
I. D. McCue et al.

Johns Hopkins APL Technical Digest, Volume 35, Number 4 (2021), www.jhuapl.edu/techdigest404

Developing Complex Shape-Morphing Metallic 
Structures for Space Applications

Ian D. McCue, Andrew M. Lennon, Drew P. Seker, Chuck Hebert, James P. 
Mastandrea, Christopher M. Peitsch, Timothy J. Montalbano, Cavin T. Mooers, Joseph 
Sopcisak, Ryan H. Carter, Steve Szczesniak, Morgana M. Trexler, and Steven M. Storck

ABSTRACT
This article describes an ongoing Johns Hopkins University Applied Physics Laboratory (APL) 
fundamental additive manufacturing study to fabricate large-scale (up to 10  ×  10  ×  13  in.3) 
shape-memory alloy components with locally tailored actuation stroke, force, and activation 
temperature.

reversed by heating the material (by a few tens of degrees 
centigrade) to induce a reversible phase transformation.

Despite their exciting functional properties, SMAs 
are notoriously difficult to process, shape, and form. The 
shape-memory effect is highly sensitive to composition 
variance at the 100-ppm level, impurities (carbon and 
oxygen), and the underlying material microstructure, all 
of which can be altered during high-temperature form-
ing processes.5 As a result, conventional manufacturing 
of SMAs is limited to wire and flat sheet production 
methods. AM offers the unique capability for free-form 
geometry generation, which could overcome this limita-
tion and enable the fabrication of complex shape-chang-
ing components. Our ultimate vision is to manufacture 
structures that will compactly fold into a small volume 
for launch and expand into complex geometries in space 
when exposed to the heat of the sun.

In the study described here, we focused on the fab-
rication of Nitinol (a roughly equiatomic NiTi alloy) 
components. Nitinol is by far the most widely used 
SMA because of its excellent mechanical properties, 
biocompatibility, and corrosion resistance.6–9 In addi-
tion, Nitinol exhibits superior shape memory and super-
elastic effects, capable of restoring large strains of up to 
8%.5 Our efforts to date have centered on improving 
the quality of printed Nitinol components, targeting 

The goal of the study described in this article is to 
develop novel structures capable of precise, self-guided 
shape change under an external stimulus. These mate-
rials will be advantageous when used in environments 
where direct human intervention is impractical (e.g., 
invasive biomedical devices or deep underwater).1,2 Per-
haps the most exciting application of this concept is 
for deployable space structures. Owing to launch con-
straints, spacecraft structures are limited in size, weight, 
and power. However, once in space, these structures 
are critically reliant on large, kinematically deployed 
components—solar arrays, solar sails, radar antennas, 
etc.—for operational capabilities.3,4 Current approaches 
rely on mechanically driven devices to expand and to 
remain in a deployed configuration, and these devices 
are heavy and have bulky stowage volumes.3,4

To combat these challenges, we have spent the last 
2.5  years developing the capability to “program” com-
plex shape change by laser-based additive manufacturing 
(AM) of shape-memory metals. Shape-memory alloys 
(SMAs) are a unique class of functional materials with 
the ability to convert thermal energy into mechanical 
work by recovering their shape upon an increase in tem-
perature (see Figure 1). When mechanical load is applied 
to an SMA, it undergoes a unique permanent deforma-
tion mechanism (called detwinning), which can only be 
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key metrics such as porosity and crack density; scalable 
fabrication (i.e., ensuring the AM processing parameters 
developed for small volumes [~1 mm3] scales to large vol-
umes [~100 cm3]); and studying the effects of laser pro-
cessing parameters on microstructural characteristics, 
mechanical behavior, and shape-morphing properties. 
We have successfully printed large parts and demon-
strated repeatable shape-memory behavior (see Figure 2) 
by building on a lattice structure to control the thermal 
history during fabrication.10

More recently, our focus has shifted to modifying the 
Ni:Ti ratio within builds to achieve tailored actuation. 
The impact of laser processing parameters on the micro-
structure of AM components (size of secondary phases 
and grain texture) is a very active research area.11,12 
However, the impact of laser parameters is far more 
nuanced in SMAs because 
the transformation tempera-
ture (i.e., the temperature for 
recoverable shape change) is 
highly sensitive to the material 
composition. For instance, the 
transformation temperature 
of a Ni50Ti50 (at.%) alloy is 
~80°C, while the transforma-
tion of a Ni51Ti49 (at.%) alloy 
is ~−20°C.5 Depending on the 
laser processing parameters, 
the thermal history in an AM 
Nitinol component can vary 
dramatically, which causes 
samples from identical feed-
stock to have transformation 

temperatures tens of degrees apart.6,13 Through a com-
bined high-fidelity modeling and experimental effort, 
we recently developed an analytical tool capable of pre-
dicting the transformation temperature as a function of 
laser inputs.

We are now combining this tool with standard 
mechanical design approaches to engineer printed 
components that have local regions with specific trans-
formation temperatures, rates, and displacements. A 
key challenge in creating a complex deployable space 
structure is to avoid collision during shape change. 
Deployment needs to occur sequentially and in a spe-
cific order, analogous to origami. Developing the capa-
bility for complex shape-morphing kinematics—without 
the need for and use of specialized and heavy external 
motors—will require joints to activate at different rates 

Figure 1.  Overview of SMAs. Schematic (left) of the shape-memory and superelastic effects versus load, displacement, and qualitative 
temperature data for the AM Nitinol structures (middle and right). Blue, Shape-memory loading path, which occurs when the austenite 
phase transformation of Nitinol is above room temperature. Nitinol starts in the martensite phase and during deformation undergoes 
a reorientation of the martensite (called detwinning) that results in a permanent macroscopic shape change. Upon heating (red), the 
material undergoes a reversible phase transformation to austenite and recovers the shape memory strain if left unconstrained (zero 
load, lower red curve, middle image). If the material is constrained (fixed displacement, upper red curve, right image), the phase trans-
formation during heating creates a large restoration force that can be used to do mechanical work. Green, Superelastic loading path, 
which occurs when the austenite transition of Nitinol is below room temperature. During deformation, the material undergoes a stress-
induced phase transformation to martensite and accumulates shape memory strain via detwinning. Once the load is released, the mar-
tensite transforms back to the austenite phase, recovering the shape memory strain.

 

(a) (b)

(1) 0 s (2) 2 s
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Figure 2.  Proof-of-concept demonstration. This figure shows that our optimized processing 
parameters and lattice support approach successfully translates to complex, large-scale, shape-
memory components. (a) APL logo part (65 mm × 32 mm × 20 mm) built on a lattice. (b) Time 
stamps of deformed logo undergoing shape recovery upon heat exposure. (Reprinted with per-
mission from Ref. 10.)
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upon a thermal stimulus. An example of this vision is 
shown in Figure 3.
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Figure 3.  Vision of APL study. Combining the functional properties of shape memory alloys with 3-D print-
ing to develop next-generation deployable space structures.
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