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Quantum Matched Filtering—Signal Processing in 
the Quantum Age

Paraj Titum, Kevin M. Schultz, Alireza Seif, Gregory D. Quiroz, and B. David Clader

ABSTRACT
Optimal quantum control theory identifies the quantum equivalent of a matched filter, which 
maximizes the signal-to-noise ratio, enabling exploitation of extremely high sensitivity of quan-
tum sensors to detect known signals of interest. This article describes a Johns Hopkins University 
Applied Physics Laboratory (APL) team’s work in this field.

or absence of a signal with known spectrum in the pres-
ence of background noise.

METHODS AND RESULTS
In the presence of an external signal and noise, the 

coherence of a qubit decays exponentially. This coher-
ence decay causes a change to the probability of a bino-
mial measurement outcome that can be observed in the 
lab. This difference can be amplified by quantum con-
trol [denoted by (t)]. This notional detection scheme is 
shown in Figure 1.

Detection Protocol
The quantum circuit for the detection protocol is 

shown in Figure 2a and can be described in four steps: 
(1) Initialize in a quantum superposition state. (2) Evolve 
for time t = topt in the presence of the background and 
control. Here, topt is chosen depending on the signal, 
noise, and control to maximize the likelihood ratio by 
maximizing the difference in decays between the signal 
present and absent cases. (3) Undo the quantum super-
position. (4) Measure. Record outcome as 0 or 1. Repeat 
steps 1–4 Nshots times.

INTRODUCTION
Quantum systems are extremely sensitive to external 

fields, making them ideal for sensing weak signals. Prom-
ising candidates for quantum sensors include defects in 
diamond or SiC (silicon carbide), SQUID (superconduct-
ing quantum interference device)-based sensors, atomic 
sensors, and others (see, e.g., Ref. 1). These systems are 
also candidates for building quantum bits (qubits), the 
elementary component for information processing in 
quantum computers. A variety of sensing techniques 
have been developed to estimate either the magnitude 
or phase of a signal using qubits as the sensing platform. 
For example, Ramsey interferometry2 allows for estima-
tion of magnetic field amplitude with sensitivity limited 
by the free-evolution dephasing time of the qubit, which 
can be enhanced through optimal control methods.3

Here, we formulate the classical detection problem 
but in the context of a quantum sensor: is the incoming 
time-varying signal sensed by the qubit just noise, or is it 
signal plus noise? This task has been studied extensively 
in the field of classical decision theory.4 In contrast to 
traditional quantum sensing protocols that seek to accu-
rately estimate a signal parameter (e.g., the amplitude or 
phase), this work focuses on identifying control proto-
cols that optimally discriminate between the presence 
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Optimization for Detection
The optimal detector requires the control protocol 

that maximizes the difference between signal pres-
ent and absent cases. This is determined by a two-
step procedure: (1)  Optimize over control trajectories 
to obtain opt(t) for detection at a particular time t. 
(2) Optimize over different times to obtain the optimal 
detection time topt.

Results
The signal and background noise are classical Gauss-

ian stochastic processes, with zero mean and power 
spectrum denoted by Ss() and S(), respectively; 
see Figure  2b.  denotes the signal-to-noise power 
ratio (SNR), and the signal is chosen in the regime of 

low SNR,  << 1. Using what is known as the second 
cumulant approximation (SCA),5 we analytically iden-
tify the optimal control for white background noise—
spin-locking; see Figure 2c, in red. This corresponds to 
constant control at the frequency of signal’s maximum, 
(t) = 0, (see Figure 2, b and c). We verify the per-
formance of this protocol and other common schemes 
by numerical simulation. Figure  2d shows the signal 
showing agreement with the SCA. We compare spin-
locking with two well-known sensing protocols (see 
Figure  2c): (1)  Carr–Purcell–Meiboom–Gill (CPMG) 
pulse sequence, where (t) is given by a series of equi-
distant -pulses (where  refers to a unitless measure 
of the pulse area) separated by free evolution periods of 
duration /0; and (2)  Ramsey interferometry, where 
(t) = 0. Figure 2e shows that spin-locking performs the 
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Figure 1.  Notional detection scheme. The schematic figure shows a detection experiment 
using a single-qubit/two-level system as a detector. The plot shows an example output for 
detection probabilities. The optimal time for detection is at t = topt.
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Figure 2.  Results of our work. (a) Detection protocol. (b) Power spectral density (normalized) for the background noise (blue) and the 
signal (orange). (c) Different control protocols for sensing spin-locking, CPMG, and Ramsey. (d) Outcome probabilities P|0(t) in the pres-
ence (red) and absence (black) of signal. Points are from exact numerical simulations, and the solid line is the approximate result from 
SCA. (e) Equal error rates in detection as a function of the number of shots for different control protocols.
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a spin-lock drive is nearly optimal for detecting a signal 
in certain noise environments. This work opens up 
an exciting use case for currently available quantum 
sensor hardware. Furthermore, as both the solution 
and analysis were heavily motivated by classical signal 
processing, there is much untapped potential in future 
application of these classical techniques to the quantum 
sensing domain.
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best: given an error rate, it requires fewer measurements 
to identify the presence of the signal.

The detection scheme can be used to identify sig-
nals in electromagnetic fields with the bandwidth only 
limited by the frequency range of the control drive. For 
spin-lock driving, experimental practicalities such as 
saturation and drive-power limitations likely limit this 
to about 10–100 MHz for SiC quantum sensors. On the 
other hand, CPMG-type control allows for much higher 
detection bandwidth.

OUTLOOK
There are several directions for future work. Multi-

axis control needs to be explored to identify more robust 
protocols for detection. Another possibility is to con-
sider cases where the signal or noise is non-Gaussian 
and/or nonstationary. Finally, we have yet to consider 
the role of multiple qubits and entanglement, which may 
provide an enhancement beyond what available classical 
techniques offer.

CONCLUSIONS
This work analyzed the performance of different 

control schemes for detecting a signal and shows that 
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