
A.-H. Najmi, P. R .Emmanuel, and T. K. Moon

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest14

Modern Neural Networks

Amir-Homayoon Najmi, Patrick R. Emmanuel, and Todd K. Moon

1. ABSTRACT
Deep neural networks have been tremendously successful in many areas from speech and image recognition
to genomics. This article explores and provides insight into modern neural network concepts and applications;
it is based on a chapter in the textbook Advanced Signal Processing: A Concise Guide published by McGraw Hill
Professional in August 2020 (https://www.mhprofessional.com/najmi).

http://www.jhuapl.edu/techdigest
https://www.mhprofessional.com/najmi

Modern Neural Networks

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest 15

2

2. INTRODUCTION

N eural networks have become a major field of research in
machine learning, with applications to complex problems

such as optimization, pattern recognition, and system iden-
tification. The most important among many reasons to use
the human nervous system (a network of nearly 90 billion
interconnected neurons) as a model is the fact that the human
brain is able to successfully deal with complex problems such
as face recognition. Conversely, better neural network models
and a fundamental understanding of their inner workings will
hopefully enable us to understand the human brain better; if
our models learn to recognize, generalize, and discriminate
complex patterns, perhaps they will reveal how the brain uses
the same identified mechanisms in its processes. The potential
to apply useful ideas from a model of the human nervous
system to difficult problems is perhaps the most immediate
reason neural networks have gained such prominence in mod-
ern computer applications.

The most fundamental structure of a neural network is based
on a single neuron, illustrated in figure 1, consisting of a
cell body called the soma, several extensions of the soma
called dendrites, and the axon, which is a single nerve fiber
connecting the soma to thousands of other neurons. The axon
and dendrites can be thought of as insulated conductors with
different impedances that transmit electrical signals to the
neuron. The connection between neurons can occur on the
soma or on junctions on the dendrites known as synapses that
regulate signals between neurons. The totality of the neurons
with their dendrites and axon connections and synapses form
a neural network.

Fig. 1. Anatomy of a neuron (by permission from ASU’s Ask A Biologist
https://askabiologist.asu.edu).

Success of models of the human neural network based
on the perceptron with activation function σ, as described
in the next section 3, is closely connected with theorem 1
which is known as the universal approximation theorem of
neural networks [1], and is illustrated in figure 2 for the one
dimensional space R.

Theorem 1. If f(xxx) is a continuous function defined on a
compact subset of RD, then for any ϵ > 0 there exists a
positive integer N , real numbers bn ∈ R, real vectors wn

w
nwn ∈

RD, and real numbers α
n
∈ R, for which

|f(xxx)− h(xxx)| < ϵ, h(xxx) =
N∑

n=1

α
n
σ
(
wwwT

n
xxx+ b

n

)
,

where the function σ satisfies the following conditions:

• σ is sigmoidal, i.e., σ(v) → 1 as v → ∞, and σ(v) → 0
as v → −∞.

• σ is discriminatory, i.e., it cannot map the linear variety
wwwT

n
xxx+ b

n
to a set of measure 0.

Fig. 2. The universal approximation theorem 1: x ∈ [0, 1] ⊂ R.

The second condition in theorem 1 on the function σ ensures
that the inverse function σ−1(.) is well-defined and continuous
on [0, 1]. Both conditions on the function σ are satisfied by
the sigmoid function

σ(v) = 1/(1 + e−v).

Using the sigmoid function it is not difficult to visualize the
result of the theorem for an arbitrary continuous function f(x)
of a single variable x ∈ [a, b] ⊂ R. We note that σ(wx+ b) is
equal to 1/2 at x = −b/w at which point its derivative is w/4.
Changing the ratio −b/w simply shifts the sigmoid function
by that amount while changing w changes the gradient at
that point. Thus, instead of the pair of parameters (w, b) it
is more convenient to work with parameters (w, s) where
s ≡ −b/w, and so we consider the function σ(w(x − s)).
Figure 3 shows the function σ(w(x−0.499))−σ(w(x−0.501))
for three different values of w with x ranging in [0.48, 0.52].
Clearly, a pair of sigmoids are required to produce (any) one
of the functions depicted in figure 3 that when appropriately
shifted and scaled can produce an approximation to any given
continuous function defined on a compact subset of R to
any degree of accuracy. The approximation improves as the

Fig. 3. The difference between two sigmoid functions σ(w(x−s+0.001))−
σ(w(x − s − 0.001)) for s = 0.5, w = 1000, 10, 000, 100, 000, for x ∈
[0.48, 0.52].

number of shifts s
n

are increased, thus increasing the number
of nearly rectangular bumps centered on s

n and covering the
interval [0, 1].

The application of theorem 1 to a neural network with a
single hidden layer requires the insertion of a final sigmoid
function to obtain the network output. We will introduce the
neuron model in section 3 and neural networks in section 4.

http://www.jhuapl.edu/techdigest

A.-H. Najmi, P. R .Emmanuel, and T. K. Moon

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest16

3

Although it appears that a sigmoidal function is necessary
for the approximation theorem to hold, current practice has
replaced the sigmoid [2] with other activation functions such as
the ReLU (see section 3 and figure 6). The practical challenge
is how to learn the parameters of a neural network that can
produce arbitrarily close approximations to any continuous
function.

3. PERCEPTRON AND THE NEURON MODEL

The simplest model of a neuron is the classical perceptron
[3] as shown in figure 4. Signals on dendrites are modeled

by a real vector xxx ≡ [x
1
, . . . , x

N
]T , whose N elements are

linearly combined using N elements of a real weight vector
www ≡ [w

1 , . . . , wN
]T , producing a unity output when that

linear combination is greater than or equal to an internal
threshold value −b. This threshold computing unit is known
as a perceptron; it divides the N dimensional space RN into
two regions separated by a decision boundary given by the
hyperplane wwwTxxx+ b = 0.

Fig. 4. A threshold computing unit model of a neuron.

By defining an additional input equal to b we can set the
internal threshold to 0; the input b is equivalent to an input of
1 multiplied by a weight b; thus, the output of the classical
perceptron is y = b + wwwTxxx. In the modern development of
neural networks, the output of a classical perceptron is passed
through a possibly nonlinear, or piecewise linear, activation
function σ; the resulting threshold computing unit is known
as an artificial neuron (often simply referred to as a neuron),
and is illustrated in figure 5.

Fig. 5. An artificial neuron.

Some common activation functions [4] illustrated in figure
6, are:

• The sigmoid (or logistic) function σ(v) = 1/(1 + e−v)
(this is used in figure 5).

• The hyperbolic tangent σ(v) = (ev − e−v)/(ev + e−v).
• The Rectified linear unit (ReLU) σ(v) = Max(0, v).
• The softplus function, a smooth approximation to ReLU,
σ(v) = ln(1+ev). Note that the derivative of the softplus
is the sigmoid function.

• Leaky Rectified linear unit (LReLU) is much the same
as ReLU except that it allows for a small gradient for
negative input, σ(v) = v for v ≥ 0, and αv for v < 0.

• Exponential linear unit (ELU), σ(v) = v for v ≥ 0, and
α(ev − 1) for v < 0.

Fig. 6. Some activation functions.

A single neuron can be used as a linear classifier. For
instance, using the sigmoid function, the output of a single
neuron can be interpreted as the probability of class mem-
bership in a binary classification problem. Suppose that the
outcome of a Bernoulli trial is a discrete random variable y
taking the values 1 or 0 with probabilities p and 1−p, where p
is a function of the input variable x. Then, in N independent
trials the conditional likelihood function is
N∏

n=1

Pr (y = y
n
|x = x

n
) =

N∏
n=1

p(x
n
; θ)

yn

(
1− p (x

n
; θ)

)1−yn

,

for some parameter θ. The logistic regression model is given
by

ln
p

1− p
= b+wwwTxxx,

whose solution
p =

1

1 + e−b−wwwTxxx

is the nonlinear output of the sigmoid function for a neuron
(this is also the Boltzmann distribution for a two-state sys-
tem whose states differ in energy by b + wwwTxxx). The mis-
classification error is minimized when we actually predict
y = 1 for p ≥ 0.5, and y = 0 for p < 0.5; i.e., y = 1 when
b + wwwTxxx ≥ 0 and y = 0 otherwise. The decision boundary
is the solution to b + wwwTxxx = 0 and so logistic regression is
a linear classifier. Note that the distance of any point xxx to
the boundary is given by

∣∣b+wwwTxxx
∣∣ /√b2 +wwwTwww which also

defines the class probability. Substituting the logistic model
into the likelihood function we can proceed to determine the
optimal parameters b and www by maximizing the likelihood
function using numerical techniques.

Classification problems with nonlinear decision boundaries,
however, require a network of neurons. For instance, figure 7
shows two patterns: pattern (a) can be separated by a straight
line, but pattern (b) cannot.

The procedure commonly used to train many neural net-
works is based on gradient descent [5] and known as back-
propagation [6]. The gradient descent algorithm is an iterative
method to reach a local minimum of an error surface that is a
positive function of a vector www ∈ RN (we take the vector to

http://www.jhuapl.edu/techdigest

Modern Neural Networks

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest 17

4

Fig. 7. Pattern (a) shows linear separation; no straight line can separate the
pattern in (b).

be real), namely, E(www) (if the surface is convex then gradient
descent finds the global minimum). We wish to choose the
increment ∆www so that we descend in the direction of maximum
change of the error surface. Proceeding with a Taylor series
approximation

E(www +∆www) ≈ E(www) + ∆wwwT ∇∇∇wwwE ,

we choose the increment

∆www = −µ∇∇∇wwwE ,

where µ > 0 is the learning rate, leading to a decrease in the
error, i.e.,

E(www +∆www) ≈ E(www)− µ
∣∣∇∇∇wwwE

∣∣2 < E(www).

There is no guarantee, of course, that the global minimum
can be achieved for a non-convex error surface. Nevertheless,
gradient descent, or modifications to it, are used in training
most artificial neural networks that use supervised learning.
We illustrate this algorithm in the training of a single neuron
to approximate a specific value c for an input data vector xxx.
In practice, we would have a collection of input vectors xxx[k]

forming our training data with a weight vector www, but for now
we consider only a single instance and drop the superscript k.
Thus, our aim is to start with a random set of elements for
the weight www and the bias bbb vectors (see section 10 for more
details), and to determine the optimal values that produce a
final error less than some prescribed ϵ > 0 using iterative
techniques.

Let us define w
0
≡ b, x

0
≡ 1, a new input vector xxx =

[x
0
, . . . , x

N
]T and a new weight vector www = [w

0
, . . . , w

N
]T ,

each with N+1 elements, and a loss function (an error surface)

E(www) ≡ (y − c)2 = (σ(wwwTxxx)− c)2.

The iterative algorithm should stop at the final weight vector
www

f
when E(www

f
) ≤ ϵ. The gradient descent algorithm is

defined by

www ← www − µ
∂E(www)
∂www

.

The derivative of the loss function E(www) with respect to the
weight vector is

∂E(www)
∂www

= 2
(
y(www)− c

)
σ′xxx, σ′ ≡ dσ(v)

dv
, v = wwwTxxx,

where y(www) indicates the dependence of the neuron output on
the weight vector. This gives the weight vector update

www ← www − 2µ
(
y(www)− c

)
σ′xxx.

When training data consists of K vectors xxx
k
, k = 1, . . . ,K,

the average squared error is minimized

E =
1

K

K∑
k=1

E
k
, E

k
≡ (y

k
− c)2,

and the weight vector update is

www ← www − 2µ
1

K

K∑
k=1

(
y
k
(www)− c

)
σ′xxx

k
.

In section 4 we will study artificial neural networks, i.e.,
connected networks of individual neurons. The backpropa-
gation of gradient function follows a similar form when the
gradient is calculated at an output layer, but will be different
if the gradient is calculated at a hidden (not the output) layer.
Different forms of loss functions for neural networks will be
discussed in section 6.

4. FULLY CONNECTED FEED FORWARD NEURAL
NETWORKS

AFeed forward artificial neural network can be constructed
by attaching layers of neurons whose outputs become

inputs to the neurons in the next layer [7]. A feed forward
network is fully connected when every neuron in one layer is
connected to every neuron in the next layer. Figure 8 shows
one such network whose input layer has N elements (data
samples x1 through x

N
), three hidden layers with 3, 2, and 3

neurons, respectively, and an output layer with two neurons.
The entire network is denoted by the equation yyy = h(xxx) where
the input xxx is an N × 1 vector and the output yyy is a 2×1 vector.
The upper part of figure 8 shows the network connections with
inputs and outputs; a square box represents a neuron as shown
in the lower part of figure 8. Layer l ≥ 1 has Nl neurons, each
of which has Nl−1 inputs and a single output. Each connection
has a weight w(l)

ij
that multiplies the output of neuron i ≥ 1 in

the previous layer l − 1 to neuron j ≥ 1 in layer l; the latter
neuron has a bias b(l)

j
which is equivalently defined by w(l)

0j
.

In this example layer l = 0 is the input layer, l = 4 is the
output layer, and l = 1, 2, 3 are the three hidden layers. Inputs
to layer 1 are the N data samples of xxx. The output of neuron
j of the a hidden layer l = 1, 2, 3 is denoted by y(l)

j
while the

final output of neuron j in the output layer 4 is denoted by y
j
,

all of which are denoted by the vector yyy with length M which
denotes the number of final outputs. Thus, for a network with
L+1 layers consisting of one input layer (l = 0), L−1 hidden
layers (l = 1, . . . , L − 1), and one output layer (l = L), the
output of neuron j in layer l ≥ 1 is

y(l)
j

= σ
(
w(l)

0j
+

Nl∑
k=1

w(l)
kj
y(l−1)
k

)
, 1 ≤ l ≤ L, 1 ≤ j ≤ Nl,

where y0
j
≡ x

j
is the data at the input layer l = 0, and yL

j
≡ y

j

is the output of the output layer l = L.
The depiction of theorem 1, for a continuous function

defined on the closed interval [0, 1], in figure 2 can be readily
generalized to apply to a neural network with a single hidden
layer by simply including an activation function before the
final output. If the output is to constitute an approximation to

http://www.jhuapl.edu/techdigest

A.-H. Najmi, P. R .Emmanuel, and T. K. Moon

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest18

5

Fig. 8. An artificial neural network yyy = h(xxx) whose input layer (l = 0) has N elements, three hidden layer (l = 1, 2, 3) with 3, 2, 3 neurons, respectively,
and an output layer (l = 4) with 2 neurons. Each square box in the network represents a neuron shown on the bottom.

a function f(x), then the input to this final activation function
must be of the form σ−1[f(x)]. The general requirements on
the activation in theorem 1 ensure that the inverse function
exists and is continuous in the same interval in which f(x) is
continuous and so the inverse function can be uniformly ap-
proximated by a linear combination of function σ(wnx+ bn).
Thus, theorem 1 can be restated as follows.

Theorem 2. Given a continuous function f(xxx) defined on a
compact subset of RD, and ϵ > 0, a neural network with a
single hidden layer and N neurons, and a sigmoidal activation
function exists whose output h(xxx) uniformly approximates
f(xxx) with |f(xxx)− h(xxx)| < ϵ.

5. THE BACKPROPAGATION ALGORITHM

T raining of most feed forward neural networks uses the
steepest descent method in a backpropagation algorithm

[6]. We have already seen how to compute the required
derivatives with respect to the weight functions at an output
layer. The backpropagation algorithm allows us to compute the
derivatives with respect to the weight functions at all hidden
layers, once we have the derivatives at an output layer. To
derive the hidden layer derivatives we refer to figure 9 that
shows the connection of an output of neuron k in layer l − 2
to neuron i in layer l − 1 whose output goes through neuron
j in layer l to finally arrive at y(l)

j
.

Using figure 9 we have

y(l)
j

= σ(v(l)
j
), v(l)

j
=

Nl∑
i=0

w(l)
ij
y(l−1)
i

, w(l)
0j

≡ b(l)
j
, y(l−1)

0
= 1.

Let us assume there are M final outputs with squared errors
E

m
= (y

m
− c

m
)2, 1 ≤ m ≤ M whose sum divided by M

is the average output error. Differentiating Em with respect to
the weights at layer l − 1 gives

∂Em

∂w
(l−1)
ki

=
∂Em

∂v
(l−1)
i

∂v(l−1)
i

∂w
(l−1)
ki

=
∂Em

∂v
(l−1)
i

y(l−2)
k

.

The last derivative on the right hand side is

∂Em

∂v
(l−1)
i

=

Nl∑
j=1

∂E
m

∂v
(l)
j

∂v(l)
j

∂v
(l−1)
i

=

Nl∑
j=1

∂E
m

∂v
(l)
j

w(l)
ij
σ′
(
v(l−1)
i

)
,

which is the backpropagation formula to compute all gradients
down to the first hidden layer, starting with the output layer
L, and the derivative at layer L, namely,

∂E
m

∂v
(L)
j

= 2(y
m
− c

m
)σ′(v(L)

m
).

The gradient update at layer 1 is

∆w(1)
ij

= −µ
∂E

m

∂w
(1)
ij

= −µ x
i

N1∑
k=1

∂E
m

∂v
(2)
j

w(2)
jk

σ′
(
v(1)
j

)
.

We will study examples of neural network training and
loss functions in section 6. For now we should emphasize
the importance of the nonlinear activation in the design of
an artificial neural network. In general, an activation such
as the sigmoid function that has saturation levels in both
directions leads to the vanishing gradient problem which can
permanently deactivate many of the neurons in the network,
thus decreasing the capacity of the network. In addition, the
output of the sigmoid is not centered at zero and this can cause
jumps in gradient updates; if the incoming data is all positive
then during backpropagation gradients become all positive or
all negative; for this reason, the hyperbolic tangent is preferred
over the sigmoid, but it too suffers from the vanishing gradient
problem [8].

The ReLU and some of its variants (Noisy ReLU, Leaky
ReLU, and Exponential Linear Units) alleviate the vanishing
gradient problem and as a result have, in the last few years,
completely replaced the older sigmoid and hyperbolic tangent
activations. The ReLU itself suffers from the dead neuron
problem when for high learning rates some neurons never
activate for the entire training data. This problem has been
solved by lowering the learning rate or using other variants

http://www.jhuapl.edu/techdigest

Modern Neural Networks

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest 19

6

Fig. 9. A portion of a feed forward neural network: y(l−2)
k is the output of neuron k in layer l− 2, y(l−1)

i is the output of neuron i in layer l− 1, and y
(l)
j

is the output of neuron j in layer l.

of the ReLU such as the Leaky ReLU when the parameter
α is chosen to be a small number such as 0.01. In practice,
it is best to start with ReLU with lower learning rates while
monitoring the fraction of dead neurons.

Although activation functions in the hidden layers are often
chosen to be the same (e.g., ReLU), the output layer activation
is selected depending on the loss function E the neural network
is designed to minimize (see section 6 for a discussion of loss
functions), and the function h(xxx) that the network is designed
to compute. For instance, in a regression problem if the output
values are in the range [−A,+A], A > 0, then we could
use the tanh nonlinearity, while if the output values are non-
negative then the ReLU activation is appropriate. However,
in regression problems a nonlinearity is often not used in
the output layer; in other words, activation is the identity
operation.

When the network is used as a binary classifier the sigmoid
(logistic) function is the most commonly used activation at
the output layer, in which case the output is the conditional
probability (conditioned on the input to the network) of
belonging to the positive class (typically denoted by 1 in a
binary vector [0, 1]). When the network is used to classify
among Nc > 2 classes of data, then the softmax activation
function is used to minimize the cross-entropy loss function
(see section 6)

softmax(vvv) = [ev1 , . . . , evNc]T /S, S ≡
Nc∑
n=1

evn ,

where vvv is the output before the non-linearity as defined in
figure 9. To avoid numerical instability the softmax nonlin-
earity is usually calculated by multiplying the numerator and
the denominator by e−vmax . When Nc = 2, σ(v

1
) + σ(v

2
) = 1

and this reduces to the sigmoid (logistic) nonlinearity.

6. LOSS FUNCTIONS IN NEURAL NETWORK TRAINING

L et yyy = h(xxx;www) denote the network output for input xxx and
weight vector www, and consider training the network using

training data xxx
k

to reach a desired output data ddd
k
, 1 ≤ k ≤ K.

A regression problem loss function is

E =
1

K

K∑
k=1

∥∥h(xxx
k
;www)− ddd

k

∥∥2.

Note that this loss function requires the last activation function
to be the identity, as illustrated in figure 10 describing a
network with L hidden layers whose first L − 1 layers with
activation σ, and the last layer L with identity activation.
The input to the network is an N × 1 vector xxx with elements
x

1
, . . . , x

N
and the output yyy = vvv(L) has N elements.

Now consider a two-class classifier neural network with a
sigmoid activation at the output layer, and training data xxx

k

belonging to classes 0 and 1. In this case the network output
determines class, e.g., we assign xxx

k
to class 1 when y

k
≥ 0.5

and xxx
k

to class 0 when y
k
< 0.5 (in practice the threshold

is chosen according to some optimality criterion). Then the
appropriate cost function is the binary cross-entropy function
defined by

E = − 1

K

K∑
k=1

(
d

k
ln(y

k
) + (1− d

k
) ln(1− y

k
)
)
,

where d
k
= 0 or 1.

When the network is used to classify data into Nc > 2
classes using the softmax activation at the output layer, the
associated loss function is the cross-entropy defined by

E = − 1

K

K∑
k=1

Nc∑
n=1

d
kn

ln y
kn
, d

kn
= 0 or 1.

For instance, consider a 3-class problem with classes A, B,
and C, and a desired vector of the form [A, B, C, C, B, A]. In
order to train the network we encode this vector as a one-hot
encoded matrix whose elements are the desired values d

kn
,

A → [1, 0, 0] = d1n, B → [0, 1, 0] = d2n,

C → [0, 0, 1] = d3n,

d5n = d2n, d4n = d3n, d6n = d1n.

http://www.jhuapl.edu/techdigest

A.-H. Najmi, P. R .Emmanuel, and T. K. Moon

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest20

7

Fig. 10. A fully connected regression neural network with L hidden layers: the first L− 1 layers have activation σ and weight matrices www(1), . . . ,www(L−1),
and the last hidden layer has weight matrix www(L) with identity activation so that yyy = vvv(L).

7. GRADIENT DESCENT VARIANTS

The gradient descent algorithm

ggg(n) ≡∇∇∇www(n)E
(
www(n)

)
, www(n+1) ← www(n) − µggg(n),

is often slow to converge. An approach to accelerate learning
is momentum optimization [5] that introduces a momentum
vector mmm to store and use previous step’s gradient direction.
Classical momentum algorithms accumulate a decaying sum
of the previous gradients into a momentum vector mmm and use
this in the update instead of the gradient,

mmm(n+1) ← βmmm(n) + ggg(n), www(n+1) ← www(n) − µmmm(n+1).

Learning is accelerated in any direction along which the
gradient is relatively stable across training steps, but learning is
slowed in any direction along which the gradient is oscillatory;
β is a friction coefficient to ensure that the momentum
gradually decreases to zero.

If the momentum vector is pointing in the right direction
then it may be more accurate to evaluate the gradient a
little further along than the current position. The Nesterov
accelerated gradient (NAG) method is equivalent to improving
the momentum vector and achieves a much better bound
than standard gradient descent by evaluating the gradient at
the updated value of momentum mmm(n+1). In the momentum
update mmm(n) does not depend on the gradient ggg(n); Nesterov’s
algorithm introduces a dependence in the form

ggg(n) ≡∇∇∇www(n)E
(
www(n) − βµmmm(n)

)

when using the update equation.

To address the problem of learning in a “long narrow
valley” one might try to cut across the slope heading to-
wards the global minimum, gaining progress on the variable
that needs the most change (the long valley), even though
it is not approaching the global minimum in the steepest
direction. AdaGrad (adaptive subgradient descent) scales down
the gradient in the steepest direction by its norm (so instead
of going straight downhill it traverses less steep directions);
it uses different learning rates on different parameters by
adaptively adjusting the rates according to the “steepness” in

each component [5]

ggg(n) ≡∇∇∇www(n)E
(
www(n)

)
, ν(n+1) ← βν(n) +

∣∣∣ν(n)
∣∣∣
2

,

www(n+1) ← www(n) − µggg(n)√
ν(n+1) + ε

.

This algorithm accelerates learning along directions that have
changed slightly but suffers from the exploding norm problem
that halts learning altogether. A simple cure is to use an ex-
ponentially weighted adaptive norm calculation for ν, known
as RMSProp,

ν(n+1) ← αν(n) + (1− α)
∣∣∣ν(n)

∣∣∣
2

, 0 ≪ α < 1.

A combination of RMSProp and the classical momentum
method is Adam (adaptive momentum estimation) [5],

ggg(n) ≡∇∇∇www(n)E
(
www(n)

)
, mmm(n+1) ← βmmm(n) + (1− β)ggg(n),

mmm(n+1) ← mmm(n+1)

(1− β)
,

ν(n+1) ← αν(n) + (1− α)
∣∣ν(n)∣∣2, ν(n+1) ← ν(n+1)

(1− α)
,

www(n+1) ← www(n) − µmmm(n)/
√

ν(n+1) + ε.

Exponentially weighted momentum adaptive methods often
use a time-dependent parameter, e.g., β(n) = 0.99

(
1 − 0.5 ×

0.96n/250
)
. Figure 11 shows a comparison between gradient

descent and AdaGrad/Adam-type algorithms.

Fig. 11. Gradient descent compared with AdaGrad/Adam.

8. SINGLE-HIDDEN-LAYER AND
MULTIPLE-HIDDEN-LAYER NEURAL NETWORKS

A s theorem 1 suggests, arbitrarily complicated functions
can be approximated by a neural network with a single

http://www.jhuapl.edu/techdigest

Modern Neural Networks

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest 21

8

hidden layer. But deep networks with more than one hidden
layer can have much higher efficiency with far fewer (possibly
exponentially fewer) neurons per layer. Deep networks have
been successfully used in difficult problems such as speech
recognition and image classification. Development of a neural
network often starts with one or two layers, and then increasing
the number of hidden layers until overfitting is observed or
suspected.

The number of input neurons is determined by the input
data. For instance, to classify images of hand-written charac-
ters, the input images are small, say 30×30 = 900 pixels, and
if no data reduction prior to the neural network is performed
then 900 neurons are needed in the first layer. If the characters
are classified into 26 + 26 letters, 10 numeric digits, and a
dozen punctuation marks, then 74 neurons are needed in the
final output layer.

To illustrate the effect of more hidden layers in reducing the
number of neurons with no loss in performance we examine
the spiral data consisting of two paired sets (xxx

1 , yyy1) and
(xxx

2
, yyy

2
), which we construct by choosing zzz = 13.6

√
u0u0u0 and

xxx1 = −zzz cos(zzz) + σuuu1 , yyy1 = +zzz sin(zzz) + σuuu2 ,

xxx2 = +zzz cos(zzz) + σuuu3 , yyy2 = −zzz sin(zzz) + σuuu4 ,

where uuu
k
, 0 ≤ k ≤ 4, are random vectors whose elements are

uniformly distributed in [0, 1], and σ denotes the strength of the
noise (0.5 in our example); element by element multiplication
and association is implied in the equations.

Figure 12 shows the classification boundaries for three
neural networks consisting of a single hidden layer with 10 (a),
1000 (b), and 5000 (c) neurons, respectively. Clearly, increas-
ing the number of neurons improves the network performance
as expected by the universal approximation theorem 1.

Fig. 12. Classification boundaries for three neural networks with a single
hidden layer and 10 (a), 1000 (b), and 5000 (c) neurons, respectively.

Figure 13 shows the performance with more hidden layers
but with a significantly reduced number of neurons. Image
(a) shows the classification boundaries using 2 hidden layers
with 10 neurons each, while image (b) shows the boundaries
for 3 hidden layers with 10 neurons each; both images show
similar performance to the single hidden layer network with
5000 neurons, but a reduction in the total number of neurons
by a factor of approximately 150. We note that to illustrate the
power of deep representations compared with shallow ones, we
limited the number of epochs (see section 9) to 100; increasing
the number of epochs does allow for better classifications
using single-layer networks (even with fewer neurons) at the
expense of significantly more training time. All models were
optimized using Adam (see section 7).

Fig. 13. Classification boundaries for two neural networks with 2 (a) and 3
(b) hidden layers, each with 10 neurons.

9. MINI-BATCH TRAINING AND NORMALIZATION

When performing gradient descent adaptation the average
of the loss over the entire training set can be used to

compute gradients for backpropagation; this is known as batch
gradient descent and can be extremely time consuming and
memory inefficient for large data sets. Batch training offers
a more stable estimate of the error gradient which, although
useful in some problems, can actually reduce performance
by converging to less optimal network weights. The extreme
alternative to this is to use a random ordering of the training
samples, update the weights based on the loss calculated for
the first training data, and use the weights as initial weights
for training using the second training data and so on, to finish
through the entire training set of size NT . The process can
be repeated starting with the weights from the first round, and
a new random ordering of the training data. Each round is
known as an epoch, by the end of which the network has
seen all the training data. After completing NE epochs, i.e.,
when the network has been exposed to the training data NE

times, we would have a total of NT ×NE weight updates. This
method is known as stochastic gradient descent or SGD; it can
be useful in on-line learning when training can occur as new
samples arrive.

The concept of stochastic mini-batch training fits some-
where between SGD and batch training. To illustrate, consider
the set of indices [1, . . . , 20] that refer to 20 training samples.
Choosing a mini-batch size of 4 we construct 5 mini-batches
containing random indices (typically without replacement) be-
tween 1 and 20, and begin training with initial random weights
{www}

0
on mini-batch 1 resulting in updated weights {www}

1
. The

weights {www}
1

become the initial weights for training on mini-
batch 2, and so on until we have the weights {www}

5
at the end

of epoch 1, which consists of 5 mini-batches. The weights
{www}

5
now become the initial weights for training through 5

mini-batches of epoch 2 which consists of another random set
of training indices. In this example training ends after the set
of 5 updates through epoch 3, with {www}

15
as the final weights

for the network, as illustrated in figure 14.
Given a mini-batch size of MmB , there are NT /MmB mini-

batches in each epoch, and the total number of weight updates
after training through NE epochs is NE ×NT /MmB. Mini-
batch size is usually much smaller than the number of training
samples and should divide it; smaller mini-batch sizes increase
noise in the gradients which, ironically, may be useful as an
implicit regularizer [9], while larger sizes have less noise in

http://www.jhuapl.edu/techdigest

A.-H. Najmi, P. R .Emmanuel, and T. K. Moon

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest22

9

Fig. 14. Example of mini-batch training: training indices [1, . . . , 20], mini-
batch size of 4, three epochs, resulting in 15 weight updates.

the gradients but they can train faster. Mini-batch size is often
chosen to be a power of 2, e.g., 4, 8, 16, 32,

An important issue in the training phase of deep neural
networks is the fact that the distribution of each layer’s acti-
vations change as the distribution of inputs to that layer change
through change in parameters of the previous layers; this
change of distribution of network activations during training
is known as internal covariate shift [10] and often slows
convergence. Convergence can be accelerated by whitening
the input sequences to all layers; whitening includes decor-
relation as well as normalization. Currently, normalization
alone (excluding decorrelation) via mini-batch statistics is the
preferred method and is applied to each activation separately,
i.e., each element of each activation vector is normalized by
the mean and standard deviation of the set of its values within
a mini-batch [10]. For instance, let xxx = [x1

, . . . , x
d
] denote an

input vector to a fully connected network, and let xxx(1), xxx(2),
. . ., denote the training data. Let xxx(k1), . . . ,xxx(km) denote the
members of a mini-batch of size m, and let yyy(k1), . . . , yyy(km)

denote the outputs of a layer associated with this mini-
batch. Batch normalization introduces two new d × 1 vector
parameters γγγ and βββ, for each mini-batch, that are learnt along
with the rest of the network parameters, and are defined by
the Batch Normalizing Transform BNTγ,β : xxx → yyy

µµµ ≡ 1

m

m∑
i=1

xxx(ki), σσσ2 ≡ 1

m

m∑
i=1

(xxx(ki) −µµµ)2,

x̂̂x̂x(ki) =
xxx(ki) −µµµ√
σσσ2 + ε

, 0 < ε ≪ 1,

yyy(ki) = γγγ ⊗ x̂̂x̂x(ki) + βββ, i = 1, . . . ,m,

where ⊗ indicates element by element vector multiplication.
Batch normalized networks are trained using batch gradient
descent or stochastic mini-batch descent with m > 1, and
backpropagation of the usual derivatives of the loss function
with respect to the weights in addition to the derivatives
with respect to the BNT variables [10]. While the normalized
activations x̂xx(ki) remain internal to the network, reducing
covariate shift and accelerating network training, the BNT
transformed values yyy(ki) are passed to other network layers.
The learnt variables γγγ,βββ applied to the normalized activations
allow the BNT to represent the identity transformation and
preserve network capacity.

To achieve its promise, batch normalization must be ac-
companied by changes in several other training parameters .
Some of these changes include increasing the learning rate
parameter, removing dropout (see section 10), reducing L2

weight regularization, and shuffling training samples more
thoroughly so the same samples do not always appear in a
mini-batch together [10].

10. NETWORK INITIALIZATION

An important issue in network training is the initialization
of the weights [11]. Zero initial values lead to equal

loss derivatives with respect to all the weights, which will
lead to the same value for all the weights in every iteration
during training. The neural network then essentially becomes
a linear model. Hence random initial values should be the
starting values. There are two possible issues with random
initial values: they could lead to vanishing gradients (the van-
ishing gradient problem), or divergent gradients (the exploding
gradient problem). One way to avert the vanishing gradient
problem is to use ReLU activations.

Methods to prevent the exploding gradient problem include
gradient clipping (setting a threshold value for the magnitude
of the gradients that if exceeded will set them to the threshold),
or modifying the parameters of random number generators
(uniform or Gaussian) that are used to produce the initial
values. Let us define [−r,+r], r > 0, to be the interval in
which random numbers with uniform density are generated.
Gaussian random numbers are assumed to be zero-mean and
are defined by their variance σ. Table 1 shows random number
settings that are functions of the number of inputs to a layer
Nin, and the number of outputs of that layer Nout. These
initializations are known as Xavier initialization, or (for the
ReLU activation) He initialization [12].

Activation Uniform: [−r, r] Normal: σ

Logistic r =
√
6/r0 σ =

√
2/σ0

tanh r = 4
√
6/r0 σ = 4

√
2/σ0

ReLU r =
√
22/r0 σ = 2/σ0

r20 ≡ Nin +Nout σ2
0 ≡ Nin +Nout

TABLE 1
RANDOM NUMBER GENERATOR SETTINGS FOR NETWORK INITIALIZATION

http://www.jhuapl.edu/techdigest

Modern Neural Networks

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest 23

10

11. REGULARIZATION

Overfitting is a major issue in neural networks when the
neural network is trained to achieve excellent perfor-

mance (such as low classification error) on the training data,
but in doing so it becomes so specialized that it is unable to
do well on any other data set [13]. An overfit neural network
loses the ability to generalize, i.e., it is unable to apply what
it has learned from the training data to other data it has never
been exposed to.

As a practical matter, in any regression or classification
problem, it is important to partition the data into two portions:
a training portion and a test and validation portion. Typically,
about 80–90% of the available data is used for training,
with the remaining 10–20% for testing and validation. The
important criterion is not so much how well the neural network
performs on the training data, but how it does on the test
data. The real validation in neural network training is then
performed on the test data, not on the training data. In order to
reliably measure the network’s ability to generalize, we should
never mix training and test data. Methods to reduce overfitting
are known as regularization.

Fig. 15. An overfit neural network.

When training a neural network we often see a continual
decrease in training loss accompanied by a drop in test data
loss for some time before the testing loss begins to plateau or
increase, as illustrated in figure 15. The gap between training
and validation performance is sometimes referred to as the
generalization gap [14]; this is a clear evidence of overfitting
when the neural network has learned to represent the training
data so well that it has lost the ability to generalize to holdout
data.

In general controlling a neural network’s ability to fit
training data reduces to managing its representational capacity.
Recall from theorem 1 that with enough neurons (and appro-
priate activation functions), standard multi-layer perceptrons
are universal function approximators. Thus, sufficiently reduc-
ing the number of neurons in a neural network will reduce
its representation capacity, inhibiting the model’s ability to
(over)fit training data. We can also control the capacity of
our models by limiting the depth of the network, bounding
the norm of the weight matrices with L1 or L2 regularization,
injecting noise into the input/hidden layers of the network, and
performing more general input data manipulations called data
augmentation [15] where we perturb/transform the input data
in such a way as to prevent the neural network from placing
emphasis on spurious features of the data; e.g., for a cat vs

dog image classifier we might perform color transformations
to overcome biases in the color of the animals in the training
set. These and other methods explicitly control what neural
network models can learn from the data during parameter
optimization (SGD and its variants) and are thus effective
regularizers for practical applications.

Early stopping is another effective method to avoid over-
fitting [16]: when a new best loss value on the validation set
is found, the current best neural network weights are saved,
and training stops if the validation loss has not improved
within a specified number of training iterations. The number of
training iterations (or epochs) before halting is termed known
as a “stopping criterion” and prevents model weights from
continuing to improve on the training set while making little
progress on the validation/test set (see figure 15).

Another method is the surprising idea of dropout [17], [18],
when at every training step, every neuron, including input
layer neurons but excluding output layer neurons, will be
dropped with a probability p. A neuron that is dropped is
simply ignored during this training step. The probability p is
the dropout rate, and is typically set to 0.25. The idea is that
the neurons that are not dropped at a given iteration must adapt
to the data, becoming as useful as possible on their own and
not co-adapting to their neighboring neurons. We may think
of neural networks with different dropout configurations as
different neural networks. If N neurons may be dropped then
there are 2N different neural networks (the set of all subsets of
the given N neuron). The training with dropout gives, roughly,
the average result of a large number of neural networks. This
is related to the idea of boosting, in which the results of many
weak classifiers are combined to produce a strong classifier
result.

An improved implementation of the original concept of
dropout is inverted dropout. For a dropout rate of p, when
testing the network (without dropout), a neuron is connected
to, on average, 1/(1 − p) as many inputs as it was during
training, i.e., each neuron has a total input signal that is, on
average, 1/(1−p) as large as what the network was trained on.
To compensate for this, we multiply each neuron’s connection
weight by 1− p after training.

Another way of regularizing a neural network is to tie
parameters together; for instance, we may require that some
weights should be equal. This provides more training data
per weight. A common way of tying parameters is to use
convolutional neural networks (see section 12).

12. CONVOLUTIONAL NEURAL NETWORKS (CNN)

In the fully connected network described in section 4 every
input to layer l is connected to every output of the previous

layer l − 1 using the weight functions. A fully connected
network with many hidden layers and many neurons in each
layer can contain tens of thousands of weights which, in cases
of small training data sets, can lead to overfitting issues. A
far more important problem with fully connected networks in
pattern recognition problems is the absence of shift (trans-
lation) invariance, or insensitivity to local distortions. For
instance, spoken words can have different speed, pitch, and

http://www.jhuapl.edu/techdigest

A.-H. Najmi, P. R .Emmanuel, and T. K. Moon

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest24

11

intonation, which can cause substantial variations in time
location of important features in the input data. Although,
a fully-connected network can in principle, learn to produce
shift invariant outputs, the required number of training sets
and the network size may be prohibitively large. Furthermore,
fully connected networks do not take advantage of the high
correlations between nearby data points.

The usual definition of a convolution between a sequence
[y

1 , . . . , yN
] and a set of weights, or kernel, [w1 , . . . , wM

],
is the same as a correlation between [y

1
, . . . , y

N
] and

[w
M
, . . . , w

1
]; in machine learning parlance correlations be-

tween two sequences is referred to as “convolution”; a justifi-
cation for this might be that weight vectors are found through
training and so any specific initial indexing is arbitrary—if we
index the weights N, . . . , 1 then a convolution is the same as
correlation with indices 1, . . . , N .

An explicitly shift invariant architecture that learns local
features first, and then recognizes spatial or temporal patterns
by combining those local features, is the convolutional neural
network (CNN) [19], [20] which consists of a number of
layers, a number of convolutional neurons in each layer (the
same as the number of outputs of that layer), a number of
weight filters, or kernels, (total number of filters in each neuron
equals the number of neurons in the previous convolutional
layer), a bias vector for each convolutional neuron, and a
flattening layer to produce scalar outputs in the output layer.
Many convolutional networks designed to work on images
include a pooling layer to perform down sampling after a
chosen convolutional layer; the down sampling is sometimes
achieved through convolution with strides greater than 1, when
a large input into one layer produces a smaller input to the next
layer. It is, however, more common to use a down sampling
method known as max-pooling.

The convolutional network architecture is believed to ap-
proximate the human visual cortex which extracts local fea-
tures, e.g., horizontal edges, vertical edges, and local patterns
[20]. The hierarchical viewpoint suggests the importance of
multi-layer networks for pattern recognition. A CNN com-
monly has inputs with a depth dimension; for instance, im-
agery in RGB channels provide input with depth 3, or IR time
series measurements in 2 frequency bands provide input with
depth 2. In section 13 we will discuss a time series problem to
classify six human activities based on nine measurements that
provide time series input with depth 9. For time series inputs
with a depth dimension, outputs of each hidden layer (before
activation) are called feature vectors; when inputs are two
dimensional images with depth, then outputs of each hidden
layer (before activation) are called feature maps. As explained
below, outputs of a convolutional hidden layer include layer
biases as additive quantities.

Figure 16 illustrates the concept of a CNN for time series
classification with an input depth dimension of 5, i.e., the input
layer consists of five (equal length) time series xxx

k
, 1 ≤ k ≤ 5,

representing 5 different measurements for classification. There
are three hidden layers with 3, 2, and 4 convolutional units
(neurons), respectively, a flattening layer with input vectors
yyy

k
, 1 ≤ k ≤ 4, with a single Q× 1 vector output, that leads

to a single scalar y in the output layer. Each of the hidden

layers have weight filters, or kernels, denoted by www(l)
ij

, where
1 ≤ l ≤ 3 is the layer number, j is the convolutional unit
(neuron) in that layer whose input is denoted by index i. The
output of convolutional neuron j in hidden layer 1 ≤ l ≤ 3
before (nonlinear) activation is the feature vector for neuron
j and layer l, and is denoted by the vector vvv(l)

j
. The bias for

a single convolutional neuron is a single scalar value which
facilitates the neuron’s ability to learn patterns in a predictable
and consistent manner when presented with similar input data.
Therefore, the bias vector bbb(l)

j
is always taken to be bbb(l)

j
=

b(l)
j

× [1, . . . , 1].
The output of the (nonlinear) activation for neuron j and

layer l is denoted by yyy(l)
j

. The number of convolutional
neurons in each layer determines the depth dimension of the
layer’s feature vectors and the layer’s output vectors. For
instance, vvv(1)

1
, vvv(1)

2
, and vvv(1)

3
are the feature vectors at hidden

layer 1 while yyy(1)
1

, yyy(1)
2

, and yyy(1)
3

are the final outputs of layer
1 (after the nonlinearity).

The output vectors vvv of each hidden layer, namely, the
layer’s feature vectors, are computed by correlating the input
vectors with their corresponding weight vectors, summing the
resulting vectors and adding the bias term. The final outputs yyy
of the layer are found by passing the result through the point-
by-point nonlinear activation function σ, as illustrated on the
bottom portion of figure 16. For instance, the output time series
of the convolutional unit 2 in hidden layer 2, namely yyy(2)

2
, is

found from

yyy(2)
2

= σ
(
vvv(2)

2

)
, vvv(2)

2
= www(2)

12
∗yyy(1)

1
+www(2)

22
∗yyy(1)

2
+www(2)

32
∗yyy(1)

3
+bbb(2)

2
,

where “∗” denotes correlation between the associated time
series and bbb(2)

2
= b(2)

2
× [1, . . . , 1]. In the rest of this section

we will omit the bias term for notational convenience.
If we denote the filter (kernel) dimension at hidden layer l

by Ml (which we assume to be odd), l = 1, 2, 3, and denote
by N the dimension of each of the 5 input layer vectors,
then the correlation equation is performed according to a
“centered output prescription”. Thus, we pad the time series
yyy on either side by (Ml − 1)/2 zeros and denote the resulting
(N +Ml − 1)× 1 vector by yyy0 . Next we align the filter weights
www with yyy

0
so that their first elements match and we multiply

the elements 1 through Ml and sum them to obtain the first
element of the correlation vector. Then we slide the filter along
by one element and repeat the process to obtain a total of N
correlation values; the last correlation value is found when
the last element of the filter is aligned with the last element
of yyy

0
. This procedure is illustrated in figure 17 for an input

sequence with 4 elements and a filter with 3 elements; the
input sequence is padded with one zero on either side and 4
correlation sequence values are calculated.

The correlations shown in figure 16 are, in practice, carried
out as matrix multiplications with zero-padded vectors. Figure
18 shows the procedure to calculate the sum www1

∗xxx
1
+www2∗xxx2

+
www

3
∗xxx

3
for a set of three 4× 1 input vectors, and three filters

(kernels) with 3 elements each, with the final result having 4
elements. The 3 × 3 section of the input data that is being
multiplied by the 3 elements of the weight vector is known
as a receptive field. The weight matrix, at each correlation

http://www.jhuapl.edu/techdigest

Modern Neural Networks

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest 25

12

Fig. 16. A CNN with 5 time series of equal length in the input layer, 3 hidden layers, and an output layer with 1 scalar output. The bottom portion describes
each convolutional unit (neuron), where www ∗yyy indicates correlation between the two sequences www and yyy. The flattening layer in this example produces 1 scalar
output for a 2-class classification network.

Fig. 17. Correlation procedure for an input sequence with 4 elements and a
filter with 3 elements, resulting in an output with 4 elements.

lag, produces a single output, and weights in different layers
provide local receptive field connections.

Fig. 18. Zero padding and matrix multiplication procedure to calculate the
sum www1 ∗ xxx1 +www2 ∗ xxx2 +www3 ∗ xxx3.

The flattening layer, in general, produces a single vector
output of some length (a hyper-parameter of the model), which
can then be fed into a fully connected layer with softmax
activation for classification, or if the length of the output vector
is the same as the number of classes then it can be fed directly
into a softmax activation. One way to flatten is to simply

stack all the vector inputs into a long vector; for instance, the
quantities q

k
, 1 ≤ k ≤ Q in figure 16 could be equivalent to

the vector [yyy(3)
1

, . . . , yyy(3)
4

]. Another method, known as global
average pooling (GAP) [21] is to average each of the input
vectors, and then producing a single vector of all the averages;
for example, in figure 16, q

k
, 1 ≤ k ≤ 4, could be averages

of each of the 4 feature vectors yyy(3)
1

, . . . , yyy(3)
4

.
When two-dimensional arrays (images) are used as inputs

to a CNN, then for each convolutional neuron weight matrix
(filter or kernel) the corresponding images are zero-padded
around their boundaries, and correlation results for all images
are summed and added to a bias array (image of the same
dimensions) to produce an output image (also known as
feature maps—see later in this section). Figure 19 shows two
5× 5 images being correlated with two distinct 3× 3 weight
matrices (filters or kernels) and the correlation results are
added to produce the 5×5 output image (we are neglecting the
additional 5×5 bias image). The two images in figure 19 might
represent input with a depth of 2 at the input layer of a neural
network while the weight matrices might be those associated
with one of the neurons in the first hidden layer. Alternatively,
the two images might be two feature maps (outputs of a hidden
layer) going into a neuron in the next hidden layer.

Figure 20 shows an input of depth 3 RGB images into
a CNN. The first hidden layer has 5 convolutional neurons,
each of which has 3 (the same number of input image depth)
weight matrices (kernels) of size 3 × 3. There are, therefore,
5 feature maps, i.e., 5 image outputs from the hidden layer,
whose size will be the same as the input image size for unit
stride, or smaller if strides greater than 1 are used. Let us
denote a feature map by F

(d)
ij , d = 1, . . . , 5. Given the input

image matrices Rij , Gij , Bij , and weight matrices (kernels)
by w(d,n)

ij
, n = 1, 2, 3, then we have

F
(d)
km =

2∑
i,j=0

(
w(d,1)

ij
Ri+k,j+m + w(d,2)

ij
Gi+k,j+m + w(d,3)

ij
Bi+k,j+m

)
,

where k,m = 0, . . . refer to the elements of each feature map.

http://www.jhuapl.edu/techdigest

A.-H. Najmi, P. R .Emmanuel, and T. K. Moon

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest26

13

Fig. 19. Zero padding 5 × 5 images and correlating with two 3 × 3 filter
matrices.

The outputs of a hidden layer are, of course, the feature maps
plus layer biases that will form the input to a nonlinearity.

If the input images are square with dimension N ×N , weight
matrices have odd dimension M ×M , and correlations are
performed with stride S = 1 and padding with (M − 1)/2
zeros, then k,m = 0, . . . , N − 1 and feature maps have
dimension N ×N ; if correlation stride S > 1 then feature maps
have dimension ((N − 1)/S + 1)× ((N − 1)/S + 1) - figure 20 is
drawn to indicate S > 1 (feature map sizes are smaller than
input images).

Fig. 20. Input layer images with depth 3, first hidden layer with 5 convolu-
tional neurons, and 5 feature maps - box on the right shows a detailed picture
of all the weight matrices for all 5 neurons.

Figure 21 describes the sum of correlations of the three
weight matrices of the first neuron with the three input images
to produce feature map 1: if the 3×3 squares below the three
weight matrices www(1,1), www(1,2), www(1,3), are denoted by R̃RR, G̃GG,
and B̃BB (portions of the appropriately zero-padded matrices),
respectively, then the sum of simple dot products, namely,
www(1,1) ··· R̃RR + www(1,2) ··· G̃GG + www(1,3) ··· B̃BB produces the indicated
element of the feature map 1 matrix.

Fig. 21. Feature map 1 generated from stride 1 sliding correlation values
obtained by sum of dot products of neuron 1 weight matrices with corre-
spondingly aligned 3×3 image sections (white sections around RGB images
indicate zero padding).

In image classification applications a weight matrix (kernel)
may be thought of as being matched to some particular feature
of the input image. For example, two matrices below show
sensitivity to horizontal structures and to vertical structures,
respectively; i.e., using the first matrix in an input to one layer
will emphasize horizontal features of that image in the input
to the next layer.

Horizontal structures ↔

0 0 0
1 1 1
0 0 0

Vertical structures ↔

0 1 0
0 1 0
0 1 0

13. TIME SERIES CLASSIFICATION WITH A
CONVOLUTIONAL NEURAL NETWORK

L et us consider the multi-class classification problem of
Human Activity Recognition (HAR) data set from the

University of California at Irvine (UCI) machine learning
repository [22]. Data consists of 10, 299 instances of triax-
ial accelerometer and gyroscope time series measurements
representing six activities, namely, walking, walking upstairs,
walking downstairs, sitting, standing, and laying. Each activity
has 9 associated 128-point time series: body acceleration, body
gyro, and total acceleration, for all three axes. Figure 22 shows
data for one instance of three of the most dissimilar of the
6 activities, namely, walking, sitting and standing; thus, the
inputs to a classification CNN are 9 time series (3 sets of
triaxial measurements).

An example CNN to classify the six activities of the HAR
data is depicted in figure 23. It consists of an input layer of
nine 128× 1 vectors representing the accelerometer and gyro
measurements, four hidden layers, a flattening layer with 6
outputs that go through a softmax nonlinearity to produce
the final 6 class probabilities for classifying the six activities.
Hidden layer 1 has 32 convolutional neurons that each have
9 filters with 3 elements each. Hidden layers 2, 3 have 32
convolutional neurons that each have 32 filters with 3 elements
each (recall that the number of filters in each convolutional
neuron is the same as the number of input vectors into the
layer). Hidden layer 4 has 6 convolutional neurons (to match
the number of classes) that each have 32 filters with 3 elements
each.

The GAP flattening layer has 6 scalar outputs that are passed
through a softmax nonlinearity to produce the final output
layer of 6 scalar values representing the class probabilities.
Training was performed on 7, 352 instances and validation was
done on the remaining 2, 949 instances.

Figure 24 shows the confusion matrix for the classification
of the six activities, together with a table summarizing the
results. precision is the probability of correct classification; it
is calculated by dividing each diagonal number by the sum of
the elements of the row passing through that diagonal element.
recall is the probability of correct prediction and is found by
dividing the diagonal element by the sum of the elements of
the column through that element. F1 score is the harmonic
mean of precision and recall, and support is the number

http://www.jhuapl.edu/techdigest

Modern Neural Networks

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest 27

14

Fig. 22. Vector time series (three spatial axes) for three of six activities of the HAR data from UC Irvine: body acceleration, gyro, and total acceleration for
Walking, Sitting, and Standing.

Fig. 23. CNN to classify six activities of the HAR data set.

of instances of each activity used for validation (with each
instance associated with nine 128×1 vectors). The model has
7, 506 parameters with an overall accuracy of 95.24%, which
compares well with the best reported result of 96.7% achieved
using deep recurrent neural networks (with an unknown num-
ber of parameters). A set of 561 hand-engineered features
derived from the time series (a reduction of more than 50%
from the 9×128 time series values) have been classified using
a logistic regression network with an overall classification
accuracy of 96.2%, while a fully connected network with 3-
hidden layers and ≈ 350, 000 parameters achieved 96% overall
accuracy using the same 561 features. It is possible to improve
the CNN accuracy by using more complicated architectures
known as ResNets, i.e., fully convolutional networks with
residual connections, to achieve 96.9% overall accuracy, but at
the cost of increasing the network parameters to ≈ 1, 000, 000.

Fig. 24. Summary of results for CNN classification of HAR data.

14. IMAGE CLASSIFICATION WITH A CONVOLUTIONAL
NETWORK

The MNIST (Modified National Institute of Standards and
Technology) data [23] consists of hand-written gray-scale

28 × 28-pixel images of digits from 0 to 9, ten samples of
which are shown in figure 25.

Fig. 25. Samples of hand-written images from MNIST data.

We used a CNN to classify hand-written digits consisting
of 4 hidden layers, a flattening layer with 10 outputs that go
through a softmax nonlinearity to produce the final 10 class
probabilities. Hidden layer 1 has 32 convolutional neurons that
each have a single filter, while layers 2, 3 have 32 neurons each
of which has 32 filters. The last hidden Layer 4 has 10 neurons
with 32 filter each. Hidden layer 4 has 10 convolutional
neurons that each have 32 filters; all filters have size 3 × 3.
Figure 26 shows the CNN that we used. We chose a mini-
batch size of 25 which corresponds to 1, 875 weight updates

http://www.jhuapl.edu/techdigest

A.-H. Najmi, P. R .Emmanuel, and T. K. Moon

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest28

15

for each epoch, and we trained the network for 25 epochs.
This network had a total of 19, 358 trainable parameters and
achieved 97.8% accuracy on the test set. More sophisticated
network architectures with considerably more parameters have
achieved accuracies in excess of 99%.

Fig. 26. CNN to classify the MNIST hand-written images of digits 0− 9.

Figures 27, 28, 29 and 30 show the activation outputs for
convolutional layers 1 through 4.

Fig. 27. Activation outputs for class label 7 for convolutional layer 1.

Fig. 28. Activation outputs for class label 7 for convolutional layer 2.

Fig. 29. Activation outputs for class label 7 for convolutional layer 3.

Fig. 30. Activation outputs for class label 7 for convolutional layer 4.

Earlier layers tend to detect more primitive aspects of the
image and subsequent layers tend to learn more complex fea-
tures. The final convolutional layer learns a representation that
maximizes the probability of class membership. For instance,
in figure 30, the image that looks more like the correct class
(in this case, the number 7) is, in fact, produced by neuron 8.
Note that the neuron number corresponds to the actual digit
plus one, since classes are numbered 0 to 9.

15. RECURRENT NEURAL NETWORKS (RNN)

The neural networks considered so far have been static, i.e.,
for a given input vector, they produce a single output, or a

vector; they resemble combinatorial digital logic composed of
gates, and are incapable of keeping track of passage of time.
Recurrent neural networks (RNN) [24], like digital circuits
with memory, have an internal state which holds memory of
previous values; these together with the current input value
are used to make a decision. They are particularly useful for
tasks such as speech recognition or connected handwriting
recognition, when modeling data sequences that depend on
previous values, and they can be combined with convolutional
layers to extend the effective neighborhood of pixels.

Consider a recurrent neuron (RN) as depicted on the left
hand side of figure 31: at time step t it receives an input xxx

t

(that we assume to be a vector with length d), in addition to
the scalar valued hidden state output of the previous step h

t−1
.

The final output of the RN y
t

at time step t is found from its
hidden state h

t through a simple feed forward neuron with a
scalar weight w

hy
(the subscript indicates “hidden to y”) and

scalar bias b
y
,

y
t
= w

hy
h

t
+ b

y
.

The behavior of an RN, including only the input and the
hidden state, can be understood by unrolling it through time
as shown on the right hand side of figure 31, which also
introduces the notation for a summation unit followed by an
activation function. If we introduce a “x to hidden” weight
vector www

xh
of dimension d and a scalar “hidden to hidden”

weight w
hh

then the output of the recurrent neuron at time
step t is

h
t
= σ

(
wwwT

xh
xxx

t
+ w

hh
h

t−1
+ b

)
,

where b is the recurrent neuron bias and σ denotes the
activation function. Note that the weights and bias are shared
at all time steps, i.e., they do not change as a function of time
step t. The hidden state h

t at one time step t is often the only
quantity of interest, and so figure 31 shows a scalar valued
hidden state on the left hand side. Clearly, the process of

http://www.jhuapl.edu/techdigest

Modern Neural Networks

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest 29

16

calculating h
t

yields all previous hidden states . . . , h
t−2

, h
t−1

too. Putting all these values into an N × 1 vector (the number of
time steps) produces an N × 1 vector hhh[t]; the superscript is to
prevent confusion with the notation xxx

t
which is a d×1 vector

denoting the data vector at time step t, and whose elements
are not necessarily a time series. For instance, xxxt could denote
a collection of economic indices at time step t that are used to
predict the Dow Jones industrial average y

t from the hidden
state ht . Thus, in our discussion of a single RN we consider
the scalar hidden value h

t
and not the vector consisting of

hidden states at t and all previous time steps.

Fig. 31. An RN neuron and its unrolling through time.

The basic recurrent neuron concept can be generalized to a
layer of J recurrent neurons as illustrated in figure 32. The
outputs of individual recurrent neurons in each layer form the
vector output of the layer, e.g., if h(j)

t−1
is the scalar output of

recurrent neuron j, then

hhh
t−1

= [h(1)
t−1

, . . . , h(J)
t−1

]T ,

is the vector output of the layer at time step t−1, which is fed
into the layer at time step t. Thus, at time step t the hidden
state is

hhh
t = σ

(
www

xh
xxxt +www

hh
hhht−1 + bbb

)
,

where xxxt is a d× 1 vector, hhht and bbb are J × 1 vectors, www
xh

is
a J × d matrix, and www

hh
is a J × J matrix. Each neuron in the

layer has its own “x to hidden” weight vector and all these
weight vectors form the rows of the full weight matrix www

xh
.

Similarly, the “hidden to hidden” weight matrix is constructed
from those associated with each neuron while bbb is the vector
of individual biases for each RN in the layer. The final output
of this layer is given by a feed forward neuron with the hidden
state as input,

yyy
t
= www

hy
hhh

t
+ bbb

y
,

where www
hy

has dimension J × J and yyy
t

and bbb
y

have dimension
J × 1.

Fig. 32. A layer of recurrent neurons and its unrolling through time.

Recurrent neural networks are used in some distinct archi-
tectures as illustrated in figure 33; here we show the final

output of each RN without the intermediate hidden state, i.e.,
each box in the figure indicates an RN layer together with a
final feed forward NN to produce the output yyyt :

• (a) shows the basic configuration in which a sequence
of input vectors, in this case a sequence of 4 elements,
produces a sequence of output vectors. This architecture
can be used, for example, to reproduce or predict a time
series.

• (b) shows a configuration with a sequence of input vectors
and only a single output. This might be used, for example,
in a time series prediction application, where the input
is, say, a sequence of market related information and the
output is the 1-day prediction of a particular stock value.

• (c) shows a sequence with a single input and a sequence
of outputs. An application might use an image as input
image, to produce a sequence of words composing a
caption for the image.

• (d) has a sequence of inputs and a sequence of outputs,
but there is a delay between input and output. This
configuration is referred to as a decoder. A suggested
application is language translation, in which the input and
output are sequences of words. This architecture delays
the producing of outputs, i.e., the translation, until a few
words have been processed.

Fig. 33. Different recurrent network architectures.

The key to training a RNN is to unroll through time and then
apply backpropagation in the usual way [25]. For instance,
consider the delayed sequence to sequence structure shown
in figure 34 (once again, we show the final output and not
the hidden states). At time step t training data xxxt−4 , xxxt−3

(or a mini-batch at that time) are presented, resulting in
outputs yyy

t−2
, yyy

t−1
, yyy

t
, based on the current weights and biases

(dotted lines). Once the cost function for the current data is
computed, its gradient with respect to the weights and biases is
backpropagated (solid lines) through all neurons that influence
the outputs (in the present example, the neuron with input
xxx

t−4
).

Recurrent neural networks are particularly susceptible to the
vanishing gradient problem: states that are too far from the
current state contribute nothing to the learning, yet the network
must learn long-term dependencies in the data. A solution to
this problem is based on the concept of a Long Short-Term
Memory (LSTM) recurrent neuron [26] with a d× 1 input xxx

t

and hidden state vector hhh
t
.

http://www.jhuapl.edu/techdigest

A.-H. Najmi, P. R .Emmanuel, and T. K. Moon

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest30

17

Fig. 34. Data flow for backpropagation training of an RNN.

The central idea to remembering inputs over a long time
is that of a gated cell state (or gated memory unit) ccc

t
which

contains all the information up to time step t; it is gated so
as to give the cell the ability to store information (opening
the gate) or deleting it (closing the gate). An LSTM RN has
additional gates that control the flow of data to update the
cell state, i.e., how old memory and new memory are to be
combined. The gates are: input, input modulation, forget, and
output. The full operation of an LSTM neuron, illustrated in
figure 35, is described by:

iii
t
= σ(www

xi
xxx

t
+www

hi
hhh

t−1
+ bbb

i
),

ggg
t
= tanh(www

xg
xxx

t
+www

hg
hhh

t−1
+ bbb

g
),

fff
t
= σ(www

xf
xxx

t
+www

hf
hhh

t−1
+ bbb

f
),

ooo
t
= σ(www

xo
xxx

t
+www

ho
hhh

t−1
+ bbb

o
),

each defined with their own weight matrices and bias vectors.
The quantities iii

t
, ggg

t
, and fff

t
are computed first, and together

with the previous cell state ccc
t−1

are used to obtain the present
cell state which together with ooo

t
is used to compute the LSTM

hidden state output, as illustrated in figure 35,

ccc
t
= fff

t
⊗ ccc

t−1
+ iii

t
⊗ ggg

t
, hhh

t
= ooo

t
⊗ tanh(ccc

t
),

where ⊗ indicates element-by-element multiplication. The
final softmax output is

y
t
= softmax(wwwT

h
hhh

t
+ b

h
).

Fig. 35. A single LSTM recurrent neuron: iiit and gggt and fff t , together
with the previous cell state ccct−1 , are used to calculate the present cell
state ccct which together with ooot produce the LSTM output yyyt ; element by
element multiplication and addition are denoted by ⊗ and ⊕, respectively.
The previous output yyyt−1 and present data xxxt are input to all four gates.

We now show a LSTM regression analysis using the airline

passenger data [27] which is an example of a non-stationary
seasonal time series. Our network consists of a single LSTM
layer with J = 300 memory units, and feature dimension
d = 16, i.e., we use the previous 16 values xt−16 , . . . , xt−1 to
predict the present value x

t
. The output of the LSTM layer

is fed into a single output neuron (with hyperbolic tangent
activation) and is optimized with the minimum squared error
cost function. Figure 36 shows the actual passenger data, the
portion used for LSTM training and the training predictions,
and the validation portion of the data together with the LSTM
predictions. Although the network was never exposed to the
validation data (to the right of the dotted line) during training,
it clearly learnt the seasonal and non-stationary characteristics
of the data.

Fig. 36. LSTM prediction of airline passenger data.

More recently, gated recurrent units (GRU) have been found
to have similar performance to LSTM RNNs but with fewer
parameters. GRUs have two gates

iii
t = σ(wwwxixxxt +www

hi
hhht−1 + bbbi),

uuut = σ(wwwxuxxxt +www
hu
hhht−1 + bbbu),

and

ĥhht = tanh(www
xh
xxxt +www

hh
hhht−1 ⊗ iiit + bbbh),

hhh
t
= (1− uuu

t
)⊗ hhh

t−1
+ uuu

t
⊗ ĥhh

t
.

16. UNSUPERVISED LEARNING

A ll neural networks described so far fit the Supervised
Learning category, i.e., networks are trained to learn a

function that maps input data to associated output labels with
the goal of generalizing to new samples. The output labels
act as a guide for training, i.e., we minimize the difference
between actual output labels and estimated output labels. Thus,
backpropagation learning is used to train neural networks with
desired output labels corresponding to every training input.

Interestingly, there are neural network applications that do
not need output labels corresponding to input data. Such
applications of neural networks fall under the category of
Unsupervised Learning [28]. While less common than super-
vised networks, unsupervised networks are used in a variety
of applications. In this section we use unsupervised neural
networks for data compression, reconstruction, and generative
modeling. We demonstrate these capabilities with a class of
neural network models known as autoencoders [29].

http://www.jhuapl.edu/techdigest

Modern Neural Networks

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest 31

18

The basic configuration of an autoencoder is shown in figure
37. The training data is presented as both input and output
data, i.e., the input data act as “targets” for the network, and
the network is trained to reproduce the input data as accurately
as possible. This raises the question of the usefulness of such
a network if the output is essentially the same as the input.
The key to the utility of the autoencoder is in the hidden
layers. Typically, as suggested by figure 37, the hidden layers
become successively smaller as the inner-most hidden layer,
often called the bottleneck layer, is approached; the bottleneck
layer corresponds to the layer with the lowest dimension in
the network. Having fewer neurons to work with in each
successive layer, the neural network learns to find an efficient
representation of the data, i.e., it learns to perform data
compression. The successive decrease in dimensionality of the
hidden layers forces the network to send maximally useful
information through the bottleneck layer since the network
is tasked with reconstructing the input data as accurately as
possible. Thus, the bottleneck layer represents the input data in
an optimally compressed form and in much smaller dimension
than the original input dimension.

Fig. 37. Basic autoencoder configuration with input N × 1 data vector. The
encoder portion has three hidden layers with N1 > N2 > N3 neurons, with
the last hidden layer known as the bottleneck layer. The decoder portion has
two hidden layers with N2 and N1 neurons, respectively. The output vector
has the same dimension N as the input vector.

For instance, consider the MNIST data set of 28×28 images
of digits 0−9, each of which is represented as a vector xxx

k
with

784 elements. Since the images represent 10 digits, it seems
unlikely that there are 784 independent dimensions in the data
set. Although there are a number of swoops, loops, and strokes
in all the digits, it seems reasonable to expect to represent
the data with a smaller number of dimensions than 784. For
example, we could train an autoencoder whose bottleneck
layer has 100 neurons. If it turns out that this autoencoder is
able to reproduce the input data accurately, then we say that
the intrinsic data dimension is closer to 100 rather than the
ambient dimension of 784. Exploring with different number
of neurons in the bottleneck layer, a sense of the intrinsic
dimension of the original data can be obtained.

We may view an autoencoder as a model with two distinct
pieces as illustrated in figure 37: the layers from the input
to the bottleneck layer form the encoder while the layers
after the bottleneck layer, all the way to reconstructed output
layer, form the decoder. The encoder encodes the input data
by embedding it into a new latent space whose dimension

is close to the intrinsic dimension of the data. The encoder
output, often referred to as latent code, is then passed into
the decoder for reconstruction. The process is exactly the
same as data compression and reconstruction but now we view
the latent code zzz from a different perspective that will show
its utility as more than a compressed representation of the
original input xxx: if we knew the distribution function f(zzz)
of the latent code zzz, then we could generate data with the
same (unknown) distribution of the input by simply feeding
into the decoder realizations from the distribution f(zzz). We
shall see how this can be accomplished using a form of
unsupervised learning known as a generative model. Whereas
in discriminative models (supervised learning) networks learn
the conditional probabilities P (yyy|xxx), where yyy is a set of
classification labels, generative network models learn the joint
probability density function f(xxx) of the input vector xxx. Thus,
generative models allow us to create data realizations xxx once
the joint density f(xxx) has been learnt. The ability to create
unlimited data realizations from a comparatively small sample
is of enormous significance in data analysis when actual data
being modeled is difficult to obtain because of processing or
acquisition constraints.

17. GENERATIVE ADVERSARIAL NETWORKS

A flexible class of generative models is known as Gener-
ative Adversarial Networks or GAN(s) [30] which typi-

cally consist of two competing neural networks, the generator
G and the discriminator D, in a zero-sum game (a game in
which the algebraic sum of all participants’ gains and losses
equals zero) [31] where each neural network has objectives
counter to the other.

The generator network G has the goal of generating “fake”
samples xxx

f
that accurately mimic realizations from the dis-

tribution function f(xxx), while the goal of the discriminator
network D is to differentiate between “genuine” data realiza-
tions xxx and generated ones xxx

f
, and ultimately reject the fake

realizations. Thus, G tries to generate fake samples from the
true distribution f(xxx) that look sufficiently genuine that D fails
to reject them. The discriminator D, on the other hand, has the
goal of accurately differentiating between generated samples
xxx

f
and genuine ones xxx. The two models “learn” by minimizing

their respective losses: the generator G minimizes its loss when
it can successfully “fool” the discriminator D into classifying
one of its generated samples as a genuine sample, while the
discriminator D minimizes its loss when it can correctly reject
the generated samples.

Figure 38 illustrates the GAN architecture in more detail;
the generator and discriminator networks can be fully con-
nected or convolutional. GANs have two distinct modes of
training to facilitate the zero-sum game between G and D: the
Generator and the Discriminator train in sequence and each
network attempts to minimize its own loss. Note that the loss
is always calculated at the output of D but the calculation
could use different functions depending on the network that
is being trained. Typical losses used to optimize GANs are
Wasserstein and least-squares loss functions [32], [33].

In the first training phase, D attempts to minimize its error
(e.g., cross entropy, minimum squared error (MSE), etc.) by

http://www.jhuapl.edu/techdigest

A.-H. Najmi, P. R .Emmanuel, and T. K. Moon

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest32

19

Fig. 38. A typical Generative Adversarial Network (GAN). Each rectangle
represents a hidden layer of arbitrary size except for: the output layer of G
which must match the dimension of xxx, and the output of D which must allow
for binary classification (i.e., single sigmoid node or two softmax nodes).

discriminating between the output of G and the real samples
xxx. Initially D easily rejects the output of G since G has not
updated its weights; it produces samples that look like random
noise. In the next training phase we optimize G so that it can
generate samples that D will fail to classify as fake samples.
During this phase the samples generated by G are sent to
D for classification and the resulting cost is used to update
the weights of G via the backpropagation algorithm we have
described in section 5. This gives G a chance to improve
itself in order to fool D more effectively, but now D needs
to improve itself in order to deal with the better samples now
being generated by G. The training phases alternate allowing
G and D to compete until their respective losses stabilize and
G produces samples that are sufficiently good that D fails to
reject them. At this point G can generate samples that mimic
the training data and can be used purely as a generative model.

It is important to note that when optimizing D the label on
the output of G is “fake” and the label on true samples is
“genuine”, but when optimizing G the label on the output of
G is “genuine” and so is the label on xxx — this is necessary
in order to gauge how genuine the fake samples look to D, as
shown in figure 39.

Fig. 39. The two phases of the GAN training process.

GANs are difficult to train; they are typically very sensitive
to hyper-parameter tuning [34]. While progress has been made
in this regard often GANs converge to solutions that are
not very good, or can diverge altogether. Sometimes when
GANs do converge, they do so in ways that do not accurately
model the underlying distribution of the data. One of the most
common issues encountered in GAN training is mode collapse

[34] when the generator learns to only generate a single (or
near single) mode in an underlying multi-modal distribution.
Essentially, GANs can arrive at solutions that maximally fool
the discriminator (i.e. images look like sufficiently realistic
samples from xxx when evaluated by D) but lack the actual
variation present in the underlying data. If we consider the
MNIST digits, this would be the equivalent of a generator G
learning to only generate realistic 1’s and 7’s leaving all the
other digits unrepresented, regardless of the input zzz into G.

Given the above issues with GAN training we wish to learn
a generative model that avoids them. Autoencoders seem to be
a good class of models since they explicitly model the entire
data and converge using modern training techniques. Although
“vanilla” autoencoders are not generative models, they can be
sufficiently enhanced with ideas from the GAN paradigm to
turn them into generative models. This class of unsupervised
models is called adversarial autoencoders or AAE. AAEs
provide the generative capabilities of GANs with the training
stability and convergence properties of autoencoders, i.e., they
explicitly control for mode collapse [35].

Figure 37 shows how an autoencoder can be viewed as
the combination of two distinct parts: an encoder enc and
a decoder dec. The encoder takes some input vector xxx and
outputs a latent code enc(xxx) that is fed into the decoder
producing the reconstructed output x̂xx ≡ dec(enc(xxx)). As
stated above, if enc(xxx) followed some probability distribution
f(xxx), then we could generate samples from this distribution
and feed them to the decoder for data generation. This is
precisely what adversarial autoencoders learn to do; they
learn to optimally compress and reconstruct the input while
simultaneously forcing enc(xxx) to follow an arbitrary prior
distribution f(xxx) (typically a joint Gaussian distribution).
Once the network converges we can sample f(xxx) and feed that
data to the decoder and generate data that mimic the variation
in the training set without worrying about mode collapse.

To train an AAE the latent code representation must be
regularized in such a way as to force it to follow a prior
probability distribution. We do this by incorporating a dis-
criminator DAAE into the autoencoder learning process. Much
like regular GANs the discriminator in this setup takes two
inputs. One input comes from a multi-dimensional probability
distribution (which has the same dimension as the autoencoder
latent code enc(x)) called the real samples, and the other
input to the DAAE comes from the bottleneck layer output
code enc(xxx) called the fake samples. To train the AAE we
alternate between two training phases much like with GANs:
the first phase consists of training DAAE to discriminate between
samples from a real probability distribution and the latent
code of our autoencoder enc(xxx). The next phase consists of
training the autoencoder to perform its regular reconstruction
task while simultaneously minimizing its loss with respect to
how believable the latent codes it produces are to DAAE . In
other words, it learns to do reconstruction while ensuring that
the latent code produced by the encoder follows the specified
prior distribution. Figure 40 shows an example of a vanilla
AAE as a traditional autoencoder coupled with a discriminator
that takes f(xxx) and enc(xxx) as inputs. Forcing the AAE to
learn to reconstruct the data while producing enc(xxx) samples

http://www.jhuapl.edu/techdigest

Modern Neural Networks

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest 33

20

that fool DAAE is the reason models in this class are called
adversarial; DAAE does not want to be fooled by the output of
the encoder, while the encoder tries to fool the discriminator
into classifying its output enc(xxx) as coming from the real prior
distribution f(xxx).

Fig. 40. Adversarial Autoencoder (AAE): an autoencoder coupled with a
discriminator, trained using the same alternating phases as GANs.

We demonstrate an AAE application using the MNIST data
set. Rather than using the vanilla AAE we use a supervised
version that learns to disentangle “style” (variation) from
“content” (class label) in the training images. In this setup we
can hold a class label fixed and observe the variation present in
class by sampling from our prior distribution and passing that
as input to our decoder for image generation. We can also hold
variation constant and observe how the factors of variation we
have isolated affect the different classes in our data. To train
this supervised variant of an AAE the only modification we
make is to add a one-hot label to the input of our decoder;
otherwise the training process is the same as with the standard
AAE formulation we described above. The supervised AAE
allows the generator to associate the data it reconstructs with
class labels. Once the model converges we can fix the one-hot
label (i.e. content input) and sample our prior distribution (i.e.
style input), or vice versa, and generate new data samples.
Figure 41 illustrates a supervised AAE architecture.

Fig. 41. Supervised Adversarial Autoencoder (AAE).

Figure 42 (a replication of the results in the original AAE
paper [35]) shows the output of our trained supervised AAE
that clearly demonstrates the ability of the model to separate
content and style in the images.

Fig. 42. Trained supervised AAE separating content and style.

REFERENCES

[1] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Math. Control Signals Systems, vol. 2, pp. 303–314, 1989.

[2] K. Hornik, M. Stichcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, pp.
359–366, 1989.

[3] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65,
pp. 386–408, 1958.

[4] D. Pedamonti, “Comparison of non-linear activation functions for deep
neural networks on MNIST classification task,” https://arxiv.org/pdf/
1804.02763.pdf, arXiv:1804.02763v1 - 8 Apr 2018.

[5] S. Ruder, “An overview of gradient descent optimization algorithms,”
https://arxiv.org/pdf/1609.04747.pdf, arXiv:1609.04747v2 - 15 Jun 2017.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[7] P. D. Wasserman and T. Schwartz, “Neural Networks, Part 2: What they
are and why everybody is so interested in them now,” https://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=2091, pp. 10–15, IEEE Expert,
Spring 1988.

[8] M. Nielsen, “Why are deep neural networks hard to train?” http:
//neuralnetworksanddeeplearning.com/chap5.html.

[9] P. Chaudhari and S. Soatto, “Stochastic gradient descent performs
variational inference, converges to limit cycles for deep networks,”
https://arxiv.org/pdf/1710.11029.pdf, arXiv:1710.11029v2 - 16 Jun 2018.

[10] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” https://arxiv.org/
pdf/1502.03167.pdf, arXiv:1502.03167v3 - 2 Mar 2015.

[11] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf.

[12] S. K. Kumar, “On weight initialization in deep neural networks,” https:
//arxiv.org/pdf/1704.08863.pdf, arXiv:1704.08863v2 - 2 May 2017.

[13] P. Domingos, “A few useful things to know about machine learning,”
http://www.astro.caltech.edu/∼george/ay122/cacm12.pdf.

[14] Y. Jiang, D. Krishnan, H. Mobahi, and S. Bengio, “Predicting the
generalization gap in deep networks with margin distributions,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=HJlQfnCqKX

[15] C. Shorten and T. Khoshgoftaar, “A survey on image data augmentation
for deep learning,” https://doi.org/10.1186/s40537-019-0197-0, 2019.

http://www.jhuapl.edu/techdigest

A.-H. Najmi, P. R .Emmanuel, and T. K. Moon

Johns Hopkins APL Technical Digest, Volume 36, Number 1 (2022), www.jhuapl.edu/techdigest34

21

[16] R. Caruana, S. Lawrence, and L. Giles, “Over-fitting in neural nets:
Backpropagation, conjugate gradient, and early stopping,” in Proceed-
ings of the 13th International Conference on Neural Information Pro-
cessing Systems. MIT Press, 2000, pp. 381–387.

[17] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” https://arxiv.org/pdf/1207.0580.pdf,
arXiv:1207.0580v1 - 3 Jul 2012.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,
2014.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, pp. 2278–2324,
1998.

[20] K. Fukushima, “Neocognitron: A Self-Organizing Neural Network
Model for a Mechanism of Pattern Recognition Unaffected by Shift
in Position,” Biol. Cybernetics, vol. 36, pp. 193–202, 1980.

[21] M. Lin, Q. Chen, and S. Yan, “Network in network,” https://arxiv.org/
pdf/1312.4400.pdf, arXiv:1312.4400v3 - 4 Mar 2014.

[22] D. Dua and C. Graff, “UCI machine learning repository,” http://archive.
ics.uci.edu/ml, 2017.

[23] Y. LeCun, C. Cortes, and C. J. C. Burges, “The MNIST database of
handwritten digits,” http://yann.lecun.com/exdb/mnist/.

[24] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recur-
rent neural networks for sequence learning,” https://arxiv.org/pdf/1506.
00019.pdf, arXiv:1506.00019v4 - 17 Oct 2015.

[25] P. Werbos, “Backpropagation through time: What it does and how to do
it,” Proc. IEEE, vol. 78, pp. 1550–1560, 1990.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, pp. 1735–1780, 1997.

[27] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control. Hoboken, N.J.: Wiley, 2008.

[28] Z. Ghahramani, “Unsupervised learning,” ML Summer Schools — 2003
Advanced Lectures on Machine Learning, vol. LNAI 3176, 2004.

[29] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
JMLR: Workshop and Conference Proceedings, vol. 27, pp. 37–50, 2012.

[30] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
https://arxiv.org/pdf/1406.2661.pdf, arXiv:1406.2661v1 - 10 Jun 2014.

[31] J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior. Princeton, N.J.: Princeton University Press, 1944.

[32] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” https:
//arxiv.org/pdf/1701.07875.pdf, arXiv:1701.07875v3 - 6 Dec 2017.

[33] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley,
“Least squares generative adversarial networks,” https://arxiv.org/pdf/
1611.04076.pdf, arXiv:1611.04076v3 - 5 Apr 2017.

[34] N. Kodali, J. Abernethy, J. Hays, and Z. Kira, “On conver-
gence and stability of GANs,” https://arxiv.org/pdf/1705.07215.pdf,
arXiv:1705.07215v5 - 5 Apr 2017.

[35] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey,
“Adversarial Autoencoders,” https://arxiv.org/pdf/1511.05644.pdf,
arXiv:1511.05644v2 - 25 May 2016.

A.-H. Najmi completed the Mathematical Tripos
at Cambridge University and received the D.Phil.
degree in theoretical physics from St. Catherine’s
College, Oxford University. He taught at the Uni-
versity of Utah and conducted research in seismic
imaging at Shell Oil Bellaire Research center in
Houston before joining the Johns Hopkins Univer-
sity Applied Physics Laboratory, where he also holds
a joint faculty appointment at the Johns Hopkins
School of Medicine. In addition to publications in
diverse areas of theoretical physics, geophysics, and

biophysics, he has published a graduate textbook on wavelets (John Hopkins
University Press, 2012) and a graduate textbook on advanced signal processing
(McGraw Hill, 2020).

Patrick Emmanuel received his Bachelor’s degree
in mathematics and computer science from Palm
Beach Atlantic University. He is currently pursu-
ing a master’s degree in applied mathematics from
the Johns Hopkins University. He has been at the
Applied Physics Laboratory since 2017 where he
conducts applied deep learning research and systems
development.

T. Moon received his bachelors degree summa
cum laude in electrical engineering and mathematics
from Brigham Young University. He completed his
Ph.D. in Electrical Engineering at the University of
Utah. He has been at Utah State University since
1991, where he is now professor and head of the
Electrical and Computer Engineering Department.
His publications in signal processing and digital
communications include three textbooks in signal
processing and error correction coding.

http://www.jhuapl.edu/techdigest

	Modern Neural Networks
	Amir-Homayoon Najmi, Patrick R. Emmanuel, and Todd K. Moon
	1. ABSTRACT
	2. INTRODUCTION
	3. PERCEPTRON AND THE NEURON MODEL
	4. FULLY CONNECTED FEED FORWARD NEURAL NETWORKS
	5. THE BACKPROPAGATION ALGORITHM
	6. LOSS FUNCTIONS IN NEURAL NETWORK TRAINING
	7. GRADIENT DESCENT VARIANTS
	8. SINGLE-HIDDEN-LAYER AND MULTIPLE-HIDDEN-LAYER NEURAL NETWORKS
	9. MINI-BATCH TRAINING AND NORMALIZATION
	10. NETWORK INITIALIZATION
	11. REGULARIZATION
	12. CONVOLUTIONAL NEURAL NETWORKS (CNN)
	13. TIME SERIES CLASSIFICATION WITH A CONVOLUTIONAL NEURAL NETWORK
	14. IMAGE CLASSIFICATION WITH A CONVOLUTIONAL NETWORK
	15. RECURRENT NEURAL NETWORKS (RNN)
	16. UNSUPERVISED LEARNING
	17. GENERATIVE ADVERSARIAL NETWORKS
	REFERENCES
	Author Bios

