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ABSTRACT
The ability to detect dark ships at open-ocean scale requires enhanced space-based intelligence, 
surveillance, and reconnaissance capabilities. With the boom of commercial space-based sens-
ing, the nation needs an automated process to meet the growing volume and velocity of data. 
Multimodal data from the variety of existing and proposed space-based sensor networks can be 
aggregated and fused to produce target-quality tracks on ships. These sensor modalities include 
synthetic aperture radar (SAR), electro-optical/infrared (EO/IR), and Automatic Identification 
System (AIS). In this article, we demonstrate the work of a Johns Hopkins University Applied Phys-
ics Laboratory (APL) team to automate recognition of target surface vessels from these modalities 
on a next-generation spaceflight processor to simulate on-orbit detection. These detections can 
be fused to form quality tracks that can then be used to detect dark ship anomalies via pattern-of-
life analysis. Tracks formed over a continental or global scale motivate the need for further auto-
mated analysis since a significant amount of human effort would be needed to analyze thou-
sands or tens of thousands of tracks in detail and in real time. To address this challenge, the APL 
team developed a suite of pattern-of-life tools that extract features from tracks and flag tracks 
that deviate too far from some learned definition of normality.

national security challenge is finding ways to quickly 
and reliably locate and identify these ships anywhere in 
the world. The Automatic Identification System (AIS), a 
radio frequency (RF) system for identifying and locating 

INTRODUCTION
Dark Ships

Crews on vessels engaging in illicit activity, such 
as selling oil to regimes in violation of international 
sanctions,1 smuggling drugs and arms,2 and fishing ille-
gally,3 routinely attempt to evade detection. A critical 

A similar article appears in the proceedings of the Military Sensing Symposia Joint (Battlespace Acoustic, Seismic, Magnetic, and Electric-Field Sens-
ing and Signatures Committee [BAMS] and National Symposium on Sensor and Data Fusion [NSSDF]) Conference, December 13–16, 2021.
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maritime vessels, relies on ships being fitted with trans-
ceivers and broadcasting information such as their iden-
tity, position, course, and speed. These messages can be 
received by other vessels, as well as by coastal AIS base 
stations and on satellites. International law requires all 
voyaging ships over 300 gross tons to participate in this 
system.4 Yet, crews attempting to hide their ships’ identi-
ties or locations can spoof the information of other ves-
sels or simply turn off their ships’ transponders. Further, 
any vessel under 300 gross tons is not required to par-
ticipate in AIS, giving rise to the possibility of nefarious 
actors leveraging smaller craft for their activities while 
appearing benign. In addition to ships going dark in 
terms of AIS transmissions, they could go radio silent by 
turning off other sources of RF emission through emis-
sion control. Military vessels, for instance, engage in 
this activity by switching to commercial radar or previ-
ously unseen war reserve waveforms to hide from sensors 
monitoring military waveforms. Therefore, for this arti-
cle, we expand our definition of dark ships from those 
that are simply AIS dark to all ships attempting to evade 
detection or engage in nefarious activity. Furthermore, 
the nation needs to develop a capability to generate 
target-quality data on ships of interest by establishing 
and maintaining accurate tracks and ship identification.

There are a number of constraints to locating and 
identifying dark ships and developing quality track-
ing data on them. First, generating targeting solutions 
and enabling interdiction requires that location data 
with sufficient precision and confidence be processed, 
exploited, and disseminated rapidly. Second, targeting 
these ships anywhere in the world requires global cover-
age. Third, detecting nefarious vessels, whether trans-
mitting AIS or not, requires that automated processing 
be enhanced so that it can “see through” the evasion 
and identify the true high-value bad actors, the “needles 
in the needle stack.” Finally, it must be easy for vari-
ous stakeholders to field the solution. These stakehold-
ers include analysts and operators tracking vessels in the 
field, commanders planning missions at headquarters, 
and captains navigating vessels against adversaries in 
the open oceans.

Existing Capabilities
A number of commercial and nonprofit organiza-

tions are attempting to solve the dark ship problem. For 
instance, Global Fishing Watch5 is a partnership among 
Google, Oceana, and SkyTruth to offer an unprece-
dented global view of commercial fishing activities. The 
goal is to reduce illegal and harmful activities, such as 
overfishing and habitat destruction, by increasing trans-
parency on fishing activity through an online map of 
fishing vessel tracks from January 2012 through 3 days 
before the time the map is viewed. The system uses 
satellite-based optical, synthetic aperture radar (SAR), 

and Visible Infrared Imaging Radiometer Suite (VIIRS) 
sensors to supplement AIS and detect dark fishing fleets. 
While this solution provides global coverage through an 
easy-to-use interface, shedding light on illegal fishing 
activity in aggregate, it does not solve the problem of 
enabling real-time targeting of dark ships. Its interface 
also provides only the locations and tracks of all vessels 
and does not flag any activity as being illegal or a ship 
as being dark, leaving it up to a human analyst to derive 
these conclusions.

Another solution is HawkEye  360’s6 approach of 
instrumenting satellites with RF sensors to monitor 
widely used communications channels that can give 
away the position of ships that have turned off, or do not 
have, AIS transponders. ICEYE7 and Spire8 extend this 
approach by augmenting the satellite-based radios with 
SAR to detect ships engaging in emission control activ-
ity, enabling detection of a ship that goes dark in the RF 
spectrum but is still visible to SAR. Planet,9 in a similar 
approach, provides a data feed for vessel detection that 
locates ships seen from their satellite optical imagery, 
regardless of their AIS broadcasting status. Again, these 
systems work well to locate vessels that are not broad-
casting AIS, but they fail to adequately sift through the 
trove of vessel detections to identify bad actors. In par-
ticular, Planet’s vessel detection feed identifies that users 
can “monitor [ships’] patterns of life and anomalies,” but 
the company does not claim to have developed a capa-
bility to analyze the patterns and anomalies.

Neptune System
Similar to the approaches of Global Fishing Watch,5 

Spire,8 ICEYE,7 and Planet,9 our approach, Neptune, 
attempts to detect dark ships through multimodal sensor 
fusion. However, whereas these other approaches focus 
on a subset of modalities that a determined adversary 
could attempt to evade, we are building a platform 
through which all available sensor modalities, including 
optical, SAR, and electronic intelligence, can be fused, 
making it harder for a dark ship to evade. Additionally, 
we developed a pattern-of-life (PoL) system to prioritize 
anomalous vessel behavior, drawing attention to high-
value dark targets sooner. Finally, to optimize the qual-
ity of sensor fusion, Neptune directs sensor resources to 
the highest-priority ships using a game theory assign-
ment algorithm. Figure  1 describes this closed loop 
activity facilitated by the Closed-Loop Collaborative 
Intelligence, Surveillance, and Reconnaissance Simula-
tion (CLCSim) scenario simulator, which includes the 
track fusion engine. CLCSim is a software package that 
creates high fidelity representations of sensor–target 
interactions and enables the integration of sensor plan-
ning as part of the closed-loop collaborative situational 
awareness process. The track information generated 
in CLCSim is passed to our PoL system to generate 
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relevancy scores for each track; these relevancy scores 
rank the tracks as more (or less) anomalous (described in 
detail in the section on PoL) and bring operator atten-
tion to more anomalous vessels faster. These relevancy 
scores are then leveraged by a game-theoretic planner 
(described in detail in the Sensor Fusion section) to 
optimally perform sensor-to-target assignment.

A main enabler of the Neptune system is the idea 
that low size, weight, and power (SWaP) processors 
with greater computational throughput, such as the 
NVIDIA Jetson TX2i, will be flown in space, opening 
up the possibility of pushing advanced processing to the 
spacecraft. Capella Space,10 a commercial space-based 
SAR company, has already demonstrated spaceflight of 
a Jetson processor in space,11 and several research uni-
versities12,13 have near-term plans of their own to fly 
Jetson boards. As more commercial space companies 
begin flying spacecraft with commercial off-the-shelf 
accelerators, and processor manufacturers (NVIDIA, 
Xilinx, etc.) continue to improve processing capability, 
we can fly more sophisticated algorithms, allowing us to 
push our detection capabilities to the sensing edge. This 
advancement allows for reduced exploitation time and 
enhanced onboard decision-making.

With the capability to detect vessels onboard a 
spacecraft, we can then investigate tipping and cueing 
between satellites to ensure that track custody of ships 
of interest is maintained, even when satellites go out of 
theater. This conjunction of onboard target recognition 
with sensor fusion and planning will allow the Neptune 
system to more rapidly locate vessels and maintain cus-
tody of them. We rely on the multiple-hypothesis tracker 

(MHT) capability of the CLCSim test bed14 to manage 
pseudo-tracks of vessels between sensor detections.

Neptune goes a step beyond current solutions by 
attempting to automate analysis and identify nefarious 
dark ships based on their behavior. Whereas existing 
projects rely on machine learning algorithms that have 
been hand-tuned by teams of analysts to identify certain 
dark ship behavior, such as Chinese fishing fleets ille-
gally fishing in North Korea’s exclusive economic zone, 
we are attempting to train algorithms that can discrimi-
nate anomalous activity without any predetermined pat-
terns. This more automated solution will be useful to a 
number of sponsors. Our approach for behavior-based 
dark ship detection relies on the development of algo-
rithms to identify PoL capturing normal vessel behav-
ior in regions across the world. From this background of 
normal behavior, anomaly detectors can flag abnormal 
behavior for further scrutiny by an end user. Since Nep-
tune will provide only a subset of data in an easy-to-use 
interface, end users can interact with the system with-
out the overwhelming experience they might have when 
using interfaces that present all available data.

Remainder of Article
The remainder of this article is organized as follows: 

First we further develop the motivation and algorithms 
Neptune uses for onboard target recognition. Then we 
describe the sensor and data fusion work and provide an 
example demonstration description. Next we cover the 
PoL analysis for prioritizing dark ship behavior and pro-
viding contextual information to a human operator. We 
conclude with a summary and path to future adoption.

ON-ORBIT AUTOMATIC VESSEL DETECTION
Space-Based Observation

Earth-orbiting missions are increasingly designed 
around large-scale constellations of small satellites with 
greater heterogeneous sensor capability, data volume, 
and complexity of joint operations. In parallel, sensors 
continue to be constructed to consume less SWaP while 
generating larger volumes of multifaceted data, and the 
cost to orbit has decreased drastically with the advent of 
the commercial space revolution.15 Furthermore, band-
width limitations and ground station contact schedules 
often restrict analysis until several hours after an obser-
vation has occurred, driving a need for smarter on-orbit 
processing in the hunt for dark ships.

An increase in the number of data sources (e.g., via 
commercial space) also leads to a large influx of data, 
most of which will be on empty ocean. Moving auto-
mated detection to the tactical edge (e.g., onboard the 
spacecraft) enables autonomous processing of mul-
tiple data streams and decreases needed bandwidth. 
Such processing can aid in the faster exploitation and 
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Figure 1.  Overall view of the Neptune system. Onboard vessel 
detections are ingested and fused within the CLCSim test bed, 
which in turn passes state information to the PoL component for 
vessel analysis and track prioritization. This prioritization is used 
by our game theory planner to coordinate and assign sensor 
coverage.
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dissemination of time-critical information needed to 
execute real-time targeting. We envision a paradigm 
where the spacecraft “tells” when it sees something of 
interest, as shown in Figure 2.

Deep Learning–Based Detection
Deep learning has been demonstrated to address 

the image detection and classification problem.16,17 In 
particular, there has been much interest in applying 
deep learning to detecting surface ships.18 Wang et al.19 
collated a data set of calibrated SAR images from two 
space platforms (Sentinel and Gaofen) and annotated 
the data with bounding boxes around surface vessels. 
This data set consists of images from multiple operating 
modes and resolutions, includes coastal and open-ocean 
regions, and contains scenes with single and multiple 
vessels. Wang et al. also demonstrated the capabilities of 
several deep learning detectors, achieving state-of-the-
art performance (mean-average precision, or mAP) as 
compared to alternative techniques (e.g., constant false-
alarm rate). While their goal was to consider the detec-
tion accuracy of these models, the question still remains 
as to the timeliness of processing and exploitation.

To address the opera-
tional challenges of push-
ing detection models to the 
edge, namely low-SWaP con-
straints and limited process-
ing resources (as compared to 
ground-based processing), we 
must consider the trade-off of 
detection accuracy with infer-
ence time. That is, if a model 
performs well in detecting all 
vessels in an observation but 
fails to generate these detec-
tions in a timely manner, 
those detections may no 
longer be informative. Like-
wise, if a model can generate 
detections instantaneously 
but fails to identify most ves-
sels in an observation, there 
may be too many missed tar-
gets for operational relevance.

To address this trade-
off, we consider the ResNet 
family20 of convolutional 
neural networks. This family 
has been shown to perform 
well in image processing 
tasks20 and includes a vari-
ety of models with increas-
ing depth. Deeper models in 
the family (e.g., ResNet101) 

achieve greater accuracy than shallower models (e.g., 
ResNet34) at the trade-off of inference time; deeper 
models take longer to execute. By using the ResNet 
family, we can evaluate several models of varying depth, 
but identical architecture, on our target hardware. With 
these ResNet models as our feature extraction back-
bone, we then consider the RetinaNet detector,17 a 
state-of-the-art deep learning detector. The RetinaNet 
detector is both fast and accurate at identifying and 
localizing objects of interest in input images, giving us 
the best of both worlds: fast detection speed and accu-
rate detections.

Training Details and Experimental Results
We evaluated the ResNet18, ResNet34, and 

ResNet50 models on an Ubuntu 18.04 machine with a 
4 GB NVIDIA GTX 970 for training and an NVIDIA 
Jetson Nano and Xavier for inference benchmarking. 
We trained a PyTorch implementation21 of RetinaNet 
on the Wang et al. data set (as described by Wang et 
al.19) with a batch size of eight, using each of the ResNet 
backbones. The results of this training are shown in 
Table 1.

Sensor

Spacecraft

Envisioned paradigm

Detector C&DH

Sensor

Spacecraft

Current paradigm

C&DH

Raw data Detections Packets

Raw data Packets

Figure 2.  High-level downlink data flow. In a traditional system (top), observations are captured 
via an onboard sensor that typically passes raw data to the spacecraft command and data han-
dling (C&DH) system. The C&DH system formats these measurements into packets for downlink-
ing to the ground. With the envisioned onboard detection (bottom), these raw measurements 
would instead first pass through the detector to generate detections, and those detections 
would be passed to the C&DH system for packaging and transmission. Such detections can then 
be passed to other spacecraft or sensors to aid the facilitation of tipping and cueing.
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All three models achieve comparable validation 
mAP scores, with the deeper ResNet50 model scoring 
the best of the three. However, all three models do fall 
short of the reported mAP score for the RetinaNet-
VGG16 model evaluated by Wang et al.19 While these 
models underperform the VGG16-based model in terms 
of detection capability, we must also consider the infer-
ence time (i.e., the time needed to execute these models 
on representative low-SWaP processors). In the third 
and fourth columns of Table 1, we report the image area 
each model is capable of processing on the Jetson Nano 
and Jetson Xavier boards, respectively; to account for 
differences in image sample distance and swatch size, we 
normalize to square pixel area. It is clear that the ResNet 
family base of models significantly outperforms the 
VGG16-based models, with the ResNet18-based detec-
tor capable of processing nearly nine times the area per 
second of the VGG16 model. For context, a representa-
tive Capella SAR spotlight image covers 5 km by 5 km 
with a resolution of 0.5 m, resulting in an image with 
10,000 by 10,000 pixels. From our analysis, the VGG16 
model would require 5.3 s to process a single image on a 
Jetson Xavier, while the ResNet18 model would require 
only 0.64 s and the ResNet50 model only 1.35 s.

SENSOR FUSION
Detection of dark ships faces two challenges: (1) per-

sistent localization and (2)  identification of anomalous 
behavior. To obtain the best chances of persistently 
localizing a dark ship, track custody must be main-
tained on all detected ships, whether AIS broadcast-
ing or not based on sensor modalities that do not rely 
on such broadcasting, like an imaging sensor. For dark 
ships, the best way to localize is to persistently main-
tain track custody on such ships from the time that they 
are either in close proximity to a broadcasting ship (and 
thus detected via an imaging sensor) or gave their final 
AIS broadcast. Fusion of different sensor modalities 
has long been exploited, particularly to produce quality 
tracks of maritime vessels. These sensor modalities may 
include SAR, electro-optical/infrared (EO/IR), and AIS 

and TDOA (time difference 
of arrival). For Neptune, EO/
IR and SAR imaging modali-
ties bring high-resolution 
and all-weather ship imaging 
capabilities to bear for the 
dark ship detection problem. 
Here, we fuse multisensor 
data over time to establish 
track histories and maintain 
track custodies of a large 
number of maritime vessels, 
particularly those that have 
gone dark. To fuse data from 

these modalities, we leverage CLCSim as a high-fidelity 
scenario simulation test bed on which the Neptune dark 
ship detection and tracking system is being developed.

CLCSim is a C++ software simulation platform for 
developing, testing, and analyzing closed-loop collab-
orative ISR, sensor data fusion, estimation, control, and 
optimization algorithms across maritime, sea, air and 
space domains. Embedded within CLCSim is the Pre-
cision Engagement of Moving Targets (PEMT) tracker, 
which oversees the filtering and MHT processes that 
manage track states. PEMT is an unclassified flexible 
MHT software package that is capable of handling 
measurements from multiple sources and source con-
figurations. For more information on CLCSim, refer to 
Newman and DeSena.14

CLCSim provides representations of sensors, targets, 
and the track fusion engine as well as facilities for sensor 
resource management. The sensor resource management 
facility of CLCSim enables us to plug in an arbitrary 
sensor planner that meets specific needs. Here, CLCSim 
passes track data to Neptune’s PoL module for anomaly 
detection of dark ships, then we integrate a game theo-
retic framework to establish tipping and cueing between 
satellite sensors based on the designation of suspected 
ships, which will allow for enhanced situational aware-
ness of dark ships. We will also be using the existing tip-
ping and cueing algorithms that are built into CLCSim, 
in particular a greedy algorithm (see the Sensor Resource 
Management in CLCSim section below).

Table 1.  Vessel detection mAP and inference time

Inference Time

Model mAPa Jetson Nano (pixel2/s)b Jetson Xavier (pixel2/s)b

RetinaNet-ResNet18 0.778 3,620 12,541

RetinaNet-ResNet34 0.803 2,560 8,868

RetinaNet-ResNet50 0.807 2,486 8,613

RetinaNet-VGG16c 0.914 1,252 4,337
a See Zhu.22

b See the NVIDIA site (https://developer.nvidia.com/embedded/downloads) for specs.
c From Wang et al.19

Table 2.  Demo input parameters

Field Value

Update rate 1 Hz

Orientation Yaw = 0, pitch = –90, roll = 0

Field of regard (FOR) angle 130°

Probability of detection (PD ) 0.999

False-alarm rate (Pfa ) 1e-8 per unit of detection 
volume (m3)

Angular resolution 0.00014°
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We have demonstrated the Neptune sensor planning 
strategy in a CLCSim simulation. Our input to CLCSim 
comprised 57 modified AIS ship trajectories in the South 
China Sea. These ship targets were then tracked by EO/
IR satellite sensors whose parameters were modeled after 
typical commercial satellite specifications (Table 2) from 
companies such as Planet or Capella. These parameters 
dictate the nature of the measurements processed by the 
tracker and influence track quality.

The output of our demonstration was then target-
quality tracks on these ship targets. The track informa-
tion required for the relevant dark ship analysis is shown 
in Table 3.

Following is a more detailed description of our dem-
onstration. We assessed the baseline performance of 
track initialization, maintenance of track custody, and 
track volume for a constellation mimicking that of 
Capella, so that hypothetical performance could be 
assessed with high fidelity. Using CLCSim, we tracked 
57 ships on the South China Sea using a constellation of 
36 satellite sensor platforms spanning 3 low Earth orbit 
orbits of 12 satellites each. Ship measurements feeding 
the simulation came from available reported AIS data. 
One of the primary goals of the simulation was to deter-
mine whether the CLCSim + PEMT (collectively called 
CLCISR) software tools could maintain track custody 
among ships that come into close encounters with each 
other, as may happen with suspicious activity. The sensor 
platforms used an AngleSensorModel measurement type 
where the measurement state was composed of only two 
values, a horizontal angle and a vertical angle. The scan 
update rate was set to 1 Hz to represent a hypothetical 
EO/IR sensor, and all ships within the sensor’s FOR were 
accepted into the detection gate for purposes of assess-
ing tracker performance and generating track histories 
for PoL algorithm development. In the next simulation 

update, we will assert a more realistic, narrow field of 
view (FOV) for detection gating paired with the PoL and 
game theory modules providing sensor planning (aim-
point scheduling) functionality.

We recorded a demo video of the tracker’s perfor-
mance via SIMDIS, a simulation display tool set.23 This 
video illustrated successful maintenance of track cus-
tody between two ships that came into a close encoun-
ter, slowed to a possible stop, then departed from one 
another in a possible example of suspicious activity. 
The video collage (see Figure  3) consists of a macro 
view of the overall South China Sea (Figure 3a), which 

Table 3. Demo output parameters

Field Description

Name Full ship name (i.e., Ship_1)

LineageID The trackers name for a TrackID

Time Timestamp in seconds

PositionX ECEF (Earth Centered Earth-Fixed) 
X coordinate

PositionY ECEF Y coordinate

PositionZ ECEF Z coordinate

PositionLAT Latitude in degrees

PositionLON Longitude in degrees

PositionALT Altitude in meters

Course Degrees of heading from north

VelocityMAG Magnitude of velocity

(a)

(b)

(c)

Figure 3. Year 1 demo video screenshots. (a)  Tracks 55 and 56 
begin to converge paths. (b)  Tracks 55 and 56 nearly converge 
and slow to a crawl less than 50  m apart. (c)  Tracks 55 and 56 
diverge and separate, with track 55 continuing west and track 56 
turning around and proceeding in the opposite direction.

http://www.jhuapl.edu/techdigest


A. B. Byerly et al.

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest88

enables the visualization of 
the sensor FOV as it sweeps 
across the scene and its rela-
tion to the location of tracks 
on the surface. It also shows a 
close-up view of a ship bound 
to track  56 (Figure  3b) and 
a static, slightly zoomed-out 
view of the local scene where 
the ships bound to tracks 56 
and 55 interact (Figure  3c). 
The green ellipsoids represent 
the track estimates, centered 
on the track position and 
sized by the semimajor/minor 
axes of the covariance ellip-
soid. The white traces rep-
resent the history of track estimates (where the tracks 
have been) and make it easier to see how separate track 
paths relate to each other.

Initially, track  56 comes in from the east, while 
track 55 enters from the south. They cross paths at one 
point, after which sensor coverage briefly drops. Upon 
the arrival of the next sensor pass, the tracks reassociate 
correctly and continue updating. The tracks slowly con-
verge as they decrease in speed until they seem to stop 
completely at a spacing that is barely discernible (less 
than 50 m; see Figure 3b). After this stop (for approxi-
mately 1 or 2 min), they proceed away from each other 
with 56 continuing west and 55 changing course to the 
south/southeast, potentially returning to its original 
location (see Figure 3c).

This demo shows that the PEMT tracker is capable of 
maintaining track custody on targets that interact very 
closely and with tracks that converge in state values. 
If the sensors were previously cued onto these ships, 
the tracker would have no problem maintaining them 
even if they were to go dark. The horizontal and verti-
cal angle measurement uncertainties were set to 50 m, 
which may or may not be enough to account for uncer-
tainty in sensor orientation and position. We are cur-
rently exploring uncertainties that result from ownship 
errors and image resolution. Incorporating these errors 
would enable the simulation to more closely estimate the 
performance of dark ship detection and tracking of dark 
ships using spaceborne sensors/platforms.

Sensor Resource Management in CLCSim
CLCISR performs sensor resource management 

(SRM) functions within the ESRM (extensible SRM) 
module, which is built as a dependency to CLCSim. 
SRM pertains to the task of managing sensor resources 
such that the quality of sensor measurements is maxi-
mized, especially when the number of target clusters to 
monitor exceeds the number of sensor resources avail-
able. The interface between CLCSim and ESRM is 

well characterized; thus, the integration of the Neptune 
sensor planner module is straightforward. The interface 
provides the following information to a sensor planner 
module, as shown in Figure 4:

•	 Track information (kinematic states [position, veloc-
ity], classification, covariance, score, probability)

•	 Platform information (kinematic states, orientation)

•	 Sensor information (orientation, FOV, FOR, mea-
surement uncertainty, PD , Pfa )

•	 Sensor planner configuration (cost function thresh-
old, event horizon period, sensor update period)

Track, platform, and sensor information is needed to 
provide the sensor planner with situational awareness 
required to calculate a cost function that it can optimize 
against (i.e., to find the “best” pairing between sensors 
and tracks given constraints). Cost functions are deter-
mined based on the objectives of the planner. Often, it 
is preferable to have a planning model that minimizes 
the global uncertainty of track states, in which case it 
would be beneficial to cue sensors to tracks of highest 
state uncertainty. In other cases, it would be prefer-
able to invest sensor resources in more crowded target 
regions with lower track hypothesis scores (less certain 
track custody). Sensor planners are configurable by the 
user from the CLCSim scenario configuration. Once the 
sensor plan is made, it is packaged as a sensor schedule 
containing tipping updates/instructions for the sensors.

A potential scenario that would leverage SRM would 
simulate AIS measurements from a new sensor model 
that mimics AIS positional data from a maritime vessel. 
CLCSim’s sensor models have parameters to toggle vis-
ibility of a platform (ship) that we could leverage to sim-
ulate a ship going dark. This visibility parameter would 
turn on for the EO/IR/SAR platforms once they go dark, 
which would require the sensor planner to cue the FOV 

PEMT

Tracker con�guration

Track states

Planner con�guration

Sensor states

Platform states

Sensor schedule

Neptune

Sensor
planner

Con�g-
uration
script

Scans (reports, measurements)

Multiple-
hypothesis

data
association/

multiple- 
hypothesis

tracker

Operator
control/
display

SAR sensor
processor/
platform
manager

Figure 4.  Data flow for Neptune SRM. The SAR sensor processor feeds the multiple-hypothesis 
tracker (MHT) with scans containing ship reports/measurements. The Neptune sensor planner 
collects track states from the tracker and sensor/platform states from the SAR sensor platform. 
The Neptune sensor planner then sends a sensor schedule to the sensor platform, instructing it 
where to aim next.
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to the locations of the dark ship’s (fading) track to main-
tain custody.

The concept of tipping and cueing in the context of 
our problem refers to sharing track information about 
a particular target or set of targets among several sen-
sors and then determining a coordinated sensor schedul-
ing action on that target or set of targets. The Neptune 
sensor planner accepts track data and relevancy scores 
from CLCSim and PoL (as shown in Figure 1) and uses 
those data with a game theory algorithm to allow for 
coordination between satellite sensors.

Sensor Coordination
While the PoL algorithms provide a way to judge 

the value of a target, there remains a need to coordi-
nate Neptune’s collection of sensor platforms. Effective 
coordination and cooperation among the platforms (and 
even between sensors on a platform) can take advan-
tage of the information being generated by Neptune’s 
PoL component. Furthermore, if the coordination can 
be orchestrated in a decentralized manner, the reliance 
on a central planner is relieved, resulting in a network of 
sensors that is not rendered useless by the failure of that 
single, critically important sensor platform. Numerous 
coordination strategies are described in the multiagent/
multirobot literature. Game theory is an established 
framework for such strategic coordination.23 This type of 
coordination is different from the usual kinematic coor-
dination, such as formation control, which is prevalent 
in the multiagent community. A typical game consists of 
a set of players, a set of actions each player can take, and 
individual utilities. The players (or agents) in Neptune 
are the individual satellites in the constellation. Similar 
to a typical satellite, each player is assumed to have lim-
ited communication, information, and implementation 
requirements. A global objective is identified from the 
system-planner point of view. Players are rational agents, 
interested only in maximizing their own individual 
utilities. Despite that players behave in a self-interested 
manner, game theory provides useful convergence guar-
antees. Before we can delve into that, we need to briefly 
work through some notations.

There are quite a few convergence concepts in game 
theory, but the most well known is the Nash equilibrium. 
Agents in a Nash equilibrium are in a configuration 
such that there is “no unilateral incentive to deviate.”24 
In other words, an action profile is a Nash equilibrium; if 
asked one by one, no agent would be better off by chang-
ing its action, given what everyone else is doing. This 
feature, of agents agreeing to an arrangement of actions, 
is desirable considering the type of multiagent system 
being proposed to tackle the problem of dark ship detec-
tion: autonomous and consisting of selfish agents acting 
in a decentralized manner.

This equilibrium may or may not be optimal—that 
depends on how we design the individual utilities. There 
is a notion of “alignment” between the global objec-
tive and individual utilities, and Arslan, Marden, and 
Shamma24 detail how to pick individual utilities to 
maximize a global objective. They describe the impor-
tance of individual utilities by using a simple example 
of two autonomous vehicles trying to assign two targets 
between themselves. There is a high-value target (value 
of 10) and a low-value target (value of 2). The players 
(player set P = {V1,V2}) choose a target to engage, which 
signifies their action. The agents can also choose to do 
nothing (T0 in Figure  5). The matrix form shown in 
Figure 5 allows for a simple representation when a game 
consists of two players and there is a finite set of actions. 
For the game on the left, the payoffs to each agent are 
split evenly when they both engage the same target. This 
utility model is referred to as the equally shared utility. 
For the game on the right, individual agents are imple-
menting the wonderful life utility model. In the won-
derful life utility, the payoff to a player is the marginal 
contribution of that player’s engagement with a target. 
Arslan, Marden, and Shamma24 detail how the choice 
of individual utility functions affects the multiagent sys-
tem’s ability to maximize a global objective. For the game 
on the left in Figure  5, when both vehicles choose to 
engage the high-value target, we are in the (TH, TH) cell 
of the matrix and the payoffs to each player is 5 (the first 
number in the cell goes to the first vehicle, the second 
number to the other vehicle). The circles indicate the 
“best response” of a given player. For example, the best 
thing for V1 to do when V2 does nothing is to engage the 
high-value target. Hence the 10 in (10, 0) is circled. The 
Nash equilibrium for this game is both players engaging 
the high-value target, which yields a value of 5 for each 
player and a combined value of 10, if we consider the 
global objective to be the sum of the target values cov-
ered. The tweak from the equally shared utility model to 

0, 0

V2

T0 TL TH

V1

T0

TL

TH

0, 2 0, 10

2, 0 1, 1 2, 10

10, 0 10, 2 5, 5

0, 0

V2

T0 TL TH

V1

T0

TL

TH

0, 2 0, 10

2, 0 0, 0 2, 10

10, 0 10, 2 0, 0

Figure 5.  Two uncrewed vehicles, V1 and V2, are playing a game. 
Each vehicle can select an action from the set {T0,TL,TH}.TL refers 
to a vehicle choosing to engage the low-value target; TH refers 
to the high-value target; and T0 refers to neither. The game on 
the left uses the equally shared utility versus the one on the 
right, which uses the wonderful life utility. The Nash equilibria for 
the game on the right also maximize the global objective. This 
example was presented by Arslan, Marden, and Shamma,24 and 
tying back to the problem of dark ship detection, a vehicle can be 
thought of as a stand-in for a sensor platform.
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the wonderful life utility model leads to two Nash equi-
libria, both maximizing the global objective.

The remaining piece to design for Neptune is the way 
in which players choose actions. So far, we have rea-
soned through what a Nash equilibrium is, but how do 
we arrive there? It turns out, for a certain class of games 
known as potential games,24 an agent can use negotia-
tion mechanisms (also known as learning algorithms 
in the game-theoretic literature) to pick its actions. In 
a potential game, an improvement in any agent’s indi-
vidual utility that takes place from the agent’s chang-
ing its action corresponds to an equal improvement in 
some global potential function that is not specific to 
any agent. In traffic settings, congestion serves as the 
potential function, for instance. There are numerous 
algorithms in the multiagent game-theoretic literature, 
and the one we implemented first is spatial adaptive 
play (SAP).24,25 In contrast to other learning algorithms 
that require agents to maintain their own history of 
actions, such as regret monitoring,24,26 SAP operates on 
the most recent set of assignments. Because an agent is 
required to maintain less information throughout the 
course of a game, lessening computing resource utiliza-
tion and memory footprint, SAP is an attractive choice 

for Neptune. A detailed description of SAP is provided 
in Box 1. Another advantage of SAP is that with high 
probability, players are guaranteed to converge to a Nash 
equilibrium—one that maximizes a global objective 
given by the sum of the target values, given that the 
wonderful life utility is used.

Agents maintain beliefs and can take actions (based 
on the CLCSim environment). The key design choices 
are the individual (or local) utility functions and the 
negotiation mechanisms. We assign local utility func-
tions in a way that allows agents to act rationally while 
maximizing global utility. We then pick negotiation 
mechanisms over local interactions that lead to agree-
able action profiles—in particular, actions on ships that 
we consider dark targets. A significant benefit of this 
game theory approach for tipping and cueing is that it 
can deliver convergence guarantees (with high probabil-
ity) to maximum or near-optimal global utility values, 
whereas such guarantees cannot be given by heuristics 
like greedy algorithms.

PATTERN OF LIFE
The final piece of Neptune assigns priority values 

to ships based on their location and kinematic history 
using an anomaly detection technique. The Neptune 
PoL bridges the gap between the on-orbit detection and 
SRM of Neptune components.

Orbit-based ship detection is a direct response to 
dark ships that hide their locations. However, darkness 
and ill intentions are not equivalent. While darkness 
is arguably a red flag, faulty equipment, poor reception, 
and signal interference can result in accidental 
darkness. Another consideration is that bad actors can 
operate without going dark or while still complying 
with regulations. For example, crew members aboard 
the MSC Gayane were caught smuggling narcotics 
in 2019 under the cover of a legitimate voyage that 
transmitted AIS.27 Drug smugglers could also use small 
vessels that are not required to transmit AIS. The 
main point is that while a detection capability does 
respond to the dark ship problem, there is additional 
benefit if an algorithm can use these detections to flag 
anomalous ship behavior, whether from a dark ship 
or not.

A capability that tags ships with anomaly scores is 
immediately applicable to the sensor management strat-
egies described in the previous section. The scores can 
be used to influence satellite coordination and to direct 
targeting. As previously mentioned, several commercial 
space companies have provided data streams to which 
anomaly detection can be applied; however, no such 
company has yet to offer such anomaly detection as part 
of its product suite. If we consider the preceding state-
ment to reflect the general state of commercial industry, 
then our work advances the state of the art.

BOX 1.  SPATIAL ADAPTIVE PLAY
In the spatial adaptive play (SAP) algorithm, described 
by Arslan, Marden, and Shamma,24 each player proba-
bilistically picks an action. At every iteration, a player 
can use the SAP algorithm to assign a probability to 
its available actions. Each player then selects an action 
based on the distribution resulting from SAP. Stay-
ing consistent with the original notation presented by 
the authors, the probability distribution over actions 
for player i is denoted as pi(k) at step k. If the avail-
able actions of player i (from the set Ai) are listed as  
α1 

i , α2 
i ,..., αi 

|Ai|   where |Ai| is the cardinality of the set Ai, 
then pi(k) is given by

	 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘) = 𝜎𝜎𝜎𝜎

⎝

⎜
⎜
⎛ 1
𝜏𝜏𝜏𝜏

⎣
⎢
⎢
⎢
⎢
⎡ 𝑈𝑈𝑈𝑈𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖(𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖

1,  𝑎𝑎𝑎𝑎−𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘 𝑘 1))
𝑈𝑈𝑈𝑈𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖(𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖

2,  𝑎𝑎𝑎𝑎−𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘 𝑘 1))

⋮ 
𝑈𝑈𝑈𝑈𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖(𝛼𝛼𝛼𝛼𝑖𝑖𝑖𝑖

|𝑨𝑨𝑨𝑨𝑖𝑖𝑖𝑖|,  𝑎𝑎𝑎𝑎−𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘 𝑘 1))⎦
⎥
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎞

,�

where, τ > 0 is a small constant and σ() is the soft-max 
or logit function. [The soft-max function takes a vector 
x  =  [x1,…,xn] and produces a vector whose ith entry 
is exi/(ex1 +  + exn).] A vector is maintained by each 
player. Each entry in the vector is the utility a player 
would receive and is derived from playing a particular 
action against the most recent action taken by the other 
players (i.e., step k – 1). This vector is passed through 
a soft-max function to constrain the entries to values 
between 0 and 1 and produce a distribution, which is 
then used to probabilistically pick an action at step.

http://www.jhuapl.edu/techdigest


Neptune: An Automated System for Dark Ship Detection, Targeting, and Prioritization

Johns Hopkins APL Technical Digest, Volume 36, Number 2 (2022), www.jhuapl.edu/techdigest 91

Variational Autoencoders
Neptune PoL is currently based on running ship tracks 

(detection time series for a single ship) through recur-
rent variational autoencoders (VAE), an unsupervised 
deep learning sequence model. The recurrent VAE tech-
nique has its roots in Bayesian statistics and variational 
inference.28,29 A core theme in Bayesian statistics is the 
usefulness of defining plausible probability models that 
emulate the real-world processes that generated a data set. 

The data set is then used to infer distributions over latent 
variables, quantities that have meaning with respect to 
the model but are not part of the measured data set. A 
common concern with Bayesian methods is that key dis-
tributions are often analytically intractable. Traditional 
approaches such as variational inference or Markov-
chain Monte Carlo sampling parameterize approxima-
tions of these distributions. Kingma and Welling29 and 
Chung et al.30 demonstrate that neural networks can be 

BOX 2.  VARIATIONAL DEEP LEARNING
Variational deep learning combines the theory behind variational inference and the function approximation qualities of 
neural networks. Ultimately, this results in a technique that is similar to variational inference but does not need to rely 
on extra assumptions. The core concept in variational inference is that the marginal distribution with respect to x can be 
broken down into the sum of a quantity termed the evidence lower bound (ELBO) and the KL divergence between a distribu-
tion q and the posterior p:

	

log 𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝; 𝜃𝜃𝜃𝜃) = 𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝, 𝑧𝑧𝑧𝑧; 𝜃𝜃𝜃𝜃)
𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝, 𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙) + 𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝, 𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)
𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝; 𝜃𝜃𝜃𝜃) = 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑥𝑥𝑥𝑥,𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)[log 𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝;  𝜃𝜃𝜃𝜃)] 

𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑥𝑥𝑥𝑥,𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)[log 𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝;  𝜃𝜃𝜃𝜃)] = 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑥𝑥𝑥𝑥,𝜃𝜃𝜃𝜃;𝜙𝜙𝜙𝜙) �𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝, 𝑧𝑧𝑧𝑧; 𝜃𝜃𝜃𝜃)
𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝, 𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)� + 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝, 𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)||𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝; 𝜃𝜃𝜃𝜃)) 

𝜙𝜙𝜙𝜙∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝜙𝜙𝜙𝜙 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑥𝑥𝑥𝑥,𝜃𝜃𝜃𝜃;𝜙𝜙𝜙𝜙) �𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝, 𝑧𝑧𝑧𝑧; 𝜃𝜃𝜃𝜃)
𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝, 𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)� 

.	

The marginal distribution is constant with respect to q(.) parameters . Thus, the update rule below indirectly minimizes 
the KL divergence between q and p:

	

log 𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝; 𝜃𝜃𝜃𝜃) = 𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝, 𝑧𝑧𝑧𝑧; 𝜃𝜃𝜃𝜃)
𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝, 𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙) + 𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝, 𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)
𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝; 𝜃𝜃𝜃𝜃) = 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑥𝑥𝑥𝑥,𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)[log 𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝;  𝜃𝜃𝜃𝜃)] 

𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑥𝑥𝑥𝑥,𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)[log 𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝;  𝜃𝜃𝜃𝜃)] = 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑥𝑥𝑥𝑥,𝜃𝜃𝜃𝜃;𝜙𝜙𝜙𝜙) �𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝, 𝑧𝑧𝑧𝑧; 𝜃𝜃𝜃𝜃)
𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝, 𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)� + 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝, 𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)||𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝; 𝜃𝜃𝜃𝜃)) 

𝜙𝜙𝜙𝜙∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝜙𝜙𝜙𝜙 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑥𝑥𝑥𝑥,𝜃𝜃𝜃𝜃;𝜙𝜙𝜙𝜙) �𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝, 𝑧𝑧𝑧𝑧; 𝜃𝜃𝜃𝜃)
𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑝𝑝𝑝𝑝, 𝜃𝜃𝜃𝜃; 𝜙𝜙𝜙𝜙)� .	

Kingma and Welling29 demonstrated that a reformulation of ELBO is compatible with stochastic gradient methods such as 
those used to train neural networks:

	

 𝐸𝐸𝐸𝐸𝑞𝑞𝑞𝑞(𝑧𝑧𝑧𝑧|𝑥𝑥𝑥𝑥,𝜃𝜃𝜃𝜃;𝜙𝜙𝜙𝜙) �𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝𝑝𝑝(𝑝𝑝𝑝𝑝, 𝑧𝑧𝑧𝑧; 𝜃𝜃𝜃𝜃)
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.	

This formulation is compatible with neural networks. An encoder network computes q(z|x,θ;) given measurements x. A 
decoder network then estimates Eq(z|x,θ;)[log p(z|x;θ)] from samples drawn from q(z|x,θ;). The encoder and decoder are 
then optimized against the reformulated ELBO objective above. Networks constructed and trained in this way are referred 
to as variational autoencoders (VAE).

Literature30 extended the VAE-ELBO formulation of Kingma and Welling29 to support sequential data as well, by condition-
ing on previous values in the sequence. This final formulation allows VAE to be used with recurrent neural network archi-
tectures. The hybrid architectures are appropriately called variational recurrent neural networks:
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The dependency on previous measurements and latent variables is implemented through a state variable h. This tech-
nique is common and well known in recurrent neural network literature. Furthermore, this construction is necessarily non-
Markovian as the value of ht,n is influenced by all previous x and z values.
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configured to do the same. The claim is that neural net-
works, as flexible nonlinear function approximators, may 
arrive at a more accurate approximation. Box 2 presents 
equations critical to our PoL approach.

In terms of ships’ tracks, the Neptune PoL model 
learns in theory how to encode and decode latent track 
representations. Distributional constraints29,30 are softly 
imposed on the latent representation while requiring it 
to retain enough information to reconstruct the original 
track. A perfect reconstruction means that decoding a 
latent track representation will produce a track that is 
identical to the original track. This can be quantified 
using measures such as pointwise cross-entropy or any 
other reasonable metric. Tracks that the model struggles 
to encode and decode can be considered anomalies as 
the model should have learned to encode and decode a 
wide variety of “normal” tracks during training.

Training Details and Experimental Results
We extracted tracks from data from MarineTraffic,31 

an organization that curates AIS. To reflect the goal of 
modeling normal kinematics, we considered only tracks 
that had moved 10  nautical miles from their original 
position, had reported AIS for at least 90 min, and had 
transmitted at least once every 10 min. The experiment 
also focused on tracks in the South China Sea. Under 
these conditions, 2,423 tracks were available for training 
on March 15, 2019, and 2,974 tracks were available for 
validation on March 16, 2019. We then augmented the 
validation set with 881 randomly generated synthetic 

loiter tracks as anomalous behavior targets. The syn-
thetic ships were scattered in locations of normal traf-
fic. All tracks were linearly resampled to a 5-min sample 
rate. Empirically, Neptune PoL struggles to faithfully 
reconstruct tracks (see the preceding section); however, 
the amount of reconstruction error still seems to be dis-
criminative in nature.

We evaluated the trained PoL model against two 
discriminative tasks by thresholding the median recon-
struction error. We present the main results as receiver 
operating characteristic (ROC) curves. A chance line is 
plotted for reference and characterizes performance for a 
detector that makes random guesses. We show that our 
approach can pick out anomalous tracks without overfit-
ting to the training data.

The first task was to discriminate between the train-
ing and validation sets. This task checks for the degree of 
model overfitting. The model should not score “normal” 
tracks in the validation set differently from those in the 
training set. Ideally the training and validation distri-
butions over reconstruction error are identical, which 
would result in a ROC curve that matches the chance 
line. The second task was to discriminate between the 
validation tracks and synthetic loiter tracks. For this 
task, the higher the ROC curve is above the chance line, 
the better, as this signifies that the model can pick out 
anomalies. As shown in Figure 6, our approach demon-
strates capability to detect anomalies but has not overfit.

In addition, Figure 6 presents a number of example 
tracks from the extended validation set for one of the 
trafficked regions in the South China Sea.

Figure 6.  Loiter track flagging. Shown are ROC curves associated with two discriminative tasks, as well as a number of example tracks 
from the extended validation set for one of the trafficked regions in the South China Sea. The first task was to discriminate between the 
training and validation set to  check for the degree of model overfitting. The second task was to discriminate between the validation 
tracks and synthetic loiter tracks.
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CONCLUSIONS
The downselection and filtering of raw data—from 

on-sensor data returns, to fused target tracks, to PoL 
contextual labeling—gives Neptune the opportunity 
to quickly and reliably locate and identify dark ships 
anywhere in the world. Bolstered by APL’s position as 
a trusted agent for the government, Neptune has the 
ability to enable the Lab’s sponsors to augment national 
tactical means with the large number of commercial 
satellites being launched by a number of companies to 
achieve situational awareness across the world’s oceans. 
It will be impossible for the government to own suffi-
cient assets to achieve the global coverage necessary to 
target dark ships anywhere in the world. Therefore, Nep-
tune’s approach of leveraging commercial capabilities, in 
conjunction with sensor fusion and PoL analytics, will 
help the government solve this critical challenge. Suc-
cess in this domain potentially motivates Neptune appli-
cations to other domains such as pedestrian or ground 
transportation automated target recognition (ATR) and 
behavior modeling.

From the prototype Neptune system currently in 
place, we want to address several key next steps. First, 
the on-orbit target recognition work has thus far been 
conducted with a processor-in-the-loop test bench, 
but the actual models analyzed have yet to be flown, 
either in space or an appropriate surrogate (e.g., a high-
altitude balloon). Demonstrating a full flight article 
will ensure that the entire onboard ATR approach 
is not only feasible, as we have begun to show here, 
but also efficient and usable. A second step will be 
to incorporate a wider variety of sensor modalities, 
beyond the AIS transmissions and SAR imagery we 
have used to date. Finally, the demonstration of the 
PoL analysis in detecting an example known dark ship 
will be necessary to demonstrate the full capability of 
the PoL analysis.
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