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ABSTRACT
Integrated air and missile defense (IAMD) resource management can apply to many different 
commodities within today’s modern militaries. This article addresses radar resources, which are 
radio-frequency energy and time segments used to detect, track, and discriminate targets with a 
phased-array radar. IAMD radar resources can be managed at both the discrete dwell level and at 
the macro task level. The first part of this article presents an IAMD radar scheduling algorithm that 
uses a variation on interval and “earliest-deadline-first” scheduling to efficiently achieve desired 
search frame times while satisfying fixed task deadlines. The latter portion of the article then 
discusses the design of a track coordination algorithm for long-duration ballistic missile defense 
tasks. Both concepts are applicable to multifunction phased-array radars and were designed to 
improve efficiency while meeting existing performance parameters.

on their resources to meet the same challenges. Yet 
regardless of the modernity of the system, the US Navy 
will never have enough resources to throw energy and 
metal into space without accounting for how those 
resources might be needed in the future and efficiently 
coordinating their application. This article presents two 
algorithms for IAMD radar resource management. The 
first algorithm is a scheduling algorithm for a single 
radar. The second algorithm is a coordination algorithm 
for multiple radars.

BACKGROUND
IAMD is fundamentally a multifaceted optimization 

problem. One goal of an IAMD radar control system is 

INTRODUCTION
Integrated air and missile defense (IAMD) is the 

set of capabilities that provides layered defense against 
aircraft, cruise missiles, and ballistic missiles. IAMD 
resource management is the set of combat system and 
system-of-systems capabilities that manage the finite 
resources available to any IAMD combat system or 
force. Figure 1 shows an example of the various desired 
capabilities and functions of a multimission (including 
IAMD) radar.

Legacy weapon systems are constrained; responses 
to new threats and complex environments for which 
these systems were not originally designed have to be 
addressed with legacy hardware, computers, and net-
works, increasing energy, time, and system complexity. 
New IAMD systems have fewer but different constraints 
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to maximize the number of functions, such as search and 
track, that can be executed within a given period of time 
while constrained by the hardware capability and other 
limitations. Considerations include duty factor, peak 
output power, signal processing throughput, instanta-
neous bandwidth, receive chain sensitivity, and array 
architecture. Radar control algorithms schedule radar 
tasks in a recurring radar scheduling interval (RSI) 
according to prioritized event queues while adhering to 
the aforementioned constraints. For each RSI, legacy 
algorithms would start from the highest-priority queues 
and only move to lower-priority queues when the high-
priority queues were empty and there was still a vacancy 
in the RSI. This approach may be described as a “greedy 
scheduler” because the RSI is fixed (not flexible) and 
resources are applied only to appease priority, not to 
achieve efficiency.

Efficient IAMD resource management applies 
techniques based on optimization theory, specifically 
combinatorial optimization. This particular branch 
of mathematical optimization treats the sample and 
solution sets as discretes. Radar tasks or “dwells” may 
be thought of as discrete events that must fit into a 

fixed container—the RSI. The goal is to completely 
fill the RSI with radar events without leaving gaps in 
the timeline. Combinatorial optimization examples in 
open-source literature, such as the knapsack problem 
and interval scheduling, are particularly applicable to 
radar scheduling. Interval scheduling is a problem in 
computer science in which the largest set of intervals 
(tasks) with fixed start and end times must be selected 
to execute within a given time period. There are varia-
tions on the interval scheduling problem that put tasks 
into groups and establish goals on the number of tasks 
scheduled from each group or weight the groups based 
on priority with the goal to maximize the weighted 
value of tasks scheduled. This final variation closely 
resembles the IAMD resource management problem as 
typically posed by system designers. Finally, the central 
processing unit (CPU) design has provided an example 
of an efficient dynamic scheduling algorithm, earliest-
deadline-first (EDF) scheduling. If each task can be 
characterized by an arrival time (order in the queue), 
an execution requirement (duration), and a deadline 
(request time), then EDF will select tasks whose dead-
line is closest to the current time.
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Figure 1. IAMD radar desired capabilities and functions.
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IAMD SCHEDULING ALGORITHM
A radar scheduler must meet the following criteria:

•	 Achieve specific search frame times (nominally the 
time between revisiting each point in space—or, 
equivalently, each beam position).

•	 Perform specific track functions while minimizing 
dropped track update events. (A track update is a 
radar beam transmitted to a position where a target 
is anticipated plus the subsequent detection on that 
target that “updates” its estimated location.)

•	 Maximize radar occupancy (scheduler efficiency).

Let the tasks that are to be scheduled by the radar 
be one of two types: fixed or flexible. Fixed tasks have 
a specific request time for execution. Flexible tasks have 
no specific request time, but they are considered to be 
continuing tasks consisting of predetermined sequences 
with the goal of completing each sequence at a certain 
minimum rate. Fixed and flexible tasks may have differ-
ent priorities dependent on the objectives of the system 
as determined by the overall mission. Tasks are placed in 
queues based on the time that a request is made.

Fixed tasks have an assigned optimal requested trans-
mission time for a single event (or “dwell”) as determined 
by the fixed task manager. Fixed tasks generally have a 
small amount of slack, which is the maximum amount 
of time the scheduled time can deviate (either earlier 
or later) from the requested time. The slack will vary 
according to the type of radar task. Examples of fixed 
tasks for radar include track, discrimination, missile 
communications, and cued acquisition events.

Flexible tasks have a defined set of events to be exe-
cuted in a specific order or pattern. Events assigned to 
each flexible task may have different lengths. Although 
these events have no specific request times, the pattern 
as a whole will have minimum and maximum time peri-
ods within which it must be executed. Flexible task pat-
terns will be repeated indefinitely by the system until 
commanded to stop. All flexible task requests associated 
with specific tasks within a queue will have the same 
priority. Examples of flexible tasks are volume search, 
clutter mapping, and essential 
test functions.

The scheduling algorithm 
presented is a variation on 
interval scheduling and EDF. 
It uses an EDF approach to 
select fixed tasks (radar events 
that have a deadline) when 
composing a dynamic RSI, but 
then uses a heuristic for setting 
a dynamic priority on flexible 
tasks (radar events that have 
no deadline but have goals on 

execution for that task queue). The algorithm consists 
of scheduling fixed tasks at or near their requested times 
and then filling in the intervals between fixed tasks 
with flexible task events. Flexible tasks are chosen based 
not on priority but rather on dynamically recalculated 
pattern rates. This single-pass algorithm design assumes 
that all radar events are duty-factor compliant and that 
fixed tasks will always have priority over flexible tasks. 
These assumptions do not always hold for US IAMD 
radars such as AN/SPY-1, -3, -4, and -6 due to radar 
hardware, algorithm design, and system performance 
constraints. However, this scheduling algorithm is an 
approach based on abstract principles that are relevant 
to all radar scheduling algorithms.

The IAMD scheduling algorithm leverages the attri-
butes of fixed tasks to compose a dynamic RSI (DRSI). 
Figure 2 depicts fixed task attributes. Fixed tasks must be 
performed within a certain time period. The requested 
time is the time originally requested for the start of 
execution. The length is the period of time (occupancy) 
that the task will consume (i.e., the period of time 
between the start of the task and the next possible time 
that another task or event can be scheduled). The slack 
is the acceptable scheduling window before and after the 
requested time for that task. The earliest possible start 
time is the requested time minus the leading slack. The 
latest possible start time is the requested time plus the 
trailing slack. The leading and trailing slacks can be the 
same duration but are not required to be of the same 
duration. The DRSI is the interval between the end of 
one fixed task and the end of the next fixed task. The 
algorithm will attempt to place flexible task events in 
the DRSI.

The algorithm also requires that flexible task pattern 
states be monitored. The last time that a pattern was 
started is the pattern start time (PST). A frame (cycle 
of the pattern) is completed if all of the elements in the 
pattern have been executed once. The sum of all the 
event lengths in the pattern is the pattern length (PL). 
The desired time duration in which one frame of the pat-
tern is to be completed is designated the desired frame 
time (DFT). The PL and DFT are typically not the same 
(other wise the flexible task would require full occupancy). 
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Figure 2. Fixed task attributes.
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The desired amount of the pattern scheduled at the cur-
rent time is the PL divided by the DFT and multiplied 
by the difference between the current time and the PST. 
The flexible task deficit (FTD) is the desired amount of 
the pattern scheduled at the current time minus the sum 
of the event lengths already scheduled for the current 
cycle of pattern execution. For example, a flexible task’s 
DFT is 8 s, and the difference between the current time 
and the PST is 4 s. If the PL for the flexible task is 3.2 s, 
then the desired amount of the pattern scheduled at the 
current time is 1.6 s. Suppose that the sum of the event 
lengths scheduled for the current cycle of the pattern is 
1.4 s. The FTD is therefore 0.2 s. The FTD is used in the 
scheduling algorithm to dynamically prioritize that flex-
ible task queue for the current DRSI.

The algorithm executes in four steps, as shown in 
Figure 3, with some examples of flexible task types. First, 
the next fixed task (NFT) is selected to create the DRSI. 
Second, FTDs are calculated to determine which flex-
ible task events should be scheduled first and how many 
should be scheduled to fill the DRSI as much as pos-
sible and to reduce the largest FTD. Flexible tasks are 
considered in the order of their FTD, with longer FTDs 

given higher priority. Third, 
the flexible task events are 
scheduled up to the NFT with 
no gaps between each event. 
Fourth, the NFT is scheduled 
either at the earliest start time 
(in which case there might be a 
gap) by using up the available 
slack or immediately following 
the flexible task events previ-
ously scheduled (leaving no 

gap). The algorithm for selecting the NFT also allows for 
scheduling fixed tasks with no gap in between. Longer 
DRSIs are obtained and longer flexible tasks can be 
scheduled when fixed tasks can be placed adjacent to 
one another on the timeline. This feature addresses the 
situation when one of the queues of flexible tasks cannot 
advance because the DRSI is too short to insert an event 
from that queue.

The earliest fixed task request from each fixed task 
queue populates the NFT candidate pool. The selec-
tion algorithm first moves each candidate as late (to the 
right) as permitted by the candidate’s slack (Figure 4). 
For case 1 (the highest-priority task has the earliest 
deadline), the selection algorithm chooses the highest-
priority fixed task as the NFT. The algorithm attempts 
to move the NFT sooner so that it is adjacent to a previ-
ously scheduled fixed task with no gap in between. If the 
NFT cannot be shifted sooner, then it is kept as late as 
possible, and the next DRSI is defined as the interval 
between the current time and the end of that selected 
NFT. Figure 5 depicts task A creating a DRSI, flex-
ible tasks scheduled prior to task A, followed by task B, 
which is scheduled with no gap after task A.
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Figure 3. Scheduling algorithm steps.
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Once all the events have been placed in the DRSI, 
there is usually a gap that is an unfilled portion of the 
DRSI between the last scheduled flexible task and the 
beginning of the fixed task. The fixed task is moved 
sooner in the timeline until either the gap is closed 
or the earliest limit of the slack is reached. For case 1, 
task A was shifted slightly sooner so that there was no 
gap between it and the preceding flexible task event.

The algorithm selects a lower-priority task as the 
NFT if it starts earlier than a higher-priority task and 
there is enough slack so that the lower-priority fixed 
task can begin and end prior to the highest-priority fixed 
task. The lower-priority task forms the DRSI, and the 
higher-priority task is scheduled immediately following 
the lower-priority task. This is case 2, which is shown 
in Figure 6.

Case 2 also schedules tasks B and A so that no gap 
remains in the DRSI. But if the earliest limit of the slack 
in task B would have been reached such that it was not 
adjacent to the preceding flexible task event, then the 
gap could not have been closed. When a gap occurs, 
the gap length is tabulated for use when calculating the 
scheduler efficiency. The efficiency of the scheduler is 
the total time minus the sum of the gaps divided by the 
total time.

Finally, the algorithm will not schedule a lower-priority 
fixed task if there is a higher-priority fixed task that must 
be scheduled and the lower-priority fixed task is either 
too long or does not have enough slack to be accommo-
dated. This is case 3, which is shown in Figure 7.

The higher-priority fixed task is chosen as the NFT 
when a conflict arises. In this case, the lower-priority 
fixed task is returned to the task manager. Notice also 

how the flexible tasks have been selected in this par-
ticular example. The algorithm calculates queue FTDs 
each time a DRSI has been established. Because this is 
a one-pass algorithm, events from the queue with the 
largest FTD are scheduled first. A “priority” inversion 
in flexible task scheduling occurs when a lower-priority 
flexible task has a larger FTD. The algorithm fills the 
DRSI with as many events from the largest FTD queue 
as are necessary to reduce the FTD to zero or as can fit 
within the DRSI. The process repeats in deficit order 
until the DRSI is filled or all queues have been addressed. 
Flexible task priority is inherited from the flexible task 
parameters (DFT and PL).

Two additional, necessary algorithm features have 
been identified through simulation. The first feature 
is an adaptation of the NFT selection algorithm that 
restricts the maximum DRSI. The DRSI must be con-
strained to a maximum value so that if a new fixed task 
arrives on a queue it can be scheduled without delay 
or denial of service due to execution of a long DRSI. If 
the eligible NFT would create a DRSI that exceeds the 
maximum DRSI, then the current DRSI is closed with a 
flexible task rather than a fixed task. The second feature 
is an interrupt action that will allow new critical fixed 
tasks to preempt the current DRSI. The characteristics 
of a critical fixed task are high priority, a request time 
that is close to the current time, and no slack. Fixed and 
flexible task events are returned to their queues from the 
DRSI if a critical fixed task occurs.

The scheduling algorithm uses a four-step, single-
pass approach with no look-ahead. The feature of keep-
ing track of FTDs incorporates past performance into 
goals for the next DRSI and prevents one task from 
dominating the timeline due to priority alone. This fea-
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Figure 7. NFT case 3, unresolvable fixed task conflict.

Figure 6. NFT case 2, priority-order inversion due to earliest 
deadline.
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(FTC) are to increase probability of raid annihilation by 
reducing redundant BMD tracking and to preserve ship 
self-defense capability by coordinating between multiple 
ships. FTC takes on the form of a generalized assign-
ment problem (GAP) as well as a multi-armed bandit 
(MAB) problem. The former class of problems inherits 
from combinatorial optimization. MAB is rendered from 
probability theory. The crucial difference is that com-
binatorial optimization requires an assignment for each 
“opportunity,” whereas MAB does not. Because BMD 
track coordination does not allow abstention, it more 
naturally follows a GAP approach similar to the multiple 
knapsack problem.

The GAP formulation is shown in Figure 9. The 
number of tracks is N, and the number of sensors is 
M. A sensor-track pair is represented by ij. The profit 
and weight (cost) of pair ij are pij and wij, respectively. 
The total capacity of sensor i is represented by wi. The 
assignment vector is xij; if xij is 1, then pairing ij is to be 
used in the solution (i.e., sensor i is preferred for track j). 
Typical solutions involve a dynamic program or an 
approximation algorithm. However, the nature of bal-
listic missile tracking and the available communication 
mechanism further constrain the problem. Each time a 
new ballistic missile is detected by one of the sensors or 

ture also allows processes 
to degrade gracefully. The 
algorithm may sometimes 
not meet incremental goals 
but on average over longer 
time spans, DFTs are gen-
erally met, and few fixed 
tasks are lost (timed out) 
unless their requested time 
would have prevented a 
higher-priority fixed task 
from being executed. Note 
that performance of the 
algorithm still depends on 
proper fixed and flexible 
task parameter inputs, such 
as the amount of slack and 
DFTs. Requests may also 
require further prioritization 
in heavy loading conditions; 
this prioritization would 
involve adjustment of flexible task DFTs and potentially 
the parameters of events within the pattern as well as 
the overall pattern length.

BALLISTIC MISSILE DEFENSE TRACK 
COORDINATION ALGORITHM

Force-level radar resource management (FLRRM) for 
IAMD is an Office of Naval Research Future Naval 
Capabilities project to establish technology that will 
yield enhanced defensive performance through coordi-
nation of radar tasking. Although broad efforts within 
the project are examining many aspects of radar task 
management, there is a strong focus on the coordination 
of ballistic missile defense (BMD) tracking because of 
the inherent stressing nature of that task.

Coordination of BMD tracking solves limitations 
with current force planning and execution. Friendly 
force laydowns with no overlap in tasking (such as a sec-
tored defense design) can limit raid performance because 
a BMD raid from a single launch area can exceed the 
single ship capacity. Friendly force laydowns with over-
lap in tasking also have limitations because overlapping 
radar search doctrine or cued acquisitions will lead to 
redundant tracking and 
possibly over-engagement 
without some form of 
intervening coordination. 
Although manual forms of 
coordination are possible, 
raid interval timing renders 
them ineffectual (Figure 8).

The objectives of 
FLRRM track coordination 

Figure 8. Notional redundant tracking without coordination.

Figure 9. The GAP.
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Algorithm studies show that FTC dramatically 
increases the number of engaged targets in various raid 
environments over an uncoordinated sensor network. 
Results for tactically relevant scenarios demonstrate an 
ability to provide high probability of raid annihilation 
that approaches ideal coordination. The coordination 

reported remotely, the coor-
dination problem must be 
re-solved. But if the sensor-
track assignments xij were 
to change upon introduc-
tion of the new track, then 
the fire control loop on each 
system may be irreparably 
disturbed. In other words, 
once a ballistic missile is 
assigned to a system, it must 
stay there. The algorithm 
may only coordinate an 
action on each new ballis-
tic missile track while con-
sidering the current state of 
the known (extant) ballistic 
missile tracks. In addition, 
coordination must occur 
early in the tracking phase 
where little is known about 
the type and destination of the ballistic missile. There-
fore, a simple yet effective profit function based on easily 
obtained information from the MIL-STD-6016 mes-
sage set is desired so that a distributed algorithm can be 
implemented. The result is a first-in, first-out distributed 
greedy heuristic algorithm with sensor availability and 
confirmation messaging.

FTC algorithms provide distrib-
uted, controlled BMD track coor-
dination among US Navy IAMD 
platforms (primarily Aegis cruisers 
and destroyers). Figure 10 depicts a 
notional force coordination result 
with FTC. By avoiding modifica-
tions to link messages and the radar, 
FTC maintains a well-defined 
scope that is affordable and exten-
sible. On each enabled platform, 
FTC inputs the space track picture 
from Link 16 messages conveyed 
via BMD communications links; 
performs processing in the com-
mand and decision element within 
the Aegis Weapon System; and 
then outputs recommendations 
to the operator. The information 
exchange requirements are limited 
to existing MIL-STD-6016 mes-
sages and exchanges, recognized by 
the Aegis BMD 5.1 program, and 
configuration and supervisory con-
trol messages between the opera-
tor and weapon system. Figure 11 
depicts the modified functions in 
the Aegis Weapon System.

Figure 10. Notional FTC.
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Figure 11. FLRRM FTC modifications to the Aegis Weapon System (AWS).
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benefit applies broadly, including instances where only 
two ships are participating.

FLRRM has been transitioned to the Missile Defense 
Agency Aegis BMD (MDA/AB) program office and will 
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undergo further enhancement, integration, and critical 
experiments within a program of record. FTC is expected 
to be fielded in 2020. Improvements using new sensors 
and communications links are also being explored.
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