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ABSTRACT
The Motifs to Models team at the Johns Hopkins University Applied Physics Laboratory (APL) lever-
ages the existence proof provided by biological circuitry—of robustness, adaptability, and low-
sample learning at very low size, weight, and power—to explore novel computational substrates 
toward critical sponsor needs in computation and artificial intelligence.

Achieving transformative capabilities through the 
development of novel computational models, such as 
those inspired by examination of neural circuits, is a 
core critical opportunity across diverse Department of 
Defense (DOD) domains. Current artificial intelligence 
and machine learning approaches often rely on a small 
number of heuristically constructed networks rather 
than exploiting a principled design strategy. Similarly, 
prototype neuromorphic processor architectures (e.g., 
Intel Loihi, IBM TrueNorth) have the capacity to sta-
tistically simulate individual neurons but draw little 
architectural inspiration from actual brains. In the work 
described in this article, we examine biological intel-
ligence for inspiration. We do so by representing the 
brain as a graph where nodes are neurons and edges are 
synapses between them, identifying significant compu-
tational units, or motifs, within the data, and, finally, by 
incorporating those motifs into new computing archi-
tectures (see Figure 1). Brains provide an existence proof 
for efficient, robust computation and address many fun-
damental challenges in understanding, such as robust-
ness, adaptability, and low-sample learning.

Connectomics is an emerging scientific pursuit 
focused on mapping neuronal circuitry, at the single-

Figure 1. Motifs to Models conceptual diagram. We represent 
neuron-level brain data as a graph, identify significant motifs, 
and use those motifs to define neurally inspired neural network 
architectures.
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neuron level, using both structural and functional 
connectivity information. Through internal invest-
ment, collaboration, and support for emerging data 
sets of unprecedented scale,1,2 such as the structural 
and functional networks in the mouse and fly connec-
tomes, APL is now positioned to discover and exploit 
fundamental micro- and mesoscale structure–function 
relationships.

Several core principles are believed to fuel the com-
putational power and efficiency of the biological brain, 
including hierarchical networks, quantized computa-
tions, and learning algorithms. One underexplored con-
cept is motifs—repeated computational units—that can 
be observed at different scales and modalities. Motifs 
likely account for key remaining gaps between today’s 
artificial neural networks and future computational 
architectures that truly approximate the brain.

Neuroscientists have developed theories and looked 
for motifs within the brain at a smaller scale, often iden-
tifying candidate patterns, but without the techniques 
or data required to confirm a repeated layout.3–5 Other 
researchers6 detected small (two- to five-node) struc-
tural and functional motifs, testing the hypothesis that 
the brain employs a small number of structural motifs 
for efficient encoding and assembly while maximizing 
functional diversity. Researchers have also focused on 
data-driven motif discovery using community detection 
rather than searching for specific circuits.7

APL’s Motifs to Models research develops the theo-
retical groundwork and computational tools needed to 
identify significant computational motifs in neural cir-
cuits, particularly in the presence of errors and at scale. 
Discovered neural motifs are then translated to novel 

architectures by adapting state-of-the-art evolutionary 
architecture search algorithms. In short, the goals of 
this project are threefold: (1) to identify candidate motifs 
within connectomics data sets, (2) to verify the inci-
dence of these motifs in large connectomics data sets, 
and (3) to demonstrate their algorithmic significance 
(e.g., on visual perception tasks).

To identify candidate motifs within inherently noisy 
data, the team is developing a probabilistic approach 
for identifying significant repeated computational 
units within the brain, even in the presence of errors 
common to automatically reconstructed networks. 
The approach defines a random graph model based on 
uncertainties within the reconstruction and counts 
the expected number of a particular subgraph rather 
than an exact count. These expected values can then 
be compared with those of a purely (non-data-driven) 
random model to see whether they appear to occur pur-
posefully or at random. Counting triangles in a simple 
tripartite graph illustrates how a probabilistic approach 
provides better information for comparison, showing 
the distribution of possible count values as opposed to 
a single static count value without knowledge of how 
reconstruction errors may have biased that count (see 
Figure 2).

Once candidate motifs are identified, we use our 
deterministic motif-finding tool, DotMotif,8 which 
provides a neuroscience-oriented paradigm for efficient 
subgraph search. See Figure 3, a–c, for a description 
of the subgraph search problem. Incidence of motifs 
can be quickly identified across large volumes of both 
structural and functional data for further verification of 
significance.
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Figure 2. Demonstration of preliminary results from probabilistic motif-finding algorithm. This approach can be used to find prob-
able computational patterns for seeding network search, even in the presence of noise. On the left, the green and red curves estimate 
the number of triangles in a noisy version of the tripartite graph on the right for two different levels of noise. The mean values of these 
curves are good approximations of the true count (the black vertical line in the plot on the left) despite significant levels of noise in the 
data. The blue curve represents the number of triangles that you might expect to see at random (in an Erdős–Rényi random graph model 
of the same density).
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Figure 4. WANN and motifs concept. While the WANN algorithm evolves neural network architectures through simple actions like node 
insertion, edge addition, or change of activation function, our approach allows inclusion of more sophisticated computational units 
discovered in neural data using our probabilistic and deterministic approaches to motif finding.

Figure 3. Subgraph search and DotMotif examples. A subgraph of interest is identified (a), as well as the host graph (b) in which the 
search will occur. All instances of the subgraph are identified in the host graph (c). Also shown is a rendering of a motif hypothesized by 
Takemura et al.5 (d) to be important for computation in the Drosophila data set. Using DotMotif, the APL team was able to quickly identify 
all instances of this subgraph, as well as many permutations of the subgraph, to verify that it does, in fact, occur most frequently within 
the data set. This demonstrates a capability to automatically identify relevant computational units in large neuroanatomical data sets, 
which will greatly accelerate motif search.

(a) Motif de�nition

(b) Host graph

(c) Motif query results

(d) Motif rendering
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As an example of this work, the team verified the 
repeated existence of the motion detection circuit in 
a large volume of Drosophila data,5 a circuit that was 
previously confirmed only through intense manual labor 
(see Figure 3d for a rendering of the hypothesized motif 
of interest). Though work thus far has focused solely 
on motif structure, leveraging existing functional attri-
butes of nodes and edges may further constrain or guide 
computational motif discovery. The emergence of these 
enriched connectomes will enable search through both 
structural and functional modalities.

Initial computational tests of candidate motifs will 
build on weight-agnostic neural networks (WANNs).9 
A WANN is a neural evolutionary algorithm designed 
to produce novel neural network architectures to solve 
reinforcement learning and classification tasks. It 
focuses on producing high-performing neural networks 
by iteratively evolving architecture as opposed to train-
ing weights. The initial implementation of WANNs is 
seeded with a small set of motifs. The APL team will 
seed and regularize WANNs with neurally inspired 
motifs to identify architectures with desirable properties 
of brain networks, such as robustness, efficient comput-
ing, and more. Initial results are promising, with seeded 
motifs appearing frequently within the resulting archi-
tectures (see Figure 4).

When applying these approaches to biological data, 
we hope to eventually embody human-like cognition 
in machines to address a variety of challenges related 
to knowledge acquisition, understanding, and action in 
complex environments. Toward this goal, the techniques 
described in this article, developed using internal invest-
ment, will enable exploration of topics such as (1) recurrent 
architectures and improved learning rules; (2) recon-
figurable and adaptable networks for continual learning; 
(3) neuroscience rules for neuromorphic architectures; 

(4) improvements in size, weight, power, and robustness; 
and (5) an understanding of neural circuit transfer func-
tions and their application to regularizing simulated and 
robotic agents. We believe this work provides a key dif-
ferentiator for the future of artificial intelligence research.
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