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Achieving Mission Impact with Data Science

John Piorkowski

ABSTRACT
Data science emerged as a popular technical field by leveraging the advances in data storage, 
computing, and machine learning. Practical applications of data science are far-reaching and 
include marketing, fraud detection, logistics, crime prediction, social engagement, sports team 
management, and health care. Recognizing this profound impact, the Johns Hopkins University 
Applied Physics Laboratory (APL) Asymmetric Operations Sector (AOS) created the Data Science 
Initiative (DSI) to apply data science to national security challenges and health care. The DSI 
accelerated APL data science contributions to national security and health care by creating new 
research initiatives and establishing deep technical competencies that shaped and directed novel 
solutions across the AOS mission space.

WHAT IS DATA SCIENCE?
The Beginnings of Data Science

Data collection and analysis have been around long 
before the advent of the computer. A notable example is 
the work of Matthew Fontaine Maury, who was known 
as the Scientist of the Seas. Maury was a pioneer in 
the field of ocean navigation during the mid-1800s.1 
He joined the Navy at the age of 19, but a stagecoach 
accident forced him to give up traveling the seas and 
to take an assignment at the Navy with the Depot of 
Charts and Instruments. The Depot of Charts and 
Instruments would later become the US Naval Obser-
vatory. By studying meteorology, collecting data from 
ship’s logs, and creating charts, Maury revolutionized 
our understanding of oceanography and marine naviga-

INTRODUCTION
In 2016, each APL sector established next-generation 

initiatives with internal investment to position the Lab-
oratory to create innovations that were yet envisioned 
by our sponsors. Accordingly, the Asymmetric Opera-
tions Sector (AOS) created the Data Science Initiative 
(DSI) to address technologies for solving the enduring 
problem of exponential data growth across the national 
security and medical communities with insufficient 
analysts. (The term analyst broadly refers to technology 
users of interest to AOS. They include cyber operators, 
intelligence analysts, clinicians, and special operators.) 
Overall, the DSI led to the sector establishing a new 
competency and several technologies that have resulted 
in innovative contributions across mission areas.
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tion. Figure 1 illustrates his 1851 Trade Wind Chart of the 
Atlantic Ocean, which assisted ship captains at the time 
with their cross-Atlantic journeys.

A modern history of data science enabled by com-
puting is often credited to a 1962 paper by John Tukey 
titled “The Future of Data Analysis.”2 In this paper, he 
describes procedures for analyzing data, interpreting 
results, and planning for the gathering of data, as well 
as the statistics that apply to these procedures. Tukey’s 
prophecy of data analysis motivated a shift from theo-
retical statistics and advocated for applied statistics to 
become data analytics. Tukey’s paper has been reviewed 
more recently and still stands as a foundation for modern 
data science.3

In 1974, Peter Naur published the “Concise Survey 
of Computer Methods” and repeatedly used the term 
data science, defining it as “the science of dealing with 
data, once they have been established, while the relation 
of the data to what they represent is delegated to other 
fields and sciences.” 4 Despite the repeated use of the 
term in Naur’s publication, many credit William Cleve-
land with coining the term data science with his publica-
tion in 2001. In his paper,5 he advocates for a substantial 
change to the field of statistics. To reinforce a signifi-

cant change, he advocated for a new field called data 
science. He asserted that data science should include 
the following:

•	 Multidisciplinary investigations

•	 Models and methods for data

•	 Computational systems

•	 Pedagogy for education

•	 Evaluation of tools

•	 Theoretical foundations

Cleveland’s paper is cited as the seminal data paper; 
however, the field did not gain popularity until the 
explosion of internet connectivity, the low cost of data 
storage, and the big data era. The term big data refers to 
large and complex data that cannot be addressed with 
traditional relational database tool sets.6

Data Science Today
Leveraging the advances in data storage, comput-

ing, and machine learning, data science emerged as a 
popular field. Practical applications of data science are 

Figure 1.  Trade Wind Chart of the Atlantic Ocean by Matthew Fontaine Maury, 1851. Maury was a pioneer in the field of ocean navigation 
during the mid-1800s. This map, one of many he created, assisted ship captains with their cross-Atlantic journeys. (From Geography and 
Map Division, Library of Congress.)
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far-reaching and include market-
ing, fraud detection, logistics, 
crime prediction, social engage-
ment, sports team management, 
and health care.7 Any data sci-
ence application can be con-
sidered along the data science 
maturity ladder illustrated in 
Figure  2. The maturity model is 
adapted from the analytics value 
chain presented by Anderson.8 

The initial (and often the most 
resource-intensive) step to mature 
a data-driven approach is the 
data engineering. Data engineer-
ing can also be described as data 
wrangling; curation; or extract, 
transform, load (ETL). As previ-
ously mentioned, the reduced cost 
of memory has led to the creation 
of enormous amounts of data. 
However, the data are often con-
tained in disparate systems and 
are not well suited for modern data 
science algorithms. In the discus-
sion of machine learning, the data must be engineered 
to allow feature representations. Neil Lawrence offers a 
framework to assess data readiness for analytics, shown 
in Figure 3.9 He uses three levels of data readiness. The 
lowest level (Class C) describes the challenges with data 
engineering and wrangling. As Lawrence explains, many 
organizations claim they have data, but the data have 
not been made available for analytic use. He refers to 
this type of data as “hearsay” data. Class B data require 
an understanding of the faithfulness and representation 
of the data. Finally, Class A data are data in context. An 
analyst understands whether Class A data can answer 
organizational questions.

Once data are made available in a data warehouse 
or data lake, they can be reported. Many organizations 
create reports using spreadsheets or text documents. 
This approach looks backward, reflecting what has hap-
pened in the past. The promise of data science is to move 
beyond backward-looking reporting to forward-looking 
analysis. In the field of data science, analytics are typi-
cally described as descriptive, predictive, and prescrip-
tive. Descriptive analytics involve understanding the 
characteristics of the data. For numerical data, descrip-
tive analytics would include statistical measures such as 
means, standard deviations, modes, and medians. Other 
analytics may include histograms. Descriptive analytics 
help to discover anomalous and missing data examples. 
Descriptive analytics are backward looking as well.

Moving from backward-looking data to forward-
looking data can be achieved with predictive analytics. 
Predictive analytics use data about the past to make 

predictions about the future. Supervised machine learn-
ing provides an analytical tool for predictive analyt-
ics. Supervised machine learning uses training data to 
create a machine learning model. The machine learning 
model can then be used to make predictions about new 
data sets.

Prescriptive analytics, the third type of data science 
analytics, address the human intervention by provid-
ing for decision options. Moving beyond predictive 
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Figure 2.  Data science maturity model. Derived from Anderson’s analytics value chain,8 
the model shows the progression from backward-looking to forward-looking data. Moving 
from descriptive analytics (understanding the characteristics of the data) to predictive 
analytics (using data about the past to make predictions about the future) to prescriptive 
analytics (accounting for human intervention by providing for decision options) enables 
analysts to make decisions and achieve objectives using the data.
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Figure 3.  Data readiness levels defined by Neil Lawrence.9 Class C 
data face challenges with data engineering and wrangling. Class B 
data require an understanding of their faithfulness and represen-
tation. Class  A data are data in context. An analyst understands 
whether Class A data can answer organizational questions.
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analytics, which describe a future state, prescriptive 
analytics offer courses of action to bring value to an 
organizational objective. Reinforcement learning is a 
machine learning approach that provides a foundation 
for prescriptive analytics.

THE AOS DATA SCIENCE INITIATIVE
In 2016, AOS staff members observed that their 

sponsor communities, including cyber analysts, intelli-
gence analysts, and customs and border patrol agents, 
were being inundated with data. As these communities 
benefited from significant internet connectivity and the 
low cost of computer storage, the amount of data they 
were able to collect and store was growing at exponen-
tial rates. However, their analyst populations were not 

growing at exponential rates, creating the analysis gap 
shown in Figure  4. This gap motivated AOS to stand 
up the DSI to use machine computation to close the 
analysis gap. Internal research initiatives addressed a 
broad set of data science and artificial intelligence (AI) 
approaches. Examples include applying transfer learn-
ing techniques in deep learning to address the train-
ing machine learning classifiers with small amounts 
of labeled data that represent national security targets. 
For instance, we explored predictive models to improve 
targeting with global signals from intelligence data, as 
well as new algorithms to address scalability issues when 
applying unsupervised graph analytics to practical real-
world applications.

Not only did the DSI yield innovative research, but it 
also allowed the sector to significantly increase its com-
petencies and to make contributions across multiple 
mission domains. The next sections describe contribu-
tions that leveraged research and competencies across 
mission domains including cyber; intelligence, surveil-
lance, and reconnaissance (ISR); trade fraud detection; 
and health care.

Data Science in Cyber
The recognized gap in cyber situational awareness 

for enterprise networks motivated the sector to apply 
data science to cyber operations and led to the creation 
of APL’s LIVE Lab (Live data, Integration, Validation, 
and Experimentation Lab), which focused on creat-
ing an analytics platform using internal APL network 
data (Figure  5). In this innovative facility, researchers 
mapped a duplicate of APL’s internal network on banks 
of huge television screens. They then tested different 
cyber monitoring and security technologies to see how 
they affected information flow as an intruder moved 
around systems. The creation of LIVE Lab’s analytic 
platform, which originally focused on internal network 

Figure 4.  The analysis gap. Significant internet connectivity 
and the low cost of computer storage enabled an exponential 
increase in the amount of data APL sponsor communities were 
able to collect and store. However, their analyst populations were 
not growing at the same rate, creating an analysis gap.

Figure 5.  APL’s LIVE Lab. Analysts and engineers work in this unique facility that helps researchers develop solutions to continually 
evolving cyber threats by detecting and monitoring intrusion attempts on APL’s network in real time. To assess new cyber defense tech-
niques for the government, APL uses LIVE Lab to mirror its real-time network as a testing ground.
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situational awareness, caught the attention of sponsors 
in the national security community and led to several 
long-term sponsor-funded efforts pursuing data science 
for cyber operations. One notable effort is the Depart-
ment of Homeland Security (DHS) Advanced Cyber 
Analytics Environment. APL explored numerous ana-
lytic techniques to increase machine processing to assist 
operators in defending government networks; techniques 
that were investigated include unsupervised, supervised, 
and semi-supervised machine learning. One success-
ful result included the identification of Domain Name 
Service (DNS) tunneling attacks. The DNS is the net-
work protocol that maps human-readable domain names 
to Internet Protocol (IP) addresses that machines can 
use to route packets across the internet. DNS packets 
flow continuously between network-connected devices 
and comprise massive amounts of data. Because it is 
known to contain vulnerabilities, the DNS protocol is 
a common attack vector for malicious actors. Buzcak et 
al.10 describe a data science approach that was able to 
detect over 99% of malicious DNS tunnels.

To achieve these results, the team first created accu-
rate data sets to train the DNS detection algorithms, 
leveraging the LIVE Lab analytic platform using the 
APL network to curate high-quality data. They then 
undertook a penetration testing collection effort. With 
this training data, the team applied traditional machine 
learning techniques such as random forest. Before 
applying machine learning techniques, an import step 
of feature engineering must be completed. Significant 
research of prior DNS tunneling detection algorithms 
and deep knowledge of DNS protocols led to a set of 
relevant features. Example features include:

•	 DNS query type

•	 DNS packet length

•	 Number of distinct substrings in the DNS “QNAME” 
field

•	 DNS response packet length

•	 DNS query string length

Through thoughtful feature engineering, the team read-
ily applied traditional random forest machine learning 
techniques, resulting in detection of over 99% of mali-
cious DNS traffic.

In addition, an APL team explored a broad set of ana-
lytical approaches for cyber operations, including super-
vised learning approaches (such as pattern mining and 
deep neural networks), unsupervised techniques (such 
as K-means), and semi-supervised techniques.11–13 A set 
of DHS-sponsored exploratory experiments led to APL 
guiding the implementation of analytic platforms and 
analytics approaches in DHS cyber operations.

Data Science in ISR
APL’s research in ISR challenges leveraged ground-

breaking academic work in deep neural networks 
(DNNs) by Krizhevsky, Sutskever, and Hinton.14 One 
significant effort was the development of the ImageNet 
data set15 that commenced in 2009; it took 2.5 years to 
label 3.2 million images. The data set served as the foun-
dation for the ImageNet Large Scale Visual Recognition 
Challenge that started in 2010. In 2012, Krizhevsky, 
Sutskever, and Hinton won the competition by a sig-
nificant margin, and this result inspired the current 
AI boom.14 Their technique used neural networks that 
had existed for decades. However, by applying neural 
networks with a large labeled data set and leveraging 
modern graphics processing units (GPUs), they advanced 
the field with their work. GPUs provided extraordinary 
computation power that allowed for the design of neural 
networks with significant layers (i.e., DNNs).

APL explored this research and its application to 
national security problems, especially in the area of ISR 
for special operations. The ImageNet data set was built 
by labeling pictures posted on the internet. However, 
the ISR mission involves a mix of different sensors to 
include synthetic aperture radar (SAR), full-motion 
video (FMV), and radio frequency (RF) sensors. The 
challenge faced in ISR was the lack of labeled data at 
the scale of ImageNet corpus. For example, only hun-
dreds of labeled images existed. APL applied the use of 
transfer learning to create a universal feature extractor 
that allowed DNNs to be trained with small amounts 
of training data. The innovative concept of the univer-
sal feature extractor is described by Rodriguez et al.16 

Its advantages are twofold. First it enables a design to 
train classifiers with small amounts of labeled data (i.e., 
sparse data). The second benefit is that training time 
for new objects can be significantly reduced. The DSI 
further matured the universal feature extractor and 
parallelized the algorithm to address object detection in 
full-motion video.

APL aptly applied the universal feature extractor to 
targets of military interest to the Intelligence Commu-
nity and Department of Defense. The impressive accu-
racy achieved with this approach led to several projects 
where APL contributed machine learning solutions to 
these communities.

Data Science in Illicit Trade Discovery
Given the Lab’s trusted role with US Customs and 

Border Protection, the agency provided APL access to 
a large data set of 4 years of trade data. Specifically, the 
data set included entry summary reports for over 4 years, 
which included over 200  million shipping records. To 
discover illicit shipments, the agency was using an auto-
matic target recognition capability that contained rule-
based systems. Rule-based systems fail when nefarious 
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actors are caught and then change their tactics, tech-
niques, and procedures, essentially working around the 
rule-based systems. Seeking a new analytical approach 
for discovering illicit trade, the agency provided APL 
trade records so that the APL team could explore novel 
analytics. To discover new illicit patterns, the APL team 
applied unsupervised machine learning using probabilis-
tic graph analytics. Graphs provide a flexible data struc-
ture that facilitates fusion of disparate data sets. 

We leveraged SOCRATES, a graph analytics capa-
bility17 to analyze large-scale graphs. The SOCRATES 
platform was developed as part of internal investment 
and direct-funded projects. The successful implementa-
tion of graph analytics revolves around several key con-
siderations: rapid data ingestion and retrieval, scalable 
storage, and parallel processing. SOCRATES provides a 
graph analytics platform that is particularly focused on 
facilitating analysis of large-scale data sets. As part of 
the platform, SOCRATES provides a rich set of analyt-
ics. The clique tree analytic18 provided critical insights 
into discovering anomalies in trade data. The clique tree 
technique addressed probabilistic graph modeling of the 
trade records, which involved categorical type data in a 
highly dimensional graph space. Applying probabilistic 
techniques, including the APL clique tree analytic, to 
the large-scale high-dimensional data set produced new 
insights from the trade data by discovering anomalous 
patterns. The exploratory work that APL performed con-
vinced Customs and Border Protection that advanced 
analytics possessed merit beyond their traditional rule-
based systems. Subsequently, APL served in a trusted 

agent role to assist the agency in working to introduce 
these advanced analytics into their operational systems.

Data Science in Precision Medicine
In 2017, APL partnered with Johns Hopkins Medi-

cine to bring data science capabilities to precision 
medicine. The first step was to create an architecture 
for an analytic platform. APL provided thought leader-
ship by leveraging the analytic platform being created 
in the cyber operations efforts previously mentioned. 
The architecture led to the creation of the Precision 
Medicine Analytics Platform (PMAP). As described by 
Alan Ravitz in his article in this issue and illustrated 
in Figure 6, “PMAP handles the ‘dirty work’ of creating 
pipelines to access disparate, high-velocity, high-volume 
data (i.e., big data).” It aggregates these disparate data 
into a single Data Commons to facilitate access, obviat-
ing the existence of multiple researchers independently 
creating different tools to access the same data and stor-
ing them separately. The Data Commons affords a single 
repository that combines the transactional data of the 
electronic health record with other sources of data while 
also providing a single point of storage from which secure 
study-specific projections of data can be provisioned to 
researchers with institutional approval to access them.”

The creation of PMAP enabled researchers to pursue 
new data science solutions. One example includes apply-
ing natural language processing techniques to the prob-
lem of mining medical records. Building on PMAP, 
Chee, Joice, and Johnson19 created a pipeline to dis-
cover key information for prostate cancer in electronic 
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Figure 6.  The PMAP platform. PMAP pulls data from multiple sources and aggregates them into the Data Commons. Approved research-
ers can then access needed data in a secure Research Environment where they can also access a suite of tools and capabilities built for 
other studies.
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12L. Watkins, S. Beck, J. Zook, A. Buczak, J. Chavis, et al., “Using semi-
supervised machine learning to address the big data problem in DNS 
networks,” in Proc. 2017 IEEE 7th Annu. Comput. Commun. Work-
shop and Conf., CCWC 2017, 2017, pp. 1–6, https://doi.org/10.1109/
CCWC.2017.7868376.

13L. Watkins, J. Chavis, A. L. Buczak, D. S. Berman, S. W. Yen, 
and L. T. Duong, “Using sequential pattern mining for common 
event format (CEF) cyber data,” in Proc.  12th Annu. Cyber and 
Inf. Secur. Res. Conf.  (CISRC ‘17), 2017, pp. 1–4, https://doi.
org/10.1145/3064814.3064822.

14A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. 25th Int. 
Conf. Neural Inf. Process. Syst. (NIPS 2012), pp. 1097–1105, 2012.

15J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet: 
A large-scale hierarchical image database,” in Proc. 2009 IEEE Conf. 
Comput. Vis. and Pattern Recognit., 2009, pp. 248–255, https://doi.
org/10.1109/CVPR.2009.5206848.

16P. A. Rodriguez, N. Drenkow, D. DeMenthon, Z. Koterba, K. Kauff-
man, et al., “Selection of universal features for image classification,” 
in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2014, pp. 355–362, 
https://doi.org/10.1109/WACV.2014.6836078.

17C. Savkli, R. Carr, M. Chapman, B. Chee, and D. Minch, “Socrates,” 
in Proc. IEEE High Perform. Extreme Comput. Conf. (HPEC), 2014, 
pp. 1–6, https://doi.org/10.1109/HPEC.2014.7040993.

18C. Savkli, J. R. Carr, P. Graff, and L. Kennell, “Bayesian learning of 
clique tree structure,” in Proc. Int. Conf. Data Mining (DMIN), 2016, 
https://arxiv.org/abs/1708.07025.

19B. Chee, G. Joice, and M. Johnson, “A novel natural language pro-
cessing pipeline automates unstructured data extraction within medi-
cal reports,” presented at the National Comprehensive Cancer Net-
work 23rd Annual Conf., Orlando, FL, Mar. 2018.

20B. Chee, G. Joice, and M. Johnson, “Natural language processing 
allows for accurate and automated extraction of data from prostate 
biopsy pathology reports,” presented at the National Comprehensive 
Cancer Network 23rd Annual Conf., Orlando, FL, Mar. 2018.

21G. Joice, B. Chee, N. Gupta, and M. Johnson, “MP76-18 natural 
language processing allows for accurate and automated extraction of 
data from prostate biopsy pathology reports,” J. Urol., vol. 199, no. 4S, 
pp. e1025–e1026, 2018, https://doi.org/10.1016/j.juro.2018.02.2586.

medical records. Furthermore, this same group20,21 
extracted information such as Gleason scores to iden-
tify patient populations for research. The information 
can also be used in clinical settings to identify informa-
tion that is potentially ambiguous or difficult to extract 
and requires clarification. The pipeline was built on the 
PMAP foundation.

SUMMARY
Data science emerged in 2010 and continues as a 

vibrant technology area that is pervasive across many 
industries, including national security. AOS leaned 
strongly into this field by creating the DSI. This 2-year 
initiative had profound impact on the work AOS staff 
members do, enabling contributions in cyber operations, 
international trade, ISR, and health care. Additional 
projects benefited from the DSI, and data science has 
become a core competency for AOS. The DSI and the 
contributions it propelled demonstrate the benefits of 
focused investment in a strategic area to achieve impact 
for national security missions. When looking toward 
the future of the data science, we see the field maturing 
and becoming more commonplace across missions and 
organizations. With that said, with its systems engineer-
ing perspective, APL can provide thought leadership in 
advancing the science of data science.
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