
A. T. Plummer Jr. and K. P. Taylor

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest22

Development and Operations on the Defense
Advanced Research Project Agency’s Spectrum
Collaboration Challenge

Anthony T. Plummer Jr. and Kevin P. Taylor

ABSTRACT
The Johns Hopkins University Applied Physics Laboratory (APL) developed a complex test bed
of software and hardware called the Colosseum to support the Defense Advanced Research
Projects Agency (DARPA) Spectrum Collaboration Challenge (SC2). Following a development
and operations (DevOps) approach was critical to the team’s ability to design and build the
Colosseum. Such an approach enhances collaboration between operations and development
teams and takes advantage of technology, particularly automation tools. Tasks for the DevOps
team included developing software codebases, deploying system configurations, and monitor-
ing hardware system status such as power levels, system temperature, fans, and system uptime.
The team accomplished these tasks by following a DevOps approach and using a variety of tool
sets. This article describes the processes and tools the team used to design, build, and maintain
the Colosseum.

Software developers design, code, and test new software,
websites, and databases. They focus on the design and
architecture of the system, capabilities, and features that
will be delivered to the customer and the appropriate
languages and tools to realize the solution. IT profes-
sionals, or system administrators, are responsible for the
software installation, daily management, upkeep, and
configuration of computer systems of an organization.
Systems include desktop and laptop computers, serv-
ers, networks, IT security systems, and other critical
IT infrastructure. System admins are also responsible
for determining appropriate IT policies for businesses,
supervising lower-level technician staff, and sometimes
overseeing the purchasing of IT equipment.

INTRODUCTION
Development and operations, or DevOps, represents

a change in software development and information
technology (IT) culture, focusing on rapid IT service
innovation through the adoption of agile,1 lean prac-
tices in the context of a systems-oriented approach.
DevOps emphasizes people (and culture) and seeks to
improve collaboration between operations and devel-
opment teams. DevOps implementations use technol-
ogy, especially automation tools, that can leverage an
increasingly programmable and dynamic infrastructure.1
DevOps merges two disciplines: software development
and system administration.

Traditionally, software development teams and system
administration teams work independently of each other.

http://www.jhuapl.edu/techdigest

DevOps on the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 23

In DevOps, software development and IT administra-
tion teams work closely to deliver a product, service, or
application to a sponsor or customer. Many teams follow
the agile methodology,2 where tasks are determined and
executed as a team in 2- to 4-week sprints. Using this
approach, tasks are considered based on sponsor and
team priorities, feature development goals, maintenance
efforts, team configuration, and other factors. The soft-
ware development team’s efforts are evaluated along-
side the system administrators’ maintenance needs. As
defects or bugs are discovered during operations, the
system administrators add them to a unified task track-
ing system for planning during the next sprint.

As part of the Defense Advanced Research Projects
Agency (DARPA) Spectrum Collaboration Challenge
(SC2), APL designed, developed, and built a wireless
research test bed known as the Colosseum. (See the
article by Coleman et al. in this issue for an overview of
the Colosseum.) The Colosseum’s collection of resources
facilitated research in autonomous spectrum manage-
ment across a set of collaborative intelligent radio net-
works (CIRNs) during SC2. The resources included
software-defined radios (SDRs), a wireless channel emu-
lator, emulated backhaul networks, data streams repre-
senting realistic user applications, and an emulated GPS
service. The Colosseum provided services for research
(e.g., secure data storage) and competition (e.g., score-
keeping). It was remotely accessible and was used by
more than 100 researchers across 30 teams spanning
5 different countries over the 3 years of the competition
(2016–2019).

Maintenance of Colosseum operations required sig-
nificant software tool sets and management systems.
The APL team followed a DevOps approach when
designing, developing, and maintaining the Colosseum.
This article discusses the DevOps processes and tool sets
and provides an overview of some of the challenges the
team faced. After providing an overview of the system,
the article reviews the tools that were used to build and
maintain the system. The complementary SC2 project
management process is discussed in detail in the article
by Freeman et al. in this issue.

WHY WAS DEVOPS NEEDED FOR SC2?
DARPA’s SC2 was an ambitious undertaking to

address the question of collaborative spectrum sharing.
Achieving the goals of the program required a large and
intricate test bed. Such a test bed did not exist at the
time SC2 was launched, so it had to be designed and
built from the ground up. Given the scale of the Colos-
seum, a large team of software developers, system admin-
istrators, team managers, and facilities personnel had to
collaborate on designing a one-of-a-kind system to meet
DARPA’s goals. One major constraint on the project was
a short timeline. In a traditional development approach,

the software development team would first design and
develop the codebase and then work with the facilities
team to build the system and deploy the software to the
servers. Then the system administrators would collabo-
rate with the software and facilities team to develop a
system maintenance and monitoring plan. Finally, once
the system was built, users would be given access to the
system to execute their tests and to participate in the
competition events.

The compressed SC2 schedule required that almost
all these activities be executed in parallel. To manage
these concurrent activities, the team adopted a DevOps
approach. DevOps provided a way to systematically
enable the simultaneous development and operations
efforts to come together to meet the program goals. To
meet competition deadlines, competitors needed access
to the system while major parts of the codebase were
under development, system administration tools were
being implemented, and some equipment was being
installed. Additionally, the selected system management
tools had to be flexible to administer a dynamic system
environment. Tools that enabled effective monitoring of
the health and status of the system were also critical to
the success of the project.

COLOSSEUM SCALE
The Colosseum consisted of hundreds of servers,

networking equipment, SDRs, software packages, and
facility installations. Figure 1 shows a top-down view
of the facilities that held all the Colosseum hardware.
A single room with 21 racks of equipment, each with
different types of hardware, was divided into four simi-
lar quadrants. As shown in the figure, each quadrant
included one rack (green) that contained the network
distribution infrastructure; two racks (blue) that con-
tained 12 standard radio node (SRN) servers each; one
rack (yellow) that contained 8 SRNs and 32 Universal
Software Radio Peripherals (USRPs); and one rack (red)
that contained 32 USRPs and the radio frequency (RF)
emulation field-programmable gate array (FPGA) hard-
ware. A single rack, rack 6 (purple), in the middle of the
room contained the demilitarized zone (DMZ) exter-
nal connections including internet access, GPS-based
timing, web servers, and firewalls. Other systems existed
within the four network distribution racks, including
blade server chassis, storage systems, build servers, RF
management servers, and external partner equipment.

The following statistics on the Colosseum system
illustrate its size and complexity. In addition to the hard-
ware components, hundreds of software applications
executed tasks on the system daily.

•	 Hardware

	J 900 TB of network-attached storage (NAS)
	J 171 high-performance servers

http://www.jhuapl.edu/techdigest

A. T. Plummer Jr. and K. P. Taylor

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest24

	J 24 virtual machines
	J 6 ESXi servers
	J 256 USRPs
	J 16 10-G switches
	J 2 40-G switches
	J 4 National Instruments BEEcube systems
	J 17 FPGA modules
	J 19 clock distribution systems
	J 100s of high-speed optical connections
	J 100s of networking and power connections

•	 Facility

	J 21 racks in a 30-foot by 20-foot equipment room
	J 40-ton heating, ventilation, and air condition-

ing (HVAC)
	J 65-kW, 208/120-VAC three-phase for equipment

•	 Users

	J 30 teams
	J 378 user accounts
	J 100s of system reservations per week

COLOSSEUM SYSTEM ADMINISTRATION
ARCHITECTURE OVERVIEW

The system administration and design was decom-
posed into three major areas, as shown in Figure 2: con-
figuration management, deployment, and health and
status monitoring. In the configuration management
area, software repositories hosted the source code that
the applications deployed on the Colosseum. Addition-
ally, static and dynamic configurations of the systems
were maintained. Developers and system administrators
uploaded all code and configurations to these reposito-
ries before deploying them to the Colosseum hardware.
System administrators and the development team used
the deployment system to deploy new and updated

software, configurations, and tests to the Colosseum
on demand. The system offered a consistent method
of updating systems to reduce errors and increase reli-
ability. Last, the health and status monitoring system
actively evaluated the well-being of the Colosseum
through monitoring hardware, services, and applica-
tions. System administrators could observe the system
status at any time through web-based viewers. In addi-
tion, the system sent alerts to the system administrators
when it detected issues.

CONFIGURATION MANAGEMENT
Repository Systems

Repository systems are centralized locations that store
and manage development code, configurations, software
packages, and user data. The following sections discuss
the different repository systems the Colosseum used.

GITLAB
GitLab3 is a Git repository manager that the SC2 team

used to store source code and configuration information.
At the time of this writing, there were 60 repositories

Con�guration
management

Deployment Health and status
monitoring

Repositories Server
creation Hardware

Static
con�guration

System
updates Services

Dynamic
con�guration

System
testing Applications

Figure 2. Colosseum system administration decomposition.
System administration was broken down into three main areas:
configuration management, deployment, and health and status
monitoring.

Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 Rack 6 Rack 8Rack 7 Rack 9 Rack 10 Rack 11

Rack 12 Rack 13 Rack 14 Rack 15 Rack 16 Rack 17 Rack 18 Rack 19 Rack 20 Rack 21

Distribution infrastructure rack
SRN racks 1 and 2

SRN rack 3
Emulator rack
External connectivity rack

DMZQuadrant 1 Quadrant 2

Quadrant 3 Quadrant 4

Figure 1.  Colosseum facilities overview. The system was composed of 21 server racks of equipment with different types of hardware and
was divided into four quadrants that contained 32 SRNs each. Until October 2019, it was housed on APL’s main campus in Laurel, Maryland.

http://www.jhuapl.edu/techdigest

DevOps on the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 25

on the server spanning various software components
and configuration stores. There were dozens of users
on the system who uploaded and downloaded code to
the server.

Lightweight Directory Access Protocol and Authentication
The “389 Directory Server,” or Lightweight Directory

Access Protocol (LDAP),4 stored all user information for
the Colosseum. The LDAP database stored each user’s
ID, email, password, and Secure Shell (SSH) key for
use across the entire system. The SSH keys were stored
in the LDAP database via uploading to the competitor
website to provide authentication access to the competi-
tor SSH gateway. Once users authenticated with their
SSH keys, they used their regular passwords to connect
to other systems throughout the Colosseum. All the sys-
tems inside the Colosseum used the same LDAP server
for authenticating users as well as for obtaining user ID
information. The storage servers used LDAP for identi-
fying users and groups for maintaining access control for
files, which helped protect competitor data from unau-
thorized access. The LDAP application ran on a virtual
machine on one of the ESXi5 servers in the Colosseum.

Ubuntu Repository
The Colosseum maintained an offline Ubuntu repos-

itory6 for use by internal servers. The repository was a
copy of the entire Ubuntu online repository (~155 GB)
including additional specialized packages.

Python Pip Repository
Most of the software developed for the Colosseum

was written in Python. For Python dependencies, the
Colosseum maintained an offline Python Pip reposi-
tory.7 Given the relatively small number of Python
dependencies, the system maintained only the required
dependencies.

Static Configuration
All servers within Colosseum maintained a base or

static configuration that generally did not change during
normal operations. Static configurations included the
operating system, third-party software packages, and
network configurations. This configuration category
was maintained through a software tool called Puppet.8
Puppet is a configuration management utility that keeps
all the systems it manages consistent. Each host in the
Colosseum ran a Puppet agent that queried the Puppet
master server to get its configuration (known as a mani-
fest). Figure 3 shows the Puppet deployment architec-
ture. The Puppet configurations were stored in GitLab
and then pushed by the Jenkins10 deployment system to
a server, called sc2-build, that hosted the Puppet master.
The Puppet master communicated with Puppet agents

running on all systems in the Colosseum. The Puppet
agents executed the latest configuration received from
the Puppet master. At a fixed interval (normally set to
10 minutes), the agents checked in with the master to
determine whether there were any new updates.

The advantage to this system is that if a user or an
administrator made a change on a single system, the
next time Puppet ran, it replaced the configuration with
the one on the remote Puppet server, thus guarantee-
ing a known configuration. This is also its disadvan-
tage. Puppet could possibly overwrite a file being used
for testing or temporary changes, so developers working
in a test environment had to be careful. A precaution-
ary measure usually included temporarily disabling the
Puppet agent on the server that was being tested.

The Colosseum had numerous Puppet manifests that
configured each aspect of the system. Standard mani-
fests ensured that base software packages were installed,
and configurations for connecting to the LDAP server,
storage mount points, host files, etc. were defined.
Additionally, each special environment of the test bed
(wireless channel emulator, traffic controller, traffic gen-
erator, SRN) had separate Puppet manifests with con-
figurations specific to it.

Dynamic Configuration
In the Colosseum’s day-to-day operations, a few short-

term, or dynamic, configurations typically remained
active for a few hours or weeks. These included assign-
ing SRNs to specific quadrants or environments (pro-
duction or pre-production), changing data storage paths
for test events, or changing traffic generator server
locations. The primary tool used for this purpose was
Consul. Consul9 is a tool for discovering and configur-
ing services in an infrastructure. The SC2 team primar-
ily used it to configure the system layout (SRN quadrant
assignments), to make traffic generation server assign-
ments, and to make HTTP REST (representational state
transfer) application programming interface end point

GitLab Jenkins
Puppet
master

SC2-build

Puppet agent
component

server

Puppet agent
component

server

Puppet agent
component

server

Figure 3.  Puppet architecture. Puppet is a configuration man-
agement utility that keeps all the systems it manages consistent.
Each host in the Colosseum ran a Puppet agent that queried the
Puppet master server to get its configuration. The Puppet agents
executed the latest configuration received from the Puppet
master. At a fixed interval, the agents checked in with the master
to determine whether there were any new updates.

http://www.jhuapl.edu/techdigest

A. T. Plummer Jr. and K. P. Taylor

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest26

assignments. It is similar in architecture to Puppet, but
it specializes in supporting dynamic configurations that
may change often, whereas Puppet is more suited for
static system configurations.

Settings for the SC2 Consul system were maintained
within a repository on the SC2 GitLab server. These set-
tings were never modified on a server directly by admin-
istrators or users. Automation processes were created
within Jenkins to modify Consul settings to ensure that
all changes to the Colosseum configuration were logged
and executed in a controlled, repeatable manner. This
not only greatly reduced the chance of misconfiguration
but also provided a detailed history of the exact con-
figuration of the Colosseum at any point in time. The
addition of this process to the Colosseum DevOps pro-
cedures enabled the team to quickly and reliably adapt
Colosseum configuration as needed.

DEPLOYMENT SYSTEM
A reliable and efficient process to update the Colos-

seum software and services was required to enable peri-
odic feature updates, bug fixes, and maintenance tasks.
The deployment system’s purpose was to install, deploy,
and manage software that supported SC2 operations.
The system consisted of a collection of software tool
sets, physical and virtual servers, networking equipment,
and other special-purpose hardware. Each tool set had
a specific purpose but could be categorized into three
broad categories: repository, deployment, and agent.

The repository system stored and managed the software
source code, users’ information, and system configura-
tion information. The deployment system delivered
new software code and configuration to the servers in
the Colosseum. It managed the servers that each soft-
ware codebase was deployed to and the methods to
access each server. Last, the agents were the pieces of
software executing on the Colosseum servers to enable
desired capabilities and management actions. Many of
the agents were constantly or periodically running and
executing tasks autonomously. In contrast, the software
in the deployment category was primarily used on an on-
demand basis when a user had to execute a task. Most of
the tool sets executed actions on the management net-
work. As shown in Figure 2 in the article by Coleman
et al. in this issue, the management network was con-
nected to nearly all Colosseum systems.

The deployment system could be used for different
use cases including:

•	 Building a new system—A server initially has no
operating system installed. The deployment system
installed the operating system, set the Internet Pro-
tocol (IP) addresses and media access control (MAC)
addresses, added all the required software dependen-
cies and source code, and started all the services.

•	 Deploying new software code updates—Each time
there was a new update to a software component,
the deployment system deployed, installed, and
started the new software.

Jenkins 2-Deployment

New Item

People

Build History

Edit View

Delete View

Project Relationship

Check File Fingerprint

Manage Jenkins

My Views

Credentials

Build Queue

No builds in the queue.

Build Executor Status

DARPA SC2 Continuous Integration System
This view is used to drive end-to-end Colosseum deployment

1-Global 2-Deployment 2-Production Deployment 3-Pre-Production Deployment 4-Sandbox Deployment 5-Playground 6-ATS All

master

1 Idle

2 Idle

3 Idle

4 Idle

edit description

Collab Event_Scrimmage_Support RF System Pipeline Based Deployment Resource Manager SRN System Test Team_Items

S W Categorized - Job Last Succes Last Failure Last Duration

0 - Pre-Deploy Actions 18 hr - #70 18 hr - #68 1 min 54 sec

1 - Update Infrastructure N/A N/A N/A

2 - Con�gure Resources 16 hr - #76 16 hr - #25 1 min 23 sec

3 - Pull External Code Bases 2 days 23 hr - #50 2 days 23 hr - #48 3 min 45 sec

4 - Deploy Code (Production) 2 days 22 hr - #48 2 mo 13 days - #44 39 sec

5 - Deploy Code (Prepod) 2 days 10 hr - #144 1 mo 20 days - #391 43 sec

6 - Deploy Code (Sandbox) 2 days 22 hr - #48 1 mo 0 days - #345 39 sec

7 - Run System Test 1 mo 1 day - #43 1 mo 7 days - #33 26 min

8 - Analyze System Test 16 days - #358 1 mo 23 days - #138 1 min 19 sec

9 - Post Deploy Actions 2 days 20 hr - #139 20 days - #134 2 min 12 sec

Old deploy SRNs 29 days - #270 1 mo 21 days - #247 32 sec

incumbents +

ENABLE AUTO REFRESH

3 search log out?Jenkins

Figure 4.  Jenkins development tab. Jenkins was the main software tool for deploying software and configurations in the Colosseum.
Jenkins tabs organized multiple projects, and each project contained deployment-related code that accessed a system in the Colosseum
or ran a set of commands on a system.

http://www.jhuapl.edu/techdigest

DevOps on the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 27

•	 Pushing updated system configurations—System
configurations were modified often as needs changed,
and the deployment system deployed updated con-
figurations to target servers.

•	 System testing—Before a new software package was
deployed to the production system, it had to pass
unit and system tests. The deployment system facili-
tated the automated operations of these tests.

System Updates and Testing
Jenkins was the primary software tool for deploy-

ing software and configurations in the Colosseum. All
software was deployed from Jenkins. It provided a single
point for software developers and administrators to
deploy new updates to the Colosseum. Jenkins was used
in the Colosseum for many purposes, including deploy-
ing new software codebases; running continuous inte-
gration unit tests; updating the configuration of Puppet
and data collection systems; version-tagging codebases;
restarting applications; disabling external web inter-
faces; updating remote repositories; and reconfiguring
Colosseum resources across domains. Figure 4 shows the
Jenkins Deployment tab. This tab and other Jenkins tabs
organized multiple Jenkins projects. Each project con-
tained deployment-related code that accessed a system
in the Colosseum or ran a set of commands on a system.

Figure 5 shows the development process and deploy-
ment for the different environments in the Colosseum:
development, continuous integration, pre-production,
and production. The continuous integration and pre-
production environments contained a full set of serv-
ers and applications that replicated the production
environment. During the development phase, software

developers designed and implemented new features
using full-stack development virtual machines and
then uploaded the software code to the GitLab reposi-
tory. As new and updated features were completed, they
were deployed from GitLab to the Colosseum in the
continuous integration environment for unit testing.
Features that passed the unit tests were deployed to the
pre-production environment for additional system-level
testing. This process occurred during the 2-week devel-
opment sprints. Last, the tested features were deployed
to the production environment during maintenance
windows and were then available to Colosseum users.
During each step in the process, Jenkins was used to
deploy and execute the required software deployments.

Server Creation
The build system was one of the primary use cases for

the deployment system. The build system typically aims
to construct a component server from bare metal (e.g.,
a server with no operating system). Example Colosseum
servers included those for the Resource Manager and the
Traffic Generation System. The build process generally
followed the steps outlined below.

1.	 A system that was being built or rebuilt sent a request
for a network address to be configured. The Dynamic
Host Configuration Protocol (DHCP) server used
the MAC address of the network interface making
the request to assign it its IP address.

2.	 Next, DHCP directed the system to the Trivial File
Transfer Protocol (TFTP) server, which held the
Preboot Execution Environment (PXE) image used
for installing an operating system.

Deploy to
multiple CISs

(blades)

Unit tests
on all code

bases

Automated
integration-
level tests

Full stack
dev VM

Jenkins
(testing)

Jenkins
(deployment)

Jenkins
(deployment)

Manual testing
Dev codeRM

TGEN

SRN

RFES

RM

TGEN

SRN

RFES

RM

TGEN

SRN

RFES

Development Continuous integration Pre-production Production

GitLab
repositories

Pre-production
servers (blades)

Production
servers

(stand-alone
servers)

2-week sprints 2 weeks of test, then release

CIS Continuous integration system
Dev Development
RFES RF Emulation System
RM Resource Manager
TGEN Traf�c Generation System
VM Virtual machine

Figure 5.  Development process and deployment. The figure shows the different environments in the Colosseum (development, con-
tinuous integration, pre-production, and production). At each step, Jenkins deployed and executed the required software.

http://www.jhuapl.edu/techdigest

A. T. Plummer Jr. and K. P. Taylor

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest28

3.	 After the PXE environment was loaded, the Ubuntu
deployment system automatically partitioned the
hard disk as appropriate and installed a base soft-
ware image including Puppet.

4.	 Once the system was fully installed and restarted, the
Puppet agent on the newly built system checked in
with the Puppet server and downloaded any specific
configurations to bring the system into a usable state.

5.	 The system was ready to install the component soft-
ware that generally differentiated the system from
other servers. This software was deployed by Jenkins.
Jenkins copied or “checked out” the source code of a
specific component from GitLab and loaded it onto
the new server build.

6.	 As part of the Jenkins deployment, the component
application service was started and was then ready
for use.

Ubuntu Deployment System
Automated deployment of new systems (or rebuilding

of existing systems) in the Colosseum required configu-
ration of several pieces of software: DHCP11 (for auto-
matic assigning of network addresses); PXE/TFTP12,13
(allowing systems to automatically boot and install base
configuration software); Puppet (to give the systems
their configurations); and Jenkins10 (to install compo-
nent software).

The DHCP11 server enabled systems to request their
network configurations without having to manually
set the address on individual hosts. For the Colosseum,
DHCP was configured to assign addresses specific to
the MAC address of the network interface requesting
an address. This prevented any unknown system from
automatically assigning itself an address and having to
identify the unknown system to resolve a potential con-
flict. When a system was being built, DHCP directed the
system to the TFTP server to get its initial image.

The TFTP13 server transferred a small Linux system
image via PXE12 boot, which minimally booted the
system and started the launch of the Ubuntu deploy-
ment system. This setup had the ability to launch dif-
ferent installation parameters based on the particular
system being built. There were generally two configura-
tions: SRNs (which contained multiple hard drives) and
everything else (based on a single hard drive). Identify-
ing which system got which configuration made a com-
pletely unattended installation possible.

After the PXE image was loaded, control was passed
on to a minimal Ubuntu kernel, which was used to per-
form a software install. For Ubuntu, a preseed file14 was
used to answer standard questions about which software
to install, how to configure the network, how to parti-
tion disks, etc. This preseed could also be configured to

execute any number of commands after the software fin-
ished installing. Executing commands at the end makes
it possible to install extra software packages and con-
figuration files that cannot easily be defined in the main
preseed configuration.

The Colosseum team initially experienced issues
with the automatic disk partitioning mechanism built
into the Ubuntu preseed configuration. As part of the
deployment server, at the end of the preseed configura-
tion, a shell script was launched to repartition the disks
for SRNs (the main disk as well as the secondary drive),
configure custom software, and install Puppet so that
when the system rebooted it was ready to receive its
configuration.

Common Colosseum Build System
Figure 6 shows the Colosseum build system. The

build system provided a structure for the server creation
process and was divided into six layers, each supported
by software tool sets, as shown in Figure 6 and described
below:

•	 Layer 1, Operating system—This was the lowest
layer and contained the operating system (Base
Ubuntu 14.04 Linux) as well as initial networking
and IP and MAC address configurations.

•	 Layer 2, Base system configuration—This layer set
the configurations of available Colosseum resources,
including the Ubuntu and Python repositories,
LDAP, and hardware management tools.

•	 Layer 3, Component Puppet module—This
layer established the Puppet configuration, which
installed the component dependencies and configu-
ration files.

•	 Layer 4, Component software—This layer installed
the component software and initial database config-
urations on the target server. This layer is what truly
differentiated server functionality (e.g., Resource
Manager from Traffic Controller).

•	 Layer 5, Consul configuration—This layer set the
Consul service configuration.

•	 Layer 6, Process monitoring—This layer config-
ured the monitoring systems for the component.

HEALTH AND STATUS MONITORING
The Colosseum’s hundreds of active users depended

on the availability of its systems for development and
test activities as well as for competitions, which required
a high level of integrity to ensure fair results. Actively
monitoring the system’s health and status to iden-
tify issues and ensure a good operational state was an

http://www.jhuapl.edu/techdigest

DevOps on the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 29

important activity for the APL team. The Health and
Status Monitoring System was a collection of autono-
mously running and on-demand software that actively
collected information, statistics, and data from most of
the system’s components. A key component of the mon-
itoring system was the process of collecting data from
Colosseum servers and applications. Analytics were run
against these data to determine the system’s health and
status. Figure 7 shows the Colosseum data collection,
which included three sources of data:

1.	 Hardware level—This was the server- level or
hardware-level information, such as information on
power levels, system temperature, fans, and system
uptime.

2.	 Service level—This information concerned whether
a software service was active or not. For example,
was the Resource Manager, orchestrator, or SRN
application running or not?

Repository Deployment Agent

Layer 6,
Process

monitoring

Layer 5,
Consul

con�guration

Layer 4,
Component

software

Layer 3,
Component

Puppet module

Layer 2,
Base system
con�guration

Layer 1,
Operating
system

Splunk database

GitLab
(Consul repository)

GitLab
(Component repositories:

website, Resource
Manager, Traf�c

Generation System, RF
emulation server, SRN)

GitLab
(sc2-build
repository)

GitLab
(sc2-build
repository)

GitLab
(sc2-build
repository)

Nagios
Splunk

Jenkins
(Consul project)

Jenkins
(Component

project)

Jenkins
(sc2-build

project)

Jenkins
(sc2-build

project)

Jenkins
(sc2-build

project)

Logstash

Consul
server

Component
server

Puppet
(website,
Resource
Manager,

Traf�c
Generation
System, RF

emulation server,
orchestrator)

Puppet
(darpa
core-

management
Idap-client)

PXE
TFPT
DHCP

Component
server

Consul con�guration
(future)

Layout con�guration

Component Software
Subcomponent software,

database population,
start and stop service

Component Puppet Module
Hostname, Python virtual

environment, speci�c
Python dep., speci�c

Ubuntu dep.,
uWSGI con�guration,
mGINX con�guration,

database con�guration,
fstab (NAS mounts)

Base Colosseum system
/etc/hosts, users (LDAP),
Ubuntu repository mirror,
Python repository (PyPi),
common Python dep.,
common Ubuntu dep.,

Nagios NRPE, IPMI tools

Operating system
Base Ubuntu OS,

MAC address,
initial IP address

Process monitoring,
logging

Figure 6.  Colosseum build system. Shown are the six layers of the build and the software tool sets sup-
porting each layer.

Data sources Data gatherers Data storage Data visualization Alerting

Nagios
browser

Service
level

Nagios
Nagios
�at �le
storage

Nagios
alerting
(email)

Splunk
web GUI

Splunk
UDP input

Splunk
alerts

Hardware
level iDRAC

Splunk
indexer

check_ipmi

check_nrpe

Appli-
cation
level

Logstash

NRPE
daemon

Figure 7.  Colosseum data collection. The system collected hardware-, service-, and application-level data. These data sources supplied
other tool sets, as shown in the figure, that processed the data for administrator consumption.

http://www.jhuapl.edu/techdigest

A. T. Plummer Jr. and K. P. Taylor

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest30

3.	 Application level—This was application- or
component-level information that provided details
about a specific application’s performance or statis-
tics (e.g., the number of SRNs being used by com-
petitors or the current state of a reservation).

These data sources supplied other tool sets that
processed the data for administrator consumption.
Data gatherers collected information from other sys-
tems. Data storage tools stored and organized the col-
lected data. Data visualization tools displayed graphical
views of data. Most were web-based interfaces. And,
finally, alerting tools sent emails to admins or main-
tained an event logging system that admins could view
periodically.

The Colosseum collected several types of informa-
tion. Just a few examples are the number of (active/
teams/users) reservations; SRN allocation status; server
load averages, disk and memory usage; and reservation
status across system components.

The following sections detail each of the health and
status monitoring tools.

Nagios
The open-source package Nagios15 was the main

center of system monitoring and alerting for the Col-
osseum. Alerts could be configured to email specific
support staff if an issue arose. Other checks provided
informational status inside of Nagios; these checks did
not email an alert but showed a warning or critical status
on the web interface. Nagios checks, some shown in
Figure 8, included the following:

System uptime/downtime—Nagios checked to see
whether a host was alive, and if the host could not be
reached on the first check, Nagios rechecked several
more times. If the system was not responsive after the
last check, Nagios sent an email alert noting that the
system was down.

Hardware status—Nagios was configured to query
the IPMI16 interface on many of the servers inside the
Colosseum test bed. If the system temperature got too
high or a power supply stopped reporting, an alert was
emailed. Fan and power consumption was also moni-
tored for informational purposes.

RFsys-quad1

RFsys-quad2

RFsys-quad3

RFsys-quad4

Service Overview For All Host Groups

RF Emulation System

View Service Status Detail For All Host Groups
View Host Status Detail For All Host Groups
View Status Summary For All Host Groups
View Status Grid For All Host Groups

Spine Switches (6000N-Spine-Switches)

Current Network Status
Last Updated: Mon Nov 27 16:40:18 UTC 2017
Updated every 90 seconds
Nagios® Core™ 3.5.1 - www.nagios.org
Logged in as nagiosadmin

r6spine2 UP No matching services

r6spine1 UP No matching services

Host Status Totals
Up Down Unreachable Pending

All Probelms All Types

409 0 0

0

0 0

409

Host Status Services Actions Host Status Services Actions Host Status Services Actions
Network Switches (S4048-Switches)

Service Status Totals
Ok Warning Unknown Critical Pending

All Probelms All Types

0

3540

3508 10 22

32

UP

UP

UP

UP

4 OK

4 OK

3 OK

3 OK

1 WARNING

1 WARNING

R11can

R11mgmt

UP

UP 2 OK

2 OK

R11tra�c

R12can

UP

UP 2 OK

2 OK

R12mgmt

R12tra�c

UP

UP 2 OK

2 OK

R1can

R1mgmt

UP

UP 2 OK

2 OK

R1tra�c

R21can

UP

UP 2 OK

2 OK

R21mgmt

R21tra�c

UP

UP 2 OK

2 OK

Status

2017-11-27 16:37:32

2017-11-27 16:37:31

2017-11-27 16:37:40

2017-11-27 16:35:34

2017-11-27 16:36:34

2017-11-27 16:35:33

CRITICAL

WARNING

WARNING

WARNING

CRITICAL

analysis-server-1

wce-quad3

wce-quad4

sc2-srn-003

DISK CRITICAL - free space: / 337 MB (0% inode=89%):

DISK WARNING - free space: / 14871 MB (19% inode=85%):

DISK WARNING - free space: / 13134 MB (17% inode=85%):

CRITICAL - Web version: - Disk version: “origin/release”

ERROR - no web info returned

ERROR - 2 srn_ctrl_start processes running

Limit Results: 100

Host

check_disk_sda1

check_disk_sda1

check_disk_sda1

Check software version

Check for SRN status

Check_srn_service-srn_ctrl

4d 13h 20m 42s 4/4

4/4

Status InformationService AttemptDurationLast Check

CRITICAL

4/4

4/4

4/4

4/4

10d 2h 23m 43s

16d 21h 33m 35s

4d 9h 40m 40s

4d 9h 39m 40s

4d 9h 40m 41s

Figure 8.  Nagios host groups and problems view. Nagios, an open-source package, was at the center of system monitoring and alerting
for the Colosseum. Alerts could be configured to email specific support staff when an issue arose. Other checks, like those shown in the
problems view (bottom), did not email an alert but showed a warning or critical status on the web interface.

http://www.jhuapl.edu/techdigest

DevOps on the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 31

Disk usage—Nagios sent an alert report when the
system disk usage got above 80% utilization.

Service checks—The bulk of the Nagios checking on
the Colosseum was based on checking various services
and functionality in the test bed. Most of the checks
simply returned an up or down status, but some reported
a more detailed status message. Following is a partial list
of the service checks performed on the Colosseum:

•	 LDAP service responding on the LDAP server

•	 Verification that the Network Time Protocol
(NTP)17 server and the NTP service on hosts were
functioning

•	 System load on the systems

•	 RF emulation server services running

•	 Web service running on the hosts it was supposed to
be running on

•	 Verification of whether USRP USB connection was
good

•	 Verification that SRN services were running on the
SRN hosts

•	 Verification that the User Datagram Protocol (UDP)
service was started for the wireless channel emulator

•	 Verification of software versions for key pieces of the
test bed environment

Service restarts—For a few of the most critical ser-
vices in the test bed (such as the SRN services, SRN
NTP17 services, and channel update process services),

Nagios was configured to execute a command if the ser-
vice entered a critical state. These commands executed
a restart of the service when instructed by Nagios. This
helped guarantee system uptime if one of these services
crashed or failed.

Integrated Dell Remote Access Controller
Dell18 provided out-of-band management of its equip-

ment using the Integrated Dell Remote Access Controller
(iDRAC) available on each server. Through the iDRAC,
the SC2 team was able to monitor hardware compo-
nents (CPU temperature, fans, power supply status) and
remotely control systems (power them on/off, remote
console, change boot options). Because this was out of
band, the servers themselves did not need to be online
or even powered on for this functionality to be available.

Splunk and Logstash
Splunk19 is an advanced log collection and analysis

software package. It performed complex searches against
all the data collected by test bed components and cre-
ated reports and alerts based on events found in log files.
Figure 9 shows an example Splunk query.

Logstash20 is an open-source server-side data process-
ing pipeline that ingests data from a multitude of sources
simultaneously, transforms it, and then sends it to a data
collector. The main software components used a util-
ity that captured all Python logging messages and sent
them over UDP to the sc2-log server that ran the Splunk
application. The combination of Splunk and Logstash
created a powerful capability for analysis of system
events and logs. Figure 10 shows the flow of Logstash

Search Datasets Reports Alerts Dashboards Search & Reporting

New Search
"traf�c-controller"

247,853 events (12/3/17 5:00:00.000 PM to 12/4/17 5:59:52.000 PM No Event Sampling

Events (247,853)

Format Timeline

Hide Fields

Selected Fields
a host 8
a source 1
a sourcetype 1

Interesting Fields
a @timestamp 100+
a @version 1
a index 1
a level 4
linecount 1
a logger_name 2
a message 100+
a path 11
a punct 100+
a service_host 5
a splunk_server 1
a stack_info 1
a timestamp 1
a type 1

 2 more �elds
 + Extract New Fields

All Fields Time

12/4/17
5:59:47.000 PM

12/4/17
5:59:40.000 PM

12/4/17
5:59:40.000 PM

{ [–]
@timestamp: 2017-12-04T17:59:40.248Z
@version: 1
host: traf�c-controller
level: DEBUG
logger_name: dev
message: received with container_id=None status=None session_id=None
path: ./src/webapp/blueprints/app_container/controller.py
stack_info: null
tags: [[+]
]
type: logstash

Event

– Zoom Out + Zoom to Selection x Deselect

Patterns Statistics Visualization

List Format 20 Per Page

}
Show as raw text
host = traf�c-controller host = traf�c-controller source = udp:5000 sourcetype = json_no_timestamp

{ [–]

{ [–]

@timestamp: 2017-12-04T17:59:40.248Z
@version: 1
host: traf�c-controller
level: DEBUG
logger_name: dev
message: args=ImmutableMultiDict([])
path: ./src/webapp/blueprints/app_container/controller.py
stack_info: null
tags: [[+]
]
type: logstash

}
Show as raw text
host = traf�c-controller host = traf�c-controller source = udp:5000 sourcetype = json_no_timestamp

@timestamp: 2017-12-04T17:59:40.248Z
@version: 1

 Prev 1 2 3 4 5 6 7 8 9 ... Next

1 hour per column

Smart ModeJob

Last 24 hours

Save As Close

f

Figure 9.  Splunk search interface showing an example query. Splunk is an advanced log collection and analysis software package that
performed complex searches against all the data collected by test bed components and created reports and alerts based on events
found in log files.

http://www.jhuapl.edu/techdigest

A. T. Plummer Jr. and K. P. Taylor

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest32

messages to the Splunk tool set. Users could log into the
Splunk interface to access the stored data.

StatusCake
StatusCake21 is an online service that checked the

Colosseum’s external interfaces (i.e., internet-facing sys-
tems). It used 100+ monitoring servers across the world
to periodically check whether a web link was reachable.
StatusCake monitored the main competitor website and
the competitor gateway.

CONCLUSION
DevOps provided a guiding process and set of tools

that helped the APL team build, design, and maintain
the Colosseum. DevOps principles and systems enabled
many of the Colosseum’s required operational actions,
including deploying new software codebases; running
continuous integration unit tests; updating the system
configuration; restarting applications; monitoring
hardware system status, such as power levels, system
temperature, fans, and system uptime; and monitoring
application-level performance and statistics. The SC2
team accomplished these tasks by using a variety of tool
sets that all served different purposes but in many cases
worked together. The team considered many trade-offs
during the implementation of the system and ultimately
selected the DevOps tools that best helped it to design,
build, and manage the Colosseum.

ACKNOWLEDGMENTS: We thank Paul Tilghman (DARPA SC2
program manager) and Craig Pomeroy and Kevin Barone
(Systems Engineering and Technical Assistance at DARPA)

for their invaluable collaboration and support. We also
thank the many APL SC2 contributors, whose names are
listed on the inside back cover of this issue of the Digest,
and in particular we acknowledge Kenneth R. McKeever,
Uthman Adediran, Kurt T. Yoder, Emery Annis, Robert W.
Grimes, Cherita Corbett, and Jordan Kraus. This research
was developed with funding from the Defense Advanced
Research Projects Agency (DARPA). The views, opinions,
and/or findings expressed are those of the authors and
should not be interpreted as representing the official
views or policies of the Department of Defense or the
US government.

REFERENCES

  1“DevOps.” Gartner Glossary. https://www.gartner.com/it-glossary/
devops/ (accessed Aug. 26, 2019).

  2K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunning-
ham, et al., 2001. “Manifesto for agile software development.” http://
agilemanifesto.org/ (accessed Aug. 26, 2019).

  3“About.” GitLab. https://about.gitlab.com/ (accessed Aug. 26, 2019).
  4“389 directory server.” http://directory.fedoraproject.org/ (accessed

Aug. 26, 2019).
  5“ESXi.” VMware. https://www.vmware.com/products/esxi-and-esx.html

(accessed Aug. 26, 2019).
  6“Ubuntu packages search.” Ubuntu. https://packages.ubuntu.com/

(accessed Aug. 26, 2019).
  7“pip 19.2.3.” Python PIP. https://pypi.python.org/pypi/pip (accessed

Aug. 26, 2019).
  8“Puppet.” https://puppet.com/ (accessed Aug. 26, 2019).
  9“Consul: easy service networking.” https://www.consul.io/ (accessed

Aug. 26, 2019).
10“Jenkins.” https://jenkins.io/ (accessed Aug. 26, 2019).
11“ISC DHCP.” Internet Systems Consortium. https://www.isc.org/

downloads/dhcp/ (accessed Aug. 26, 2019).
12“PXEInstallServer.” Ubuntu. https://help.ubuntu.com/community/

PXEInstallServer (accessed Aug. 26, 2019).
13“The TFTP Protocol (revision 2).” IETF. https://tools.ietf.org/html/

rfc1350 (accessed Aug. 26, 2019).

SRN Controller

Splunk
(GUI)

Splunk database

HTTP

sc2-log

Resource Manager

Logstash plug-in

Logstash plug-in

System component

Logstash plug-in

JSON/UDP

Figure 10.  Logstash message flow to Splunk. Logstash is an open-source server-side data pro-
cessing pipeline that ingests data from a multitude of sources simultaneously, transforms it,
and then sends it to a data collector like Splunk. Together these tools created a powerful aid for
analysis of system events and logs.

http://www.jhuapl.edu/techdigest
https://www.gartner.com/it-glossary/devops/
https://www.gartner.com/it-glossary/devops/
http://agilemanifesto.org/
http://agilemanifesto.org/
https://about.gitlab.com/
http://directory.fedoraproject.org/
https://www.vmware.com/products/esxi-and-esx.html
https://packages.ubuntu.com/
https://pypi.python.org/pypi/pip
https://puppet.com/
https://www.consul.io/
https://jenkins.io/
https://www.isc.org/downloads/dhcp/
https://www.isc.org/downloads/dhcp/
https://help.ubuntu.com/community/PXEInstallServer
https://help.ubuntu.com/community/PXEInstallServer
https://tools.ietf.org/html/rfc1350
https://tools.ietf.org/html/rfc1350

DevOps on the DARPA Spectrum Collaboration Challenge

Johns Hopkins APL Technical Digest, Volume 35, Number 1 (2019), www.jhuapl.edu/techdigest 33

14“B.2. Using preseeding. Appendix B. Automating the installation
using preseeding.” Ubuntu. https://help.ubuntu.com/lts/installation-
guide/armhf/apbs02.html (accessed Aug. 26, 2019).

15“Nagios.”https://www.nagios.org/ (accessed Aug. 26, 2019).
16”Intelligent Platform Management Interface (IPMI).” Intel. https://

www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
(accessed Aug. 26, 2019).

17“NTP: Network Time Protocol.” Network Time Foundation. http://
www.ntp.org/ (accessed Aug. 26, 2019).

18”iDRAC.” Dell. http://www.dell.com/learn/us/en/15/solutions/
integrated-dell-remote-access-controller-idrac (accessed Aug. 26,
2019).

19“Splunk.” https://www.splunk.com/ (accessed Aug. 26, 2019).
20“Logstash.” Elastic. https://www.elastic.co/products/logstash (accessed

Aug. 26, 2019).
21“StatusCake.” https://www.statuscake.com/ (accessed Aug. 26, 2019).

Anthony T. Plummer Jr., Asymmetric
Operations Sector, Johns Hopkins Univer-
sity Applied Physics Laboratory, Laurel, MD

Dr. Anthony T. Plummer Jr. is the super-
visor of the Spectrum Analysis Section
in the Tactical Communications Systems
Group in APL’s Asymmetric Operations
Sector. He received a BS in electrical engi-

neering from Morgan State University in 2005 and an MS and
a PhD in electrical engineering from Michigan State Univer-
sity in 2007 and 2011, respectively. His interests include the
design and implementation of software systems and research-
ing approaches to applying machine learning to communica-
tion and networking applications. His email address is anthony.
plummer@jhuapl.edu.

Kevin P. Taylor, Asymmetric Operations
Sector, Johns Hopkins University Applied
Physics Laboratory, Laurel, MD

Kevin P. Taylor is a Linux systems
administrator in APL’s Asymmetric
Operations Sector. He holds a bachelor of
arts degree from Towson University. Kevin
has over 25 years of experience managing

UNIX and Linux systems. Kevin supported the facility and
systems administration for the DARPA SC2 project, including
installing and setting up the Ubuntu environment consisting of
an automated deployment system (for automating installation
and reinstallation of systems), monitoring of services and system
environments (using Nagios), and configuration management
(using Puppet). His email address is kevin.taylor@jhuapl.edu.

http://www.jhuapl.edu/techdigest
https://help.ubuntu.com/lts/installation-guide/armhf/apbs02.html
https://help.ubuntu.com/lts/installation-guide/armhf/apbs02.html
https://www.nagios.org/
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-home.html
http://www.ntp.org/
http://www.ntp.org/
http://www.dell.com/learn/us/en/15/solutions/integrated-dell-remote-access-controller-idrac
http://www.dell.com/learn/us/en/15/solutions/integrated-dell-remote-access-controller-idrac
https://www.splunk.com/
https://www.elastic.co/products/logstash
https://www.statuscake.com/
mailto:anthony.plummer@jhuapl.edu
mailto:anthony.plummer@jhuapl.edu
mailto:Kevin.Taylor@jhuapl.edu

	Development and Operations on the Defense Advanced Research Project Agency’s Spectrum Collaboration Challenge
	Anthony T. Plummer Jr. and Kevin P. Taylor
	ABSTRACT
	INTRODUCTION
	WHY WAS DEVOPS NEEDED FOR SC2?
	COLOSSEUM SCALE
	COLOSSEUM SYSTEM ADMINISTRATION ARCHITECTURE OVERVIEW
	CONFIGURATION MANAGEMENT
	Repository Systems
	GitLab
	Lightweight Directory Access Protocol and Authentication
	Ubuntu Repository
	Python Pip Repository

	Static Configuration
	Dynamic Configuration

	DEPLOYMENT SYSTEM
	System Updates and Testing
	Server Creation
	Ubuntu Deployment System
	Common Colosseum Build System

	HEALTH AND STATUS MONITORING
	Nagios
	Integrated Dell Remote Access Controller
	Splunk and Logstash
	StatusCake

	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	Author Bios
	Figure 1. Colosseum facilities overview.
	Figure 2. Colosseum system administration decomposition.
	Figure 3. Puppet architecture.
	Figure 4. Jenkins development tab.
	Figure 5. Development process and deployment.
	Figure 6. Colosseum build system.
	Figure 7. Colosseum data collection.
	Figure 8. Nagios host groups and problems view.
	Figure 9. Splunk search interface showing an example query.
	Figure 10. Logstash message flow to Splunk.

