org/10.1145/358669.358692.

  4"FLTz flight simulator," data set, NASA ARC, Jan. 2011, https://
c3.nasa.gov/dashlink/projects/42/.

  5J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Conver-
gence properties of the Nelder-Mead simplex method in low dimen-
sions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147, 1998, https://doi.
org/10.1137/S1052623496303470.

http://www.jhuapl.edu/techdigest
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/IJCNN.2016.7727444
https://doi.org/10.1145/358669.358692
https://c3.nasa.gov/dashlink/projects/42/
https://c3.nasa.gov/dashlink/projects/42/
https://doi.org/10.1137/S1052623496303470
https://doi.org/10.1137/S1052623496303470

Behavior Anomaly Detection

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest 183

SeqSAC Algorithm

Page 10 of 10

IX. APPENDIX

Algorithm 1 SEQSAC Algorithm

procedure 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑿𝑿𝑿𝑿, 𝑓𝑓𝑓𝑓, 𝑔𝑔𝑔𝑔, 𝜽𝜽𝜽𝜽𝑆𝑆𝑆𝑆, 𝒘𝒘𝒘𝒘0)
Input:
 𝑿𝑿𝑿𝑿: Matrix of entity track history
 𝑓𝑓𝑓𝑓(): Model function from Eq. (2)
 𝑔𝑔𝑔𝑔(): Estimator function from Eq. (4)
 𝜽𝜽𝜽𝜽𝑆𝑆𝑆𝑆 = {𝑁𝑁𝑁𝑁max,𝑁𝑁𝑁𝑁min, 𝜖𝜖𝜖𝜖ball} : SEQSAC parameters
 𝑁𝑁𝑁𝑁max: Max Iterations
 𝑁𝑁𝑁𝑁min: Minimum number of samples to use to estimate model
 𝜖𝜖𝜖𝜖ball : Max distance sample must be from model estimate to be classified as an inlier

Output:
 𝐰𝐰𝐰𝐰: Weight vector for 𝑿𝑿𝑿𝑿 classified as inliers
 𝜽𝜽𝜽𝜽�: Model parameter estimate

idx ← 0 # Current sample index
𝐾𝐾𝐾𝐾 ← 0 # Number of samples in consensus
𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢 ← {𝟎𝟎𝟎𝟎} # Vector of sample indexes classified as inliers,
 # initialized as Null set
𝒕𝒕𝒕𝒕 ← 𝑿𝑿𝑿𝑿 # Extract all time stamps from entity history
𝒙𝒙𝒙𝒙 ← 𝑿𝑿𝑿𝑿 # Extract all positions from entity history
while 𝑘𝑘𝑘𝑘 < 𝑁𝑁𝑁𝑁max do
 # Extract 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 sub-samples
 𝒕𝒕𝒕𝒕𝑘𝑘𝑘𝑘, 𝒙𝒙𝒙𝒙𝑘𝑘𝑘𝑘  𝑿𝑿𝑿𝑿(idx ∶ idx + 𝑁𝑁𝑁𝑁min)
 𝜽𝜽𝜽𝜽𝑘𝑘𝑘𝑘,𝑓𝑓𝑓𝑓 ← 𝑔𝑔𝑔𝑔(𝒙𝒙𝒙𝒙𝒌𝒌𝒌𝒌) # Estimate with 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 sub-samples
 # Use all timestamps from input for predictions
 𝒙𝒙𝒙𝒙p  𝑓𝑓𝑓𝑓(𝒕𝒕𝒕𝒕, 𝜽𝜽𝜽𝜽𝑘𝑘𝑘𝑘,𝑓𝑓𝑓𝑓)
 # Distance between i-th predicted and input samples
 𝒅𝒅𝒅𝒅: 𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚 ← �𝒙𝒙𝒙𝒙𝑚𝑚𝑚𝑚 − 𝒙𝒙𝒙𝒙p,𝑚𝑚𝑚𝑚�2

2 ∀ 𝑖𝑖𝑖𝑖 ∈ 0 …𝑁𝑁𝑁𝑁
 # Classify all samples within 𝜖𝜖𝜖𝜖𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 as the inlier set
 𝐣𝐣𝐣𝐣 ← 𝑖𝑖𝑖𝑖 ∀ 𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚 < 𝜖𝜖𝜖𝜖ball
 # Consensus measure
 Ω𝐣𝐣𝐣𝐣 ← (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝑜𝑜𝑜𝑜𝑓𝑓𝑓𝑓 𝐣𝐣𝐣𝐣 𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣)
 if Ω𝐣𝐣𝐣𝐣 < 𝐾𝐾𝐾𝐾 # If we have a better consensus
 𝐾𝐾𝐾𝐾 ← Ω𝐣𝐣𝐣𝐣
 # Update behavior estimate using only inlier data
 𝜃𝜃𝜃𝜃𝑓𝑓𝑓𝑓� ← 𝑔𝑔𝑔𝑔(𝑿𝑿𝑿𝑿(𝒋𝒋𝒋𝒋))
 𝐰𝐰𝐰𝐰 ← 𝐣𝐣𝐣𝐣
 end if
 # Move the sample index in time
 idx ← idx + round �𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛

2
� # 50% overlap over samples

end while

return 𝐰𝐰𝐰𝐰, 𝜃𝜃𝜃𝜃�𝑓𝑓𝑓𝑓

end procedure

Kristofor B. Gibson, Force Projection
Sector, Johns Hopkins University Applied
Physics Laboratory, Laurel, MD

Kristofor B. Gibson supervises APL’s System
Concept Development Section and is the
technical lead for the Tactical Decision
Aid (TDA) project. He earned a BSEE from
Purdue University and an MSEE and PhD

with a focus on signal and image processing from the Univer-
sity of California San Diego. Dr. Gibson leads a team develop-
ing concepts, algorithms, and software to support the Navy in
building decision aids for warfighters to help them better employ
the expanding set of complex capabilities and systems at their

disposal. He previously worked as a principal investigator for
research and development applications in support of maritime
domain awareness at Naval Information Warfare Center Pacific
for 15 years. His current research interests are in signal and
image processing, computer vision, atmospheric propagation,
decision-making, machine learning, and artificial intelligence.
He developed SeqSAC and Recursive SeqSAC in support of
the TDA project at APL. He is a recipient of the 2010 AFCEA
International & US Naval Institute Copernicus Award and the
United States Intelligence Community National Intelligence
Meritorious Unit Citation (2012), holds three patents, and has
authored over 20 publications. His email address is kristofor.
gibson@jhuapl.edu.

http://www.jhuapl.edu/techdigest
mailto:kristofor.gibson@jhuapl.edu
mailto:kristofor.gibson@jhuapl.edu

	Behavior Anomaly Detection
	Kristofor B. Gibson

	ABSTRACT
	INTRODUCTION
	PROPOSED METHOD
	Introduction of Terms
	SeqSAC Algorithm
	SeqSAC with Polynomial Trajectory Example

	SENSITIVITY ANALYSIS WITH DYNAMIC MODEL
	SeqSAC WITH RECURSION
	HIGHER-ORDER MODELING WITH FINITE-STATE MACHINES
	DISCUSSION AND CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	Author Bio
	Figures
	Figure 1. Example of two-dimensional data samples that are inliers and outliers (anomalies).
	Figure 2. SeqSAC fundamental algorithm overview.
	Figure 3. Demonstration of SeqSAC.
	Figure 4. Overlay of all 100 trajectories used for the Monte Carlo simulations.
	Figure 5. Results from Monte Carlo simulations.
	Figure 6. Segmented behaviors using recursive SeqSAC in Eq. 7.
	Figure 7. FSM parameter estimation with AFSIM.

	SeqSAC Algorithm

