
Integrated Air and Missile Defense Resource Management

Johns Hopkins APL Technical Digest, Volume 35, Number 2 (2020), www.jhuapl.edu/techdigest 99

Integrated Air and Missile Defense Resource
Management

Matthew R. Smouse, Edwina P. Liu, and James J. Sylvester

ABSTRACT
Integrated air and missile defense (IAMD) resource management can apply to many different
commodities within today’s modern militaries. This article addresses radar resources, which are
radio-frequency energy and time segments used to detect, track, and discriminate targets with a
phased-array radar. IAMD radar resources can be managed at both the discrete dwell level and at
the macro task level. The first part of this article presents an IAMD radar scheduling algorithm that
uses a variation on interval and “earliest-deadline-first” scheduling to efficiently achieve desired
search frame times while satisfying fixed task deadlines. The latter portion of the article then
discusses the design of a track coordination algorithm for long-duration ballistic missile defense
tasks. Both concepts are applicable to multifunction phased-array radars and were designed to
improve efficiency while meeting existing performance parameters.

on their resources to meet the same challenges. Yet
regardless of the modernity of the system, the US Navy
will never have enough resources to throw energy and
metal into space without accounting for how those
resources might be needed in the future and efficiently
coordinating their application. This article presents two
algorithms for IAMD radar resource management. The
first algorithm is a scheduling algorithm for a single
radar. The second algorithm is a coordination algorithm
for multiple radars.

BACKGROUND
IAMD is fundamentally a multifaceted optimization

problem. One goal of an IAMD radar control system is

INTRODUCTION
Integrated air and missile defense (IAMD) is the

set of capabilities that provides layered defense against
aircraft, cruise missiles, and ballistic missiles. IAMD
resource management is the set of combat system and
system-of-systems capabilities that manage the finite
resources available to any IAMD combat system or
force. Figure 1 shows an example of the various desired
capabilities and functions of a multimission (including
IAMD) radar.

Legacy weapon systems are constrained; responses
to new threats and complex environments for which
these systems were not originally designed have to be
addressed with legacy hardware, computers, and net-
works, increasing energy, time, and system complexity.
New IAMD systems have fewer but different constraints

http://www.jhuapl.edu/techdigest

M. R. Smouse, E. P. Liu, and J. J. Sylvester

Johns Hopkins APL Technical Digest, Volume 35, Number 2 (2020), www.jhuapl.edu/techdigest100

to maximize the number of functions, such as search and
track, that can be executed within a given period of time
while constrained by the hardware capability and other
limitations. Considerations include duty factor, peak
output power, signal processing throughput, instanta-
neous bandwidth, receive chain sensitivity, and array
architecture. Radar control algorithms schedule radar
tasks in a recurring radar scheduling interval (RSI)
according to prioritized event queues while adhering to
the aforementioned constraints. For each RSI, legacy
algorithms would start from the highest-priority queues
and only move to lower-priority queues when the high-
priority queues were empty and there was still a vacancy
in the RSI. This approach may be described as a “greedy
scheduler” because the RSI is fixed (not flexible) and
resources are applied only to appease priority, not to
achieve efficiency.

Efficient IAMD resource management applies
techniques based on optimization theory, specifically
combinatorial optimization. This particular branch
of mathematical optimization treats the sample and
solution sets as discretes. Radar tasks or “dwells” may
be thought of as discrete events that must fit into a

fixed container—the RSI. The goal is to completely
fill the RSI with radar events without leaving gaps in
the timeline. Combinatorial optimization examples in
open-source literature, such as the knapsack problem
and interval scheduling, are particularly applicable to
radar scheduling. Interval scheduling is a problem in
computer science in which the largest set of intervals
(tasks) with fixed start and end times must be selected
to execute within a given time period. There are varia-
tions on the interval scheduling problem that put tasks
into groups and establish goals on the number of tasks
scheduled from each group or weight the groups based
on priority with the goal to maximize the weighted
value of tasks scheduled. This final variation closely
resembles the IAMD resource management problem as
typically posed by system designers. Finally, the central
processing unit (CPU) design has provided an example
of an efficient dynamic scheduling algorithm, earliest-
deadline-first (EDF) scheduling. If each task can be
characterized by an arrival time (order in the queue),
an execution requirement (duration), and a deadline
(request time), then EDF will select tasks whose dead-
line is closest to the current time.

Ballistic missile
discrimination

Ballistic missile
cued search and track

RF kill assessment

Terminal ballistic missile
engagement support

Ballistic missile
autonomous search

Missile
engagement

support

Naval surface
�re support

Kill assessment

Environmental
assessment

Air defense
search and

track

Electronic
protection

Joint battlespace
threat awareness and

defense

Horizon search

Surface search and track

Counter battery
search and track

Colors indicate potentially
different RF time, energy,
resolution requirements.

Figure 1. IAMD radar desired capabilities and functions.

http://www.jhuapl.edu/techdigest

Integrated Air and Missile Defense Resource Management

Johns Hopkins APL Technical Digest, Volume 35, Number 2 (2020), www.jhuapl.edu/techdigest 101

IAMD SCHEDULING ALGORITHM
A radar scheduler must meet the following criteria:

•	 Achieve specific search frame times (nominally the
time between revisiting each point in space—or,
equivalently, each beam position).

•	 Perform specific track functions while minimizing
dropped track update events. (A track update is a
radar beam transmitted to a position where a target
is anticipated plus the subsequent detection on that
target that “updates” its estimated location.)

•	 Maximize radar occupancy (scheduler efficiency).

Let the tasks that are to be scheduled by the radar
be one of two types: fixed or flexible. Fixed tasks have
a specific request time for execution. Flexible tasks have
no specific request time, but they are considered to be
continuing tasks consisting of predetermined sequences
with the goal of completing each sequence at a certain
minimum rate. Fixed and flexible tasks may have differ-
ent priorities dependent on the objectives of the system
as determined by the overall mission. Tasks are placed in
queues based on the time that a request is made.

Fixed tasks have an assigned optimal requested trans-
mission time for a single event (or “dwell”) as determined
by the fixed task manager. Fixed tasks generally have a
small amount of slack, which is the maximum amount
of time the scheduled time can deviate (either earlier
or later) from the requested time. The slack will vary
according to the type of radar task. Examples of fixed
tasks for radar include track, discrimination, missile
communications, and cued acquisition events.

Flexible tasks have a defined set of events to be exe-
cuted in a specific order or pattern. Events assigned to
each flexible task may have different lengths. Although
these events have no specific request times, the pattern
as a whole will have minimum and maximum time peri-
ods within which it must be executed. Flexible task pat-
terns will be repeated indefinitely by the system until
commanded to stop. All flexible task requests associated
with specific tasks within a queue will have the same
priority. Examples of flexible tasks are volume search,
clutter mapping, and essential
test functions.

The scheduling algorithm
presented is a variation on
interval scheduling and EDF.
It uses an EDF approach to
select fixed tasks (radar events
that have a deadline) when
composing a dynamic RSI, but
then uses a heuristic for setting
a dynamic priority on flexible
tasks (radar events that have
no deadline but have goals on

execution for that task queue). The algorithm consists
of scheduling fixed tasks at or near their requested times
and then filling in the intervals between fixed tasks
with flexible task events. Flexible tasks are chosen based
not on priority but rather on dynamically recalculated
pattern rates. This single-pass algorithm design assumes
that all radar events are duty-factor compliant and that
fixed tasks will always have priority over flexible tasks.
These assumptions do not always hold for US IAMD
radars such as AN/SPY-1, -3, -4, and -6 due to radar
hardware, algorithm design, and system performance
constraints. However, this scheduling algorithm is an
approach based on abstract principles that are relevant
to all radar scheduling algorithms.

The IAMD scheduling algorithm leverages the attri-
butes of fixed tasks to compose a dynamic RSI (DRSI).
Figure 2 depicts fixed task attributes. Fixed tasks must be
performed within a certain time period. The requested
time is the time originally requested for the start of
execution. The length is the period of time (occupancy)
that the task will consume (i.e., the period of time
between the start of the task and the next possible time
that another task or event can be scheduled). The slack
is the acceptable scheduling window before and after the
requested time for that task. The earliest possible start
time is the requested time minus the leading slack. The
latest possible start time is the requested time plus the
trailing slack. The leading and trailing slacks can be the
same duration but are not required to be of the same
duration. The DRSI is the interval between the end of
one fixed task and the end of the next fixed task. The
algorithm will attempt to place flexible task events in
the DRSI.

The algorithm also requires that flexible task pattern
states be monitored. The last time that a pattern was
started is the pattern start time (PST). A frame (cycle
of the pattern) is completed if all of the elements in the
pattern have been executed once. The sum of all the
event lengths in the pattern is the pattern length (PL).
The desired time duration in which one frame of the pat-
tern is to be completed is designated the desired frame
time (DFT). The PL and DFT are typically not the same
(other wise the flexible task would require full occupancy).

Length

Latest possible start time

Earliest start time

Requested time

DRSI

Time
Slack

Fixed
task 1

Fixed
task 2

Figure 2. Fixed task attributes.

http://www.jhuapl.edu/techdigest

M. R. Smouse, E. P. Liu, and J. J. Sylvester

Johns Hopkins APL Technical Digest, Volume 35, Number 2 (2020), www.jhuapl.edu/techdigest102

The desired amount of the pattern scheduled at the cur-
rent time is the PL divided by the DFT and multiplied
by the difference between the current time and the PST.
The flexible task deficit (FTD) is the desired amount of
the pattern scheduled at the current time minus the sum
of the event lengths already scheduled for the current
cycle of pattern execution. For example, a flexible task’s
DFT is 8 s, and the difference between the current time
and the PST is 4 s. If the PL for the flexible task is 3.2 s,
then the desired amount of the pattern scheduled at the
current time is 1.6 s. Suppose that the sum of the event
lengths scheduled for the current cycle of the pattern is
1.4 s. The FTD is therefore 0.2 s. The FTD is used in the
scheduling algorithm to dynamically prioritize that flex-
ible task queue for the current DRSI.

The algorithm executes in four steps, as shown in
Figure 3, with some examples of flexible task types. First,
the next fixed task (NFT) is selected to create the DRSI.
Second, FTDs are calculated to determine which flex-
ible task events should be scheduled first and how many
should be scheduled to fill the DRSI as much as pos-
sible and to reduce the largest FTD. Flexible tasks are
considered in the order of their FTD, with longer FTDs

given higher priority. Third,
the flexible task events are
scheduled up to the NFT with
no gaps between each event.
Fourth, the NFT is scheduled
either at the earliest start time
(in which case there might be a
gap) by using up the available
slack or immediately following
the flexible task events previ-
ously scheduled (leaving no

gap). The algorithm for selecting the NFT also allows for
scheduling fixed tasks with no gap in between. Longer
DRSIs are obtained and longer flexible tasks can be
scheduled when fixed tasks can be placed adjacent to
one another on the timeline. This feature addresses the
situation when one of the queues of flexible tasks cannot
advance because the DRSI is too short to insert an event
from that queue.

The earliest fixed task request from each fixed task
queue populates the NFT candidate pool. The selec-
tion algorithm first moves each candidate as late (to the
right) as permitted by the candidate’s slack (Figure 4).
For case 1 (the highest-priority task has the earliest
deadline), the selection algorithm chooses the highest-
priority fixed task as the NFT. The algorithm attempts
to move the NFT sooner so that it is adjacent to a previ-
ously scheduled fixed task with no gap in between. If the
NFT cannot be shifted sooner, then it is kept as late as
possible, and the next DRSI is defined as the interval
between the current time and the end of that selected
NFT. Figure 5 depicts task A creating a DRSI, flex-
ible tasks scheduled prior to task A, followed by task B,
which is scheduled with no gap after task A.

FTDs

Start of DRSI

Ballistic missile
defense search

dwells

NFTVolume
search
dwells

Surface
search
dwells

Clutter
map

dwells

12

3

4

Figure 3. Scheduling algorithm steps.

A

BB

A

B} }}

Case 3

Flexible
tasks

ordered
high to low

priority

A

B B

A

Case 1 Case 2

High-
priority

�xed task

Low-
priority

�xed task

AA

Figure 4. NFT selection.

A

BB

A

BB

A

B

A

Case 3

Case 1

Case 2

}
} }

AA B

Flexible
tasks

ordered
high to low

priority

Figure 5. NFT case 1, priority order with no conflicts.

http://www.jhuapl.edu/techdigest

Integrated Air and Missile Defense Resource Management

Johns Hopkins APL Technical Digest, Volume 35, Number 2 (2020), www.jhuapl.edu/techdigest 103

Once all the events have been placed in the DRSI,
there is usually a gap that is an unfilled portion of the
DRSI between the last scheduled flexible task and the
beginning of the fixed task. The fixed task is moved
sooner in the timeline until either the gap is closed
or the earliest limit of the slack is reached. For case 1,
task A was shifted slightly sooner so that there was no
gap between it and the preceding flexible task event.

The algorithm selects a lower-priority task as the
NFT if it starts earlier than a higher-priority task and
there is enough slack so that the lower-priority fixed
task can begin and end prior to the highest-priority fixed
task. The lower-priority task forms the DRSI, and the
higher-priority task is scheduled immediately following
the lower-priority task. This is case 2, which is shown
in Figure 6.

Case 2 also schedules tasks B and A so that no gap
remains in the DRSI. But if the earliest limit of the slack
in task B would have been reached such that it was not
adjacent to the preceding flexible task event, then the
gap could not have been closed. When a gap occurs,
the gap length is tabulated for use when calculating the
scheduler efficiency. The efficiency of the scheduler is
the total time minus the sum of the gaps divided by the
total time.

Finally, the algorithm will not schedule a lower-priority
fixed task if there is a higher-priority fixed task that must
be scheduled and the lower-priority fixed task is either
too long or does not have enough slack to be accommo-
dated. This is case 3, which is shown in Figure 7.

The higher-priority fixed task is chosen as the NFT
when a conflict arises. In this case, the lower-priority
fixed task is returned to the task manager. Notice also

how the flexible tasks have been selected in this par-
ticular example. The algorithm calculates queue FTDs
each time a DRSI has been established. Because this is
a one-pass algorithm, events from the queue with the
largest FTD are scheduled first. A “priority” inversion
in flexible task scheduling occurs when a lower-priority
flexible task has a larger FTD. The algorithm fills the
DRSI with as many events from the largest FTD queue
as are necessary to reduce the FTD to zero or as can fit
within the DRSI. The process repeats in deficit order
until the DRSI is filled or all queues have been addressed.
Flexible task priority is inherited from the flexible task
parameters (DFT and PL).

Two additional, necessary algorithm features have
been identified through simulation. The first feature
is an adaptation of the NFT selection algorithm that
restricts the maximum DRSI. The DRSI must be con-
strained to a maximum value so that if a new fixed task
arrives on a queue it can be scheduled without delay
or denial of service due to execution of a long DRSI. If
the eligible NFT would create a DRSI that exceeds the
maximum DRSI, then the current DRSI is closed with a
flexible task rather than a fixed task. The second feature
is an interrupt action that will allow new critical fixed
tasks to preempt the current DRSI. The characteristics
of a critical fixed task are high priority, a request time
that is close to the current time, and no slack. Fixed and
flexible task events are returned to their queues from the
DRSI if a critical fixed task occurs.

The scheduling algorithm uses a four-step, single-
pass approach with no look-ahead. The feature of keep-
ing track of FTDs incorporates past performance into
goals for the next DRSI and prevents one task from
dominating the timeline due to priority alone. This fea-

} }
}

Case 3

BCase 1 Case 2

A B B A A

Flexible
tasks

ordered
high to low

priority

Figure 7. NFT case 3, unresolvable fixed task conflict.

Figure 6. NFT case 2, priority-order inversion due to earliest
deadline.

A

BCase 1 Case 2

Case 3

B

} }
}

Flexible
tasks

ordered
high to low

priority

A B B A A

B

http://www.jhuapl.edu/techdigest

M. R. Smouse, E. P. Liu, and J. J. Sylvester

Johns Hopkins APL Technical Digest, Volume 35, Number 2 (2020), www.jhuapl.edu/techdigest104

(FTC) are to increase probability of raid annihilation by
reducing redundant BMD tracking and to preserve ship
self-defense capability by coordinating between multiple
ships. FTC takes on the form of a generalized assign-
ment problem (GAP) as well as a multi-armed bandit
(MAB) problem. The former class of problems inherits
from combinatorial optimization. MAB is rendered from
probability theory. The crucial difference is that com-
binatorial optimization requires an assignment for each
“opportunity,” whereas MAB does not. Because BMD
track coordination does not allow abstention, it more
naturally follows a GAP approach similar to the multiple
knapsack problem.

The GAP formulation is shown in Figure 9. The
number of tracks is N, and the number of sensors is
M. A sensor-track pair is represented by ij. The profit
and weight (cost) of pair ij are pij and wij, respectively.
The total capacity of sensor i is represented by wi. The
assignment vector is xij; if xij is 1, then pairing ij is to be
used in the solution (i.e., sensor i is preferred for track j).
Typical solutions involve a dynamic program or an
approximation algorithm. However, the nature of bal-
listic missile tracking and the available communication
mechanism further constrain the problem. Each time a
new ballistic missile is detected by one of the sensors or

ture also allows processes
to degrade gracefully. The
algorithm may sometimes
not meet incremental goals
but on average over longer
time spans, DFTs are gen-
erally met, and few fixed
tasks are lost (timed out)
unless their requested time
would have prevented a
higher-priority fixed task
from being executed. Note
that performance of the
algorithm still depends on
proper fixed and flexible
task parameter inputs, such
as the amount of slack and
DFTs. Requests may also
require further prioritization
in heavy loading conditions;
this prioritization would
involve adjustment of flexible task DFTs and potentially
the parameters of events within the pattern as well as
the overall pattern length.

BALLISTIC MISSILE DEFENSE TRACK
COORDINATION ALGORITHM

Force-level radar resource management (FLRRM) for
IAMD is an Office of Naval Research Future Naval
Capabilities project to establish technology that will
yield enhanced defensive performance through coordi-
nation of radar tasking. Although broad efforts within
the project are examining many aspects of radar task
management, there is a strong focus on the coordination
of ballistic missile defense (BMD) tracking because of
the inherent stressing nature of that task.

Coordination of BMD tracking solves limitations
with current force planning and execution. Friendly
force laydowns with no overlap in tasking (such as a sec-
tored defense design) can limit raid performance because
a BMD raid from a single launch area can exceed the
single ship capacity. Friendly force laydowns with over-
lap in tasking also have limitations because overlapping
radar search doctrine or cued acquisitions will lead to
redundant tracking and
possibly over-engagement
without some form of
intervening coordination.
Although manual forms of
coordination are possible,
raid interval timing renders
them ineffectual (Figure 8).

The objectives of
FLRRM track coordination

Figure 8. Notional redundant tracking without coordination.

Figure 9. The GAP.

maximize subject to , ,

, ,

, , , , ,

p x w x w i M

x j N

x i M j N

1

1 1

0 1 1 1

ij ij
j

N

ij ij i
j

N

i

M

ij
i

M

ij

1 11

1

f

f

f f

#

#

!

=

=

= =

= ==

=
" ,

/ //

/

http://www.jhuapl.edu/techdigest

Integrated Air and Missile Defense Resource Management

Johns Hopkins APL Technical Digest, Volume 35, Number 2 (2020), www.jhuapl.edu/techdigest 105

Algorithm studies show that FTC dramatically
increases the number of engaged targets in various raid
environments over an uncoordinated sensor network.
Results for tactically relevant scenarios demonstrate an
ability to provide high probability of raid annihilation
that approaches ideal coordination. The coordination

reported remotely, the coor-
dination problem must be
re-solved. But if the sensor-
track assignments xij were
to change upon introduc-
tion of the new track, then
the fire control loop on each
system may be irreparably
disturbed. In other words,
once a ballistic missile is
assigned to a system, it must
stay there. The algorithm
may only coordinate an
action on each new ballis-
tic missile track while con-
sidering the current state of
the known (extant) ballistic
missile tracks. In addition,
coordination must occur
early in the tracking phase
where little is known about
the type and destination of the ballistic missile. There-
fore, a simple yet effective profit function based on easily
obtained information from the MIL-STD-6016 mes-
sage set is desired so that a distributed algorithm can be
implemented. The result is a first-in, first-out distributed
greedy heuristic algorithm with sensor availability and
confirmation messaging.

FTC algorithms provide distrib-
uted, controlled BMD track coor-
dination among US Navy IAMD
platforms (primarily Aegis cruisers
and destroyers). Figure 10 depicts a
notional force coordination result
with FTC. By avoiding modifica-
tions to link messages and the radar,
FTC maintains a well-defined
scope that is affordable and exten-
sible. On each enabled platform,
FTC inputs the space track picture
from Link 16 messages conveyed
via BMD communications links;
performs processing in the com-
mand and decision element within
the Aegis Weapon System; and
then outputs recommendations
to the operator. The information
exchange requirements are limited
to existing MIL-STD-6016 mes-
sages and exchanges, recognized by
the Aegis BMD 5.1 program, and
configuration and supervisory con-
trol messages between the opera-
tor and weapon system. Figure 11
depicts the modified functions in
the Aegis Weapon System.

Figure 10. Notional FTC.

Radar doctrine
Cue volume
SST
Dwell priorities

N-series

S-TADIL J
JREU

JREM

CDLMSSGS

J2.3
J3.0
J3.6
J7.0
J7.1

J9.0
J9.1
J10.2
J13.3

Link 16

C2P CDLMS

Characterization Discrimination

SPY

SPY track

SCUS

Missile acq
comms

RF kill
assessment

Search/
detection

Discrimination
manager

C&D

C&D track

Cued acq
volume

ID
categorization

Association
correlation
Doctrine

quali�cation
Threat

evaluation
Engagement

orderFTCEngagement
coordination

AWS element

Non-AWS element

Preserve search resources

Achieve coordination

Preserve track resources

Target and missile track data
MECO
EQ

Classi�cation
Launch event

Acq Acquisition
C&D Command and decision
C2P Command and control processor
CDLMS Common Data Link Management System
Comms Communications
EQ Engagement quality
JREU TADIL J Range Extension U
JREM TADIL J Range Extension M
MECO Main engine cutoff
SCUS System calibration using satellites
SGS Shipboard gridlock system
SST Space surveillance and tracking
S-TADIL J Satellite Tactical Digital Information Link J

Figure 11. FLRRM FTC modifications to the Aegis Weapon System (AWS).

http://www.jhuapl.edu/techdigest

M. R. Smouse, E. P. Liu, and J. J. Sylvester

Johns Hopkins APL Technical Digest, Volume 35, Number 2 (2020), www.jhuapl.edu/techdigest106

benefit applies broadly, including instances where only
two ships are participating.

FLRRM has been transitioned to the Missile Defense
Agency Aegis BMD (MDA/AB) program office and will

Matthew	 R.	 Smouse, Air and Missile
Defense Sector, Johns Hopkins University
Applied Physics Laboratory, Laurel, MD

Matthew R. Smouse is a Principal Pro-
fessional Staff member in APL’s Air and
Missile Defense Sector. He has a MS in
computer engineering from Syracuse Uni-
versity and a BS in electrical engineering

from Grove City College. At present, he leads modeling, simu-
lation, and analysis for the Ground-based Midcourse Defense
(GMD) technical direction agent. Matt’s areas of expertise
include digital signal processing; radar tracking; high-fidelity
modeling and simulation development, analysis, verification,
and validation; systems engineering/requirements analysis; and
project management. He has received a number of awards for
his work for the Missile Defense Agency. His email address is
matthew.smouse@jhuapl.edu.

Edwina	P.	Liu, Air and Missile Defense Sector, Johns Hopkins
University Applied Physics Laboratory, Laurel, MD

Edwina P. Liu is a Senior Professional Staff member and a soft-
ware engineer in APL’s Air and Missile Defense Sector. She
has an MS in computer science from California State Univer-

sity, Sacramento, and a BS in chemical engineering from the
University of California, Davis. Edwina has extensive experi-
ence in design and development of a broad variety of modeling
and simulation application architectures, with a background
in applying artificial intelligence techniques to process health
monitoring and fault diagnostics and prognostics. Her email
address is edwina.liu@jhuapl.edu.

James	J.	Sylvester, Air and Missile Defense
Sector, Johns Hopkins University Applied
Physics Laboratory, Laurel, MD

James P. Sylvester is a Senior Professional
Staff member and a radar and software
engineer in APL’s Air and Missile Defense
Sector. He has a BS in computer science
from the University of Maryland, Bal-

timore County, and a BA in political science from the Uni-
versity of Maryland, College Park. He currently works on
AN/SPY-1 radar analysis and model development, particularly
with relation to dwell scheduling, and is team leader or co-
leader for several modeling and simulation projects involving
current and future AN/SPY-1 baselines. His email address is
james.sylvester@jhuapl.edu.

undergo further enhancement, integration, and critical
experiments within a program of record. FTC is expected
to be fielded in 2020. Improvements using new sensors
and communications links are also being explored.

http://www.jhuapl.edu/techdigest
mailto:matthew.smouse@jhuapl.edu
mailto:edwina.liu@jhuapl.edu
mailto:james.sylvester@jhuapl.edu

	Integrated Air and Missile Defense Resource Management
	Matthew R. Smouse, Edwina P. Liu, and James J. Sylvester
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	IAMD SCHEDULING ALGORITHM
	BALLISTIC MISSILE DEFENSE TRACK COORDINATION ALGORITHM
	Author Bios
	Figure 1. IAMD radar desired capabilities and functions.
	Figure 2. Fixed task attributes.
	Figure 3. Scheduling algorithm steps.
	Figure 4. NFT selection.
	Figure 5. NFT case 1, priority order with no conflicts.
	Figure 6. NFT case 2, priority-order inversion due to earliest deadline.
	Figure 7. NFT case 3, unresolvable fixed task conflict.
	Figure 8. Notional redundant tracking without coordination.
	Figure 9. The GAP.
	Figure 10. Notional FTC.
	Figure 11. FLRRM FTC modifications to the Aegis Weapon System (AWS).

