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ABSTRACT
In this article, we describe the work of a team of researchers from the Johns Hopkins University 
Applied Physics Laboratory (APL) and Johns Hopkins University (JHU) to develop adaptive crowd 
navigation policies for robots by reasoning and predicting future pedestrian motion.

data sets on pedestrians and achieve comparable or 
better prediction accuracy compared with several state-
of-the-art approaches (shown in Table 1). Moreover, we 
show that confidence in the prediction of pedestrian 
motion can be used to adjust the risk of a navigation 
policy adaptively to afford the most comfortable level as 
measured by the frequency of personal space violation 
in comparison with baselines. Furthermore, our adaptive 
navigation policy is able to reduce the number of colli-
sions by 43% in the presence of novel pedestrian motion 
not seen during training.

TECHNICAL APPROACH
Machine learning has had a significant impact on 

many domains, including object recognition, natural 
language processing, and speech recognition. In recent 
years, we have seen a significant rise in the use of 
machine learning, and reinforcement learning specifi-
cally, for robotic navigation tasks. The advantage is that 
robotic systems are now capable of learning skills versus 

INTRODUCTION
Humans and other biological agents have innate abili-

ties to consistently predict the effects of their own actions 
as well as those of actions of other agents in the envi-
ronment. This innate ability to predict allows for robust 
planning in highly dynamic and uncertain situations. We 
contrast this with existing intelligent artificial agents that 
have a limited ability to anticipate and predict beyond 
what the sensor can see. Our belief is that this prediction 
capability is critical to advance next-generation intel-
ligent systems for safe and robust operations in dynamic 
environments with (uncoordinated) human activities.

In this article, we describe an approach that provides 
mobile robotic systems the ability to predict and antici-
pate motion of pedestrians and other dynamic obstacles 
in the environment. Specifically, we investigate human 
motion in crowded spaces to explore how to recognize 
pedestrians’ navigation intent, how to predict pedestri-
ans’ motion, and how a robot may adapt its navigation 
policy dynamically when facing unexpected human 
movements. We experimentally demonstrate the effec-
tiveness of our prediction algorithm using real-world 

This article draws heavily, reproducing some content verbatim, from Ref. 1: K. Katyal, G. D. Hager, and C.-M. Huang, “Intent-aware pedestrian prediction 
for adaptive crowd navigation,” in Proc. 2020 Int. Conf. Robot. Automat. (ICRA), pp. 3277–3283, https://doi.org/10.1109/ICRA40945.2020.9197434. © 2020 
IEEE. Reprinted with permission. Additional technical information can be found in the ICRA article.
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being preprogrammed to perform tasks. This results in 
systems that are more adaptive and capable of being 
deployed in unstructured environments. Despite these 
advancements, many challenges remain with machine 
learning–based solutions. In particular, algorithms are 
typically trained in a certain environment or a specific 
data set. When faced with situations that are signifi-
cantly outside of the distribution they were originally 
trained on, these approaches struggle.

In the work described in this article, we develop an 
adaptive crowd navigation policy that is robust to changes 
in the distribution from the originally trained policy. Our 
approach for adaptive crowd navigation, as described in 
Figure 1, focuses on three stages. We first estimate a prob-

abilistic representation of navigation intent and use this 
estimated intent to predict future motion. The second 
step is to observe measurement errors between the esti-
mated motion and observed motion as a heuristic for out-
of-distribution events. Our hypothesis is that prediction 
can play a large role in determining whether the robot is 
encountering a novel situation. If the predicted motion 
is highly correlated with the observed motion, we use 
an aggressive policy that allows the robot to reach the 
destination as quickly as possible. If the motion is uncor-
related, we revert to a risk-averse controller that favors 
conservative motion to avoid collisions.

Pedestrian Prediction
In this section, we describe our approach to estimat-

ing intent and predicting future motion. As shown in 
Figure 2, this consists of a neural network architecture 
that combines observed trajectories with a probabilistic 
representation of intent to estimate future motion.

We compare our pedestrian prediction algorithm 
with several baselines and show that the average dis-
placement error (ADE) and final displacement error 
(FDE) of our predicted trajectory meets or exceeds prior 
state-of-the-art results (Table 1).

Adaptive Crowd Navigation
Reinforcement learning has made significant strides 

in allowing robotic systems to learn capabilities versus 
requiring preprogrammed routines. One of the challenges 
to existing state-of-the-art reinforcement learning–
based navigation policies is robustness to changing 
distributions in observations from the training data. 
To illustrate this, we conducted a series of experiments 
where we changed the distribution of pedestrian motion 
during testing of the reinforcement learning policy. The 
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Figure 1.  Our approach for adaptive crowd navigation. (1) We 
first estimate the intent of the pedestrian and combine the esti-
mation with past trajectories to predict future motion. (2) We 
then measure the error between our prediction and reality to 
develop an adaptive mobile robot controller. (3) The adaptive 
mobile robot controller switches between aggressive and risk-
averse policies based on accuracy of the prediction. (© 2020 IEEE. 
Modified and reprinted, with permission, from Ref. 1.)

Observed 
trajectories

LSTM

LSTM

LSTM

Encoder network

LSTM

LSTM

LSTM

Decoder network

Predicted 
trajectories

MLP
μ

MLP
σ

Z
V
A
E

I
n
t
e
n
t

LSTM

LSTM

LSTM

Encoder network

+

Generator Sample

Real Fake

Discriminator

Predicted
 trajectory

Observed
history

Intent recognition and
movement prediction

1 

Measuring
unexpected trajectory
unseen during training

Adaptive control
Original plan

Adjusted plan
Actual

observation

2
3

Probability
distribution

of intent

Figure 2.  Pedestrian prediction neural network architecture. We first estimate a probability distribution of the intent of the pedestrian 
and then combine that estimation with past trajectories using long short-term memory (LSTM) and multilayer perceptron (MLP) neural 
networks. The network learns a Gaussian representation that can be sampled from and combined with the intent to predict future 
pedestrian motion. (© 2020 IEEE. Modified and reprinted, with permission, from Ref. 1.)
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result shows a significant increase in the number of col-
lisions when presented with novel pedestrian motion. 
Our adaptive crowd navigation policy uses prediction as 
a criterion for detecting novel pedestrian motion. The 
underlying intuition behind our approach is similar to 
how we believe humans approach navigation in complex 
scenes. If our prediction matches reality, we maintain 
an aggressive navigation policy. Conversely, if our pre-
diction is no longer accurate, we develop a risk-averse 
approach and navigate cautiously through the environ-
ment. By developing an adaptive, risk-sensitive control-

ler based on predicting pedestrian motion, we are able 
to demonstrate a significant reduction in the number of 
collisions compared to state-of-the-art navigation poli-
cies, as shown in Table 2.

CONCLUSION
In this article, we describe a novel approach to esti-

mating pedestrian intent and use pedestrian intent to 
make better predictions of pedestrian motion. Further, 
we show that errors in pedestrian motion can be used 

Table 1.  Results of our pedestrian prediction approach using real-world data sets and showing reduced error in our prediction 
compared to several state-of-the-art pedestrian prediction algorithms

Metric
Data 
Seta Linear LSTM S-LSTMb

SoPhie 
1V-20c

SGANd Ours

1V-1 1V-20 20V-20
20VP-

20 1V-1
1V+ 
IR-1

1V+ 
IR-20

20V+ 
IR-20

ADE

ETH 1.33 1.09 1.09 0.70 1.13 1.03 0.81 0.87 0.96 0.85 0.77 0.69
Hotel 0.39 0.86 0.79 0.76 1.01 0.90 0.72 0.67 0.60 0.48 0.42 0.39
Univ 0.82 0.61 0.67 0.54 0.60 0.58 0.60 0.76 0.55 0.53 0.51 0.56
Zara1 0.62 0.41 0.47 0.30 0.42 0.38 0.34 0.35 0.45 0.41 0.36 0.35
Zara2 0.77 0.52 0.56 0.38 0.52 0.47 0.42 0.42 0.38 0.33 0.30 0.31

Average 0.79 0.70 0.72 0.54 0.74 0.67 0.58 0.61 0.59 0.52 0.47 0.46

FDE

ETH 2.94 2.41 2.35 1.43 2.21 2.02 1.52 1.62 1.85 1.80 1.66 1.42
Hotel 0.72 1.91 1.76 1.67 2.18 1.97 1.61 1.37 1.18 1.04 0.94 0.79
Univ 1.59 1.31 1.40 1.24 1.28 1.22 1.26 1.52 1.17 1.13 1.09 1.17
Zara1 1.21 0.88 1.00 0.63 0.91 0.84 0.69 0.68 0.94 0.87 0.79 0.74
Zara2 1.48 1.11 1.17 0.78 1.11 1.01 0.84 0.84 0.79 0.72 0.65 0.66

Average 1.59 1.52 1.54 1.15 1.54 1.41 1.18 1.21 1.19 1.11 1.03 0.96
© 2020 IEEE. Modified and reprinted, with permission, from Ref. 1.

Smallest error rates are in bold.
a Publicly available ETH (see Ref. 2) and UCY (see Ref. 3) repositories. b See Ref. 4. c See Ref. 5. d See Ref. 6.

Table 2.  Results of our adaptive mobile robot controller in the presence of novel pedestrian motion

Method
Distribution 

Shift
Successful 

Trials
No. 

Collisions
Time-
outs

Navigation 
Time

Discomfort 
Rate

Average 
Reward

CADRL-5a N 455 45 0 4.48 2.02 0.349
SARL-5b N 490 5 5 4.61 0.99 0.389
CADRL-5 Y 420 80 0 4.52 3.53 0.296
SARL-5 Y 425 70 5 4.62 2.27 0.303
SVM-A-5c Y 426 68 6 5.34 2.14 0.331
SGAN-A-5d Y 445 45 10 6.31 2.03 0.386
Ours-A-5 Y 450 40 10 6.74 1.98 0.409
SARL-10 Y 388 99 13 5.21 2.62 0.234
Ours-A-10 Y 444 54 2 8.49 2.18 0.330
SARL-15 Y 290 205 5 5.30 4.89 0.115
Ours-A-15 Y 366 132 2 8.69 4.20 0.212
SARL-20 Y 172 324 4 5.27 6.70 –0.017
Ours-A-20 Y 262 237 1 8.65 6.29 0.066
© 2020 IEEE. Modified and reprinted, with permission, from Ref. 1.

Boldface denotes best results.
a See Ref. 7. b See Ref. 8. c See Ref. 9. d See Ref. 4.
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to alter the risk of a mobile robot navigating in the pres-
ence of pedestrians. Finally, we show that a risk-sensi-
tive, adaptive motion planner can significantly reduce 
the number of collisions, particularly in the presence 
of novel pedestrian motion. Our future efforts include 
modeling complex social interactions, behaviors, and 
personalities to improve socially aware navigation and 
developing continually learning policies that improve 
navigation strategies over time.
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