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Scott A. Hays and Michael A. Fatemi

ABSTRACT
To develop a new combat system, the designer has to determine the optimal filter type, filter 
application point, and dynamic model assumption. The definition of an optimal filter will change 
depending on the filter’s purpose and can change drastically depending on its application within the 
plan–detect–control–engage sequence. Ideally, the designer could apply a single computationally 
efficient filter algorithm that adapts in real time to threat maneuver, system bias, and measurement 
noise level while maintaining an accurate estimate with a high level of confidence. In practice, 
however, several different filters (often of different types) are applied to a single combat system in 
separate parts of the plan–detect–control–engage sequence to ensure the best results for problems 
that include track consistency, association, filter errors, and correlation. There are several key factors 
in developing a robust filter with the flexibility for the technology upgrades that are required to 
keep up with threat evolution. This article describes a design methodology to provide robustness in 
the face of dynamic threat behavior, lack of a priori knowledge, and threat evolution.

the future, which requires an accurate dynamic model 
and state estimate. Additionally, some components in 
the plan–detect–control–engage sequence could pass 
tracks to the next sequence, which changes the track 
picture. The new track picture results from filtered track 
estimate inputs rather than direct measurements. Early 
combat systems were forced to rely on simple filters such 
as alpha-beta filters, alpha-beta-gamma filters, discrete 
Kalman filters, and lookup-based filters; these filters 
provided computationally efficient algorithms but little 
system robustness. Increased computation capability 
allows for further expansion of filter types into nonlinear 
filters—i.e., extended Kalman filters (EKFs), unscented 
Kalman filters (UKFs), and, to an extent, particle filters 

INTRODUCTION
Air and missile defense systems can be general-

ized as combat systems with architecture that allows 
the fire control loop to be integrated into the plan–
detect–control–engage sequence. Air and missile 
defense combat systems usually have tracking sensors 
(plan–detect sequences), a decision component (control 
sequence), a control component (control sequence), and 
a guided missile (engage sequence). Optimal conditions 
required for the plan–detect–control–engage sequence 
can differ based on needs; a specific example of optimal 
conditions can be a very accurate position estimate and 
tight covariance to ensure that the tracking sensor can 
associate the different system tracks. A decision compo-
nent needs to accurately extrapolate a track state into 
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(PFs). This article introduces each of these nonlinear 
filters and provides a background for application of 
advanced filter algorithms.

NONLINEAR FILTERS
The increase in threat capability necessitates an 

increase in the sensor and tracking platform’s ability 
to accurately predict future motion. Nonlinear filters 
provide a capability that extends beyond the linear 
assumptions to ensure system robustness. The expansion 
of filters from the linear to nonlinear realm inherently 
produces nonoptimal estimation, unlike that produced 
by the Kalman filter, which is an optimal estimator for 
linear dynamic systems and linear measurement models. 
Nonlinear filters use different methodologies (Taylor 
series expansion, unscented transformation [UT], 
Monte Carlo–based sampling approaches, and dynamic 
constrained optimization) to characterize and approxi-
mate nonlinear motion.

In this article, the linear/nonlinear dynamic and 
measurement equations are defined as:

 xk = Ak–1xk–1 + Bk–1uk–1 + wk–1, (1)

 yk = Ckxk + vk, (2)

 xk = f(xk–1, uk–1) + wk–1, and (3)

 yk = h(xk) + vk, (4)

where xk is the state; uk is the control input; wk is a 
model-bounded uncertainty (also referred to as state or 
model process noise); Ak is the state transition matrix; 
Bk is the control input matrix; yk is the measurement; 
Ck is the observation matrix; vk is a measurement-

bounded uncertainty (also referred to as measurement 
process noise); f() is the nonlinear state transition func-
tion; h() is the nonlinear measurement function; Rw is 
the covariance associated with model-bounded uncer-
tainty assuming the noise follows a Gaussian distribu-
tion with a zero mean; Rv is the covariance associated 
with measurement-bounded uncertainty assuming the 
noise follows a Gaussian distribution with a zero mean; 
and nx or N refers to the dimension of the state vector.

Terminology used in this article is as follows: xk1|k2 is 
the state estimate at time k1 given measurements up to 
and including time k2 (where k2 ≤ k1); Pk1|k2 is the esti-
mated covariance matrix at time k1 given measurements 
up to and including time k2 (where k2 ≤ k1); yk1 is the 
measurement at time k1; zk1 is the innovation (or mea-
surement residual) at time k1; and Kk1 is the gain matrix 
at time k1. The initial estimation period in this article 
is referred to as the a priori estimate, but in the litera-
ture this is also referred to as the predictive step or time 
update state. The update estimation period is referred 
to as the a posteriori estimate, but in the literature this 
is also referred to as the corrective step, update step, or 
measurement update step.

EXTENDED KALMAN FILTER
The EKF is an extension of the Kalman filter to rep-

resent nonlinear motion by using a Taylor series expan-
sion to linearize about a local point (Figure 1). The EKF 
is based on local linearization of the nonlinear equa-
tions of motion around the prior state estimate. In the 
EKF, to represent the covariance prediction, a partial 
derivative matrix (Jacobian) of the state estimate matrix 
is computed and evaluated at each time step based on 
the current predicted states. More information on EKF 
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Figure 1. EKF flow diagram.
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algorithms, derivation, and advances in research can be 
found in Refs. 1–5.

The EKF has limitations due to the calculation of the 
Jacobian matrix and the local linearization approxima-
tion. The EKF requires an accurate representation of the 
nonlinear equations of motion and an accurate estimate 
of the partial derivative state equations. For highly non-
linear systems, the equations of motion can be difficult 
to describe to a high degree, and the construction of the 
Jacobian matrix can be difficult. Errors within equa-
tions of motion, errors within Jacobian construction, or 
a local/global motion mismatch can result in divergence 
in the EKF error propagation, resulting in an unstable 
filter. The errors that can occur while deriving the EKF 
can lead to computational complexity and overall poor 
performance when tracking challenging targets.

UNSCENTED KALMAN FILTER
The UT is a method for calculating the statistics of 

a random variable that undergoes a nonlinear transfor-
mation and builds on the principle that it is easier to 

approximate a probability distribution than an arbitrary 
nonlinear function. The UKF uses the UT, creating 
a related statistic set (mean and covariance informa-
tion) for a predetermined number of transformed points 
(Figure 2). The UKF approximates a probability distri-
bution by a set of sample points; this results in a filter-
ing method that does not require state linearization or 
calculation of a Jacobian matrix. State dynamic lin-
earization and calculation of Jacobian matrices can be 
computationally intensive and require more accurate 
state estimation.

The number of transformed points (sigma points) is 
2nx + 1 where nx is the dimension of the state vector. 
The weights for the UT can be selected to provide con-
ditions that are bundled closer to the mean or approxi-
mate higher moments of the nonlinear function. In a 
Gaussian distribution, the weights are predetermined. 
UKF can use the nonlinear dynamic equations in the 
update process and can be tuned to provide robustness 
to reduce instability issues. More information on UKF 
algorithms derivation and advances in research can be 
found in Refs. 6–12.

,x P0 0t
Initialization

A posteriori estimate
Update

Update

Kalman gain

State estimate:

Covariance estimate:

Covariance estimate:

The sigma point weights are de�ned as:

where � is a scaling parameter, � determines the spread of
sigma points, and � contains the a priori distribtuion for x.

the sigma points.
where the subscripts ,i k k 1– refer to the vector index of

P K PP – ,
k k k k k

yy
k
T

k k 11 ––= ; ;;

PK P ,,
k k k k

yy
k

x y
1 1

1
– –

–
= ; ;8 B

x x yK y –k k k k k kk k1 1– –= +; ; ;
t t t6 @

W W1 – and n
c

n i
c

0
2

2
1
xx

= + + = ++ ^^ ^hh h

P W y y

P W y

R

x

Y Y

YX

– –

– –

,
, ,

,
, ,

k k
y y

i
c

i
n

i k k k k i k k k k

k k
y

i
c

i
n

i k k k k i k k k k
Tx

T
v1 0

2
1 1 1 1

1 0
2

1 1 1 1

– – – – –

– – – – –

x

x

=

=

+; ; ; ; ;

; ; ; ; ;

=

=

t t

t t

6
6

6
6

@
@

@
@

/
/

W Wandm m
nn i0 2

1
xx

= = ��
�

++^ ^h h

A priori estimate
Sigma points calculation

State sigma points:

Updated sigma points

State estimate:

Measurement estimate:

Covariance estimate:

Prediction

Measurement sigma points:
Prediction

h XY  k kk k 11 –– = ;; ^ h

,f tk k k k1 1 1– – –=; ;^ h

, ,x x x

n P

n PX

–
k k k k k k k k

x k k

x k k1 1 1 1

1

1– – – –

–

–

�

�=

+

+ +; ; ; ;

;

;
t t t

^
^
h

h
B

,

, , , , ,

x x L P x

L P L n

X

0 1 2 2 1–
,k k k k k k k k

k k

k k
L

x

1 1 1 1 1 1 1 1

1 1

1 1 – – – – – – – –

– –

– –

f

�

�

+ +

+

=

= +
; ; ; ;

;

;
t t t

^
^^

h
hh 8

B

W xX –,ii
n

k k
c

i k kk k
T

w0
2

111 –––
x

;;; =
t6 6@/P R= +X – k ki k k 11 –– ;;

t @x,

Wy Y ,k k ii
n

k k
m

i1 0
2

1– –
x=; ;=

t /

x W X ,k k i
m

i
n

i k k1 0
2

1– –
x=; ;=

t /

where the subscripts ,i k k 1– refer to the vector index of
the sigma points.

K

X X

B

Figure 2. UKF flow diagram.
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PARTICLE FILTERS
PFs are designed to address a wide range of nonlin-

ear and non-Gaussian state estimation problems. PFs are 
recursive Bayesian filters (based on Bayes’s rule), which 
utilize weighted particles sampled from the probabil-
ity density function (PDF). The single most important 
technique in particle filtering is the selection of the dis-
tribution function parameters. The weighted particles 
are randomly generated state estimates of a user-defined 
number N. The PF has different implementations based 
on simplicity, the determination of whether the algo-
rithm requires resampling, and the resampling method. 
The PF algorithm and flow diagram are based on the 
details provided in Ref. 13 and will detail a generic algo-
rithm that uses resampling to help reduce the effects of 
degeneracy. The PF algorithm (Figure 3) randomly gen-
erates particles, computes weights for the particles, nor-
malizes the weights, resamples the states, and calculates 
the a posteriori state estimate.

The PF can produce more accurate estimates for 
nonlinear systems because it does not rely on linearized 
covariance updates. It has been shown that the PF esti-

mation error is lower than that of EKF but at a higher 
computational cost. The limitations of PFs are in the 
implementation and computational burden; in many 
cases, producing more accurate estimates than the EKF/
UKF will require a large number of particles (N).

IMM FILTERS
The IMM technique is considered a class of the 

Bayesian–Markovian model. An IMM estimator is a 
suboptimal filter scheme that can estimate the state of a 
dynamic system with several behavior modes. The main 
feature of the IMM algorithm is an adaptive state esti-
mator that favors the filter dynamics, among a number 
of filter models, that matches best with the target 
dynamics.14 The IMM state estimator has been shown 
to accurately track maneuvering targets provided that 
the filter dynamics capture the wide range of maneuver-
ing target dynamics. The IMM technique works through 
internal collaboration or interaction of all of the filters 
rather than independent filter analysis and selection. 
An IMM estimator can contain linear filters (Kalman 
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Figure 3. Generic PF flow diagram.13
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filter), nonlinear filters (UKF, EKF, etc.), combinations of linear and nonlinear filters, and combinations of different 
system modes (dynamic models).

IMM Construction
In the multiple model approach (Figure 4), several different filter dynamics models are assumed, and all models 

are driven by the same measurement model. The main objective of such a methodology is to determine the dynamic 
model mismatch due to the changes of the system driving force. The detection of model mismatch allows the adaptive 
estimator to combine state estimates based on model probabilities, reducing the overall state estimation error.

IMM Selection Logic
An IMM can exercise several different selection logic paths; this article will focus on a singular method to provide 

a more detailed introduction. The model selection logic using the expectation and maximization (EM) technique 
for a two-model system (this methodology can be extended to a higher number of multiple models) is explored here 
and shown in Figure 5. The EM technique is developed with the use of Gaussian noise properties.15 The following 
expresses the output PDF of two model linear system outputs:

 ; , ; ,f y k k N y k m k k N y k m ky y y y1 21 1 2 2
/ / = +^ ^ ` ^ ^ ^ ` ^ ^h h h hj h h hj" , . (5)

The expectation and covariance of the output signal can be taken to obtain

 

/; ,

m k y k C k x k k
k y k y k y k

C k k C k
f v k N v k k0

var var –

Noise PDF

y

y

x

/
/

= =
= =
=
=

l

t t

u tu

u

^

^
^

^

^
^

^

^

^
^

^

^

^

^
^ ^ ^

h

h
h

h

h
h

hh
h

h

hh
h

h
h hh

" ,
, (6)

where /  is the measurement noise covariance matrix. Applying Bayes’s rule,
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The following expresses the mixture of output PDF from each filter:
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Figure 4. Example IMM architecture.14
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References 14–16 show that there exists a binary 
identification variable j such that one and only one 
j = 1 exists, and then in that case the joint distribu-
tion f{y, } is:

 , ,f y yj j
j

n1 2
j g   = = ^ ^h h6 6@ @% , (9)

The model probability is represented by the variable 
.  is the indication of whether a model is in effect 
and is limited to having a value of 0 or 1. The algorithm 
then considers a binary hypothesis receiver where there 
exists a likelihood ratio test. Therefore, to make a binary 
representation of which model the sample output comes 
from, define a variable  such that
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= ^
^ ^

^h
h h
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In other words,  is a variable that indicates whether 
the PDF sample is coming from the first model output or 
the second model output. In that case, let g = 1   and 
h =  (Ref. 15), and then
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Dempster, Laird, and Rubin17 developed the EM 
technique to obtain the maximum likelihood estimates 
of the desired information using incomplete information 
about the data. The maximum likelihood technique 
requires that information be available in the form of a 
continuous and differentiable probability distribution. 
Maximizing the differentiable probability distribution 
produces the maximum likelihood estimates. The EM 
technique requires the identification of the complete 
data and the incomplete data. Define the set (y,) as the 
complete data set since the parameter  provides the information about the origin of the output—that is, whether the 
data are coming from the model M1 or M2. Therefore,  and y together complete the information about the target 
model. Taking the log of the preceding equation,17

 ,log log logf y z g y h y1= - +^ ^ ^ ^h h h h6 @� � �– ; (12)
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Taking the gradient of the equation with respect to y produces
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Substituting for the appropriate terms in log ,f y z^ h6 @�  and then taking the gradient with respect to y gives
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Figure 5. IMM-EM algorithm.
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The EM algorithm maximization step (M-step) requires setting the preceding equation to zero and solving for the 
output signal y. This ends in an estimate of yt^ h for the output signal y of

 y z m m m– – – –g g h g g g g h h
1 1 1 1 1 1 1 1 1– – – – – – – – –/ / / / / / / /= + +t ` `j j8 8B B�� . (16)

The preceding equation represents the desired relationship between the parameter optimization set and the miss-
ing data set. Therefore, the most general-form representation of the IMM-EM technique is

 
y

, ,arg max logy E f y z yp p1 =+t t^^
^

^hh
h

h" ,�� , (17)

where E is the expectation and arg max is the maximization. The EM technique as described in Refs. 17 and 18 
requires the iterative process to continue until the convergence of the optimized parameter set. Note that the model 
identification probability  or the missing data is a discrete, random variable whose value is in range of discrete values 
0 ≤  ≤ 1. Therefore, monitor  until its convergence toward a value between zero and one. Once  has stabilized to a 
value, then declare the end of iterations.

The algorithm requires the target state combination model outputs
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where  is the model probability.

ANALYSIS EXAMPLE UKF IMM
IMM Example Setup

As a simple example, the tracking of an object in a ballistic path is explored. The sensor model will provide an 
east-north-up position measurement of the object and will be operating at a high rate. The filter approach chosen for 
the example will be a highlighted application of an advanced algorithm, with the implementation of an IMM that 
contains three separate UKFs. The three filters assessed are a constant velocity UKF, a constant acceleration UKF, 
and a constant jerk UKF. All three filters are initialized to the position and velocity covariance estimate provided 
from the sensor. The constant velocity filter is tuned to track an object with a constant acceleration that experiences 
a slight variation in acceleration. The constant acceleration UKF is tuned to track an object with a constant accel-
eration that undergoes a slight variation in acceleration. The constant jerk filter is tuned to track an object with a 
constant velocity that experiences a slight variation in acceleration or jerk. Generally, the tuning of Kalman filters 
is achieved by a priori knowledge of the process covariance matrix and the measurement noise covariance matrix 
that are appropriate for the target characteristics. The output of the example (Figure 6) will show the position error, 
velocity error, filter performance metrics, and UKF probability (mixing probability). Upper bound and lower bound 
are computed relative to the number of Monte Carlo runs as defined in Ref. 14, with 25 Monte Carlo runs and three 
degrees of freedom.

Performance Metrics
If target truth is available, then the normalized estimation error squared (NEES) is defined as

 Xt e
1–l^ ^h hP XXt eX _ _ . (19)

NEES has a chi-squared distribution depending on the number of Monte Carlo runs; it has an upper and lower 
limit. If NEES is maintained between these two limits, generally, the filter model performance is satisfactory. Normal-
ized innovation squared (NIS) is defined as
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the bounds, they will add robustness to the filter while 
ensuring that the covariance estimate is accurately 
bounded.

A technique for computing model probability uses the 
multivariate Gaussian density function properties and 
accumulates 5–10 innovation vectors. Adaptive window 
size might be more appropriate for tracking targets that 
exhibit unpredictable characteristics. The technique 
completes the analysis shown in Figure 7.

IMM Results
A MATLAB simulation was developed to have an 

IMM container class managing three UKF models: 
constant velocity, constant acceleration, and constant 
jerk. The results track an object flying a ballistic pro-
file within the atmosphere. The measurement model 
generates noisy position measurements that are applied 
to all filter models (Figure 6). The simulation ran at 
a 10-Hz data rate and summarizes data for 25 Monte 
Carlo runs.

The NEES bounds indicate satisfactory position 
estimate performance and somewhat degraded velocity 
estimate performance; this indicates the need to adjust 
the velocity process noise matrix. The NIS bounds indi-
cate satisfactory tuning parameters of the measurement 
noise matrix for all UKF models. The model probability 
assignment indicates the constant velocity is the most 
probable model to match the target trajectory. This 
example demonstrates how different dynamic models 
can be set into a single IMM architecture and mixed to 
provide optimal performance. In expanded analysis, if 
the flight characteristics of the object changed, then the 
IMM would adapt and select the filters accordingly to 
mix the output states.

where H is a measurement vector, P is covariance matrix, 
and R is the measurement covariance matrix.

NIS also has a chi-squared distribution depending 
on the number of Monte Carlo runs; it has an upper 
and lower limit. If NIS is maintained between these 
two limits, generally, the filter model performance is 
satisfactory. Both NEES and NIS are best maintained 
between their respective upper and lower limits. The 
upper limit in the bounds of NIS and NEES is a measure 
of the ability of the estimate to be contained within the 
covariance. If the NIS/NEES values are lower than the 
upper bound, it will ensure that the covariance con-
tains the values, which is a measure of the accuracy of 
the estimate of the error or innovation within the filter. 
The lower limit in the bounds of NIS and NEES is a 
measure of the ability of the filter to have a tight esti-
mate of the covariance, meaning that the covariance is 
not arbitrarily large to ensure that it contains the error 
or innovation. If the NIS and NEES values are within 
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Figure 7. Technique for computing model probability.14
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CONCLUDING REMARKS
This article has provided an introduction to nonlin-

ear filters and IMM logic and extensive references for 
future applications. It highlights some of the challenges 
and considerations in developing tracking filters to coun-
ter increasing threat capability. The evolution is high-
lighted by the extension and application of advanced 
filter algorithms, which include nonlinear filters such as 
the UKF, EKF, and PF. The increase in computational 
capability allows for real-world application of multiple 
model filtering methods, which are most commonly 
implemented in the form of an IMM. The IMM model 
allows a system to determine dynamic model mismatch 
due to the changes of the system driving force (or threat 
variation) and results in an adaptive estimator by com-
bining state estimates (based on model probabilities) 
that reduce the overall state estimation error. The devel-
opment of multiple model filtering with nonlinear filters 
increases system robustness while allowing for future 
adaptations. IMM models can be updated to add addi-
tional filters or dynamic models, as threat capabilities 
increase, to provide increased performance for a system 
that was designed with prior knowledge. The ability of a 
system to evolve and adapt without a complete redesign 
provides a useful architecture that can be expanded as 
threats become more challenging.
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