
Diversity as an Enabler for Cyber Resilience

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 523    

Diversity as an Enabler for Cyber Resilience

Joel Coffman and Andrew S. Gearhart

ABSTRACT
Dependable systems must continue to provide correct service in the presence of errors, regard-
less of whether the errors stem from fatigue of hardware components, design mistakes, software 
defects, or the malicious activity of adversaries. Fault tolerance aims to detect random errors and 
recover from them automatically. Unfortunately, many critical systems do not consider or properly 
account for adversaries’ malicious actions that are designed to compromise the dependability or 
security of the system. This article argues for the role of software diversity in the construction of 
highly dependable and resilient computer systems. Specifically, our focus is the potential benefit of 
diversity as a defense against cyberattacks. This approach has received some attention in the aca-
demic community, but a robust science of software diversity has yet to emerge. Toward this end, 
and to enable characterization of software diversity strategies, we present several novel methods 
of differentiating diversified sets of programs and highlight areas of future investigation.

This existing hardware and software “monoculture”7 
stands in marked contrast to biological development. Sci-
entists now understand the importance of diversity to a 
species’—or even to an entire ecosystem’s—health and 
survival against natural catastrophes and even targeted 
eradication.8,9 Applying biological diversity principles to 
software may well reap significant dividends—namely, 
improvements in software resilience to cyberattacks.

In cybersecurity, failure independence through diver-
sity means that a successful attack impacts a single 
instance of the software package instead of all instances 
of it. Thus, instead of a one-time cost for an initial com-
promise that applies to many systems, the attacker incurs 
a cost for each targeted system. Diversity applies in any sit-
uation that requires multiple instances of a software capa-

INTRODUCTION
Safety-critical systems pervade the modern world. 

Unfortunately, there are numerous examples of their 
failures.1–4 Failures are particularly relevant in the con-
text of cyberattacks where adversaries intentionally 
compromise the dependability or security of the system. 
Although isolation and one-off designs have histori-
cally mitigated such threats to safety-critical systems, 
increased connectivity—epitomized by the Internet of 
Things (IoT)—demands increased vigilance. For exam-
ple, the Stuxnet worm demonstrated that even isolated 
networks are not immune to cyberattack.5

The proliferation of mass-market software targeting 
a single instruction set architecture (ISA) creates risks: 
a vulnerability in an application represents a common 
avenue of attack against all instances of that application.6,7 

http://www.jhuapl.edu/techdigest


J. Coffman and A. S. Gearhart

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest524    

bility. This includes an application running on multiple 
networked machines, mass-produced embedded software 
running on a suite of IoT devices, or code running on 
a stand-alone system. The use of diversity in real-world 
computer systems has historical precedence; design diver-
sity has long been recognized as a method to improve 
dependability.10 As we will discuss, however, software 
diversity is not a cybersecurity panacea because of the 
challenge of reliably measuring its effectiveness.11

We begin this article with an overview of dependabil-
ity and resilience and then introduce software diversity 
within the context of dependable and secure computing. 
Next we discuss several ways to characterize software 
diversity strategies: via clustering analysis, return-oriented 
programming (ROP) gadgets, and with a test suite of 
vulnerable programs. Then we enumerate challenges to 
using diversity in critical environments. Finally, we con-
clude and highlight opportunities for future work.

BACKGROUND
A system is dependable if it avoids unacceptable ser-

vice failures.12 A failure is an externally observable event 
that represents deviation from the system’s required 
behavior (e.g., a hard drive crash). Critical systems must 
limit failures and their consequences. Similarly, resil-
ient systems are also dependable in that they are able to 
maintain capability in the face of adversity, from both 
random and malicious threats.

Dependability and Security
Dependability is a multifaceted concept related to, 

but not synonymous with, security. The following list 
summarizes attributes of both concepts.

•	 Availability: Maintenance of service to authorized 
users, or “doing the right thing within the specified 
response time”13

•	 Confidentiality: “The absence of unauthorized dis-
closure of information”12

•	 Integrity: The absence of improper modification to 
the system or of improper modification (or destruc-
tion) of data

•	 Maintainability: The ability of the system to 
undergo modifications and repairs

•	 Reliability: The system’s continuity of correct ser-
vice

•	 Safety: The absence of catastrophic consequences 
to user(s) or to the environment

Figure 1 illustrates the relationship among these attri-
butes and the overarching concepts of dependability and 
security. This characterization subsumes the concept of 

software assurance, the “level of confidence that soft-
ware is free from vulnerabilities, either intentionally 
designed into the software or accidentally inserted any-
time during its lifecycle and that the software functions 
in the intended manner.”14

Failures are the major threat to dependability and 
security. The immediate precursor of a failure is an error, 
which is “a deviation from accuracy or correctness in 
state.”15 An error stems from a fault. A fault is “a physi-
cal defect or flaw within a hardware or software compo-
nent.”15 Figure 2 depicts the relationship among faults, 
errors, and failures.

A system is fault tolerant if it continues to provide 
correct service in the presence of faults (and ensuing 
errors).16 Fault tolerance is often combined with redun-
dancy to guard against physical failures. Unfortunately, 
fault tolerance via redundancy has limitations: in one 
well-known example, the loss of the Ariane 5 rocket, 
an unhandled software exception caused the backup 
processor to fail, and the primary processor failed imme-
diately afterward as a result of the same error.17 Conse-
quently, resilience may require diversity.

DIVERSITY
The research literature is replete with software diver-

sity techniques, and successful application of diversity 
requires combining and synthesizing these approaches. 
While diversity may also improve the absolute secu-
rity of individual variants, that is not its sole (or often 
primary) objective. Instead, diversity should improve 
the security of the population much as immunization 
protects a population from disease. Consequently, an 

Availability

Integrity

ConfidentialityMaintainability

Safety

Reliability

Dependability Security

Figure 1. The relationships among dependability and security 
and their constituent attributes.12

ErrorFault Failure
Activation External Visibility

Figure 2. The relationship between faults, errors, and failures.

http://www.jhuapl.edu/techdigest


Diversity as an Enabler for Cyber Resilience

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 525    

attacker’s effort is expected to increase in a nonconstant, 
nontrivial manner with the number of infected software 
packages (Fig. 3). Because a generic vulnerability cannot 
be used to gain access to a system, targeted attacks must 
implant a specific variant for future exploitation, exfil-
trate existing variants for analysis, or perform exploits 
“online” with a greatly reduced probability of suc-
cess. These cases represent detectable behavior by the 
attacker: network exfiltration, application crashes, and 
anomalous system log entries all serve as indicators of an 
adversary’s presence.

Software diversity strategies can be applied at any step 
of the software development life cycle, from design to 
execution to update. The choice of when to diversify may 
have significant impact on the system’s cost and main-
tainability, although issues with maintainability may be 
mitigated by automated techniques at compile and exe-
cution time. Larsen et al., in a survey of software diversity 
research, provide additional information about when to 
diversify (see section 4, When to Diversify, in Ref. 18).

Design diversity is an “approach in which the hard-
ware and software elements that are to be used for mul-
tiple computations are not copies, but are independently 
designed to meet a system’s requirements.”19 One of the 
more widely known techniques is n-version program-
ming. In this paradigm, multiple implementations of 
software are independently produced from a common 
specification. Care must be taken to ensure that faults 
occur independently, as the number of coincident fail-
ures has been shown to be higher than expected from an 
assumption of independence.20 An n-variant system21 is 
the evolution of this concept where failure modes are 
proven independent.

Design diversity is often too expensive to adopt out-
side of critical systems. This realization has led research-
ers to consider automated techniques to achieve these 
goals. A diversifying compiler22 operates identically to 
an ordinary compiler but is not constrained to repro-

duce the same output when presented identical input. 
For example, a diversifying compiler need not eliminate 
dead code or, more precisely, probabilistically decides 
when to remove dead code. Although one concern is 
that such variability in the output executable will not 
guarantee runtime or size “optimality,” compilers, in 
general, can rarely guarantee optimality and rely on 
several heuristics or execution traces (i.e., profiles) to 
reduce the space or time required for a computation. 
The resulting space-time trade-offs presented by these 
compiler techniques may allow for significant diversity, 
ideally with significant cost to attackers. Because these 
transformations are handled by the compiler, they do 
not affect the maintainability of the source code, and 
they can be proved correct (i.e., they do not change a 
program’s input/output behavior).

Further, with the proliferation of modular compiler 
infrastructures, reconfigurable hardware (e.g., field-
programmable gate arrays), and virtualization, the tools 
are now available to produce computers that run on a 
wide range of ISAs. If each machine used a different 
ISA, it would be expensive for an adversary to target 
a single machine within a critical network. To inject 
code directly into the application or mount an effec-
tive code reuse attack, the attacker must first determine 
the unique ISA for that machine. ISA randomization 
presents a unique ISA to the attacker by encrypting the 
base instruction set of the target machine.23,24 Unlike 
compiler-based diversity techniques, ISA randomization 
may be applied to existing binaries and does not require 
access to the original source code.

Data diversity 25 is orthogonal to the aforementioned 
approaches. This technique is closely tied to fault tol-
erance mechanisms and complements other diversity 
strategies. Data diversity captures the intuition that two 
input values that are similar should produce similar out-
puts. For example, the intersection of two lines should 
be similar to the intersection of those lines when one is 

Instance compromised

Co
st

Current Expected

Ideal

Cumulative instances compromised

Co
st

Current

Expected

Ideal

Figure 3. The impact of software diversity to attackers: on the left is the cost to compromise each instance, and on the right is the cumu-
lative cost to compromise multiple instances. In an ideal scenario, each instance of the software application is as expensive to exploit 
as previously exploited versions. The attacker gains no knowledge from each successful attack that can be leveraged to improve future 
attacks. With software diversity, the cost of an attack is initially constant but gradually decreases as the attacker identifies commonalities 
among the variants. Eventually the attacker adapts to the diversity scheme and software diversity yields no additional benefit.

http://www.jhuapl.edu/techdigest


J. Coffman and A. S. Gearhart

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest526    

shifted by a fixed amount. This general technique holds 
promise for detecting and thwarting cyberattacks. Even 
a small perturbation of a malicious input controlled by 
an adversary may render it useless, contributing to fail-
safe design—for example, the difference between crash-
ing an application and gaining control of the system.

ANALYSIS OF COMPILER-BASED SOFTWARE 
DIVERSITY STRATEGIES

Despite the proliferation of diversity techniques, 
many security evaluations of diversity strategies are 
qualitative and based on logical argument.18 There is no 
accepted methodology that researchers use to evaluate 
diversity techniques. This article discusses three novel 
ways to quantitatively compare diversity strategies, two 
of which have a clear link to adversary cost (see the sec-
tions on ROP gadgets and automated validation). Our 
analysis focuses on compiler-generated diversity and, in 
particular, the diversity techniques implemented by the 
open-source Multicompiler26 and Obfuscator-LLVM.27 A 
brief description of these techniques follows:

•	 Garbage	code	insertion: This strategy probabilisti-
cally inserts 0 or 1 garbage instructions prior to the 
current instruction. The garbage code varies from 
the x86 NOP instruction to instructions that pre-
serve the processor state (e.g., mov esp, esp).

•	 Instruction	substitution: In many cases, arithmetic 
operations can be expressed differently—for exam-
ple, b + c = b − (−c) = −(−b + (−c)). When possible, 
an equivalent instruction sequence is substituted for 
binary and Boolean operations on integers.

•	 Schedule	 randomization: Conceptually, depen-
dencies among instructions form a directed acyclic 
graph, and this transformation selects an arbitrary 
instruction from those that are eligible to appear 
next.

•	 Bogus	 control	 flow: This transformation modifies 
the control flow graph of a function by adding a 
basic block with an opaque predicate28 prior to the 
current basic block.

•	 Control	 flow	 flattening: This transformation 
obscures the call graph by replacing direct jumps 
between basic blocks with indirect jumps through a 
“jump table.”29

•	 Function	 shuffling: This transformation permutes 
the order of functions in the object code produced 
by the compiler for each compilation unit.

In our early experiments (see the sections on cluster-
ing and ROP gadgets), we selected a single data set for 
evaluation: the GNU core utilities (http://www.gnu.org/s/
coreutils). This data set includes over 100 C-language pro-

grams that compile rapidly, making them amenable to the 
generation of many variants. The experiments described 
in the section on automated validation evaluate diversity 
strategies via a suite of vulnerable programs developed 
for the Defense Advanced Research Projects Agency 
(DARPA) Cyber Grand Challenge program, allowing us 
to directly evaluate the impact of diversity on exploits.

Clustering
At the beginning of our diversity research, we asked a 

basic question: can diversity strategies be quantitatively 
differentiated? Our initial approach to this question 
involved using common methods from text clustering. 
Such an approach has the advantage of being agnostic 
to particular diversity strategies. In this section, we ana-
lyze several methods of generating feature vectors from 
diversified core utilities applications and then compar-
ing the resulting clusters.

To cluster a data set, elements must first be repre-
sented as vectors in a high-dimensional space. These 
are called feature vectors. Given a compiled applica-
tion (i.e., a binary), we define feature vector creation 
as three steps: disassembly, normalization, and conver-
sion. After disassembly, instructions (of the form opera-
tion operand,…,operand) are normalized by stemming 
operations (e.g., addpd becomes addp), and operands are 
mapped to three generic types (similar to Sæbjørnsen 
et al.30). These types indicate that the original operand 
was a register, constant, or a memory reference. After 
normalization, instructions are converted to vectors 
via three approaches: (i) raw instruction frequencies; 
(ii) term-frequency, inverse document frequency scaling 
(unless otherwise noted, transformations and models uti-
lize scikit-learn, http://scikit-learn.org/, implementations 
with default parameters); and (iii) a doc2vec model.31 
Parameters for the gensim doc2vec model follow those 
described by Lau and Baldwin.32

Bogus control �ow
Random scheduling
Garbage code insertion
Control �ow �attening
Instruction substitution
Function shuf�ing
Baseline (multicompiler)
Baseline (obfuscator)

Figure 4. doc2vec feature vectors for dir with labels from ground 
truth.

http://www.jhuapl.edu/techdigest


Diversity as an Enabler for Cyber Resilience

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 527    

In Fig. 4, doc2vec feature vectors have been reduced to 
two dimensions via principal component analysis. This 
allows for visualization and shows a clear distinction 
for the application dir between several strategies, with 
random scheduling, control flow flattening, and function 
shuffling appearing quite similar to the baseline undiver-
sified binaries. (Note that there are two baselines, one for 
each of the two diversifying compilers used to generate 
variants.) This is not surprising for random scheduling 
and function shuffling (which only reorder instructions), 
and the similarity of these strategies to the baselines was 
consistent across applications. The similarity of control 
flow flattening to the baselines is curious and appeared 
in a subset of other applications. Further investigation of 
the doc2vec features is required to understand this par-
ticular strategy’s proximity to the baselines.

Beyond qualitative observation of clusters, we used an 
agglomerative clustering algorithm to produce guesses 
as to features generated via the same diversity strategy. 
These approximate labels were then compared to ground 
truth. For example, the clustering algorithm may guess 
that two features are generated by the same diversity strat-
egy, when in fact they are the product of different strate-
gies. Cluster guesses were then compared to ground truth 
via the adjusted Rand index (ARI), with doc2vec dem-
onstrating a clear advantage in producing clusters that 
correctly differentiate diversity strategies. [Provided with 
cluster labels generated by a clustering algorithm and also 
ground-truth labels, the ARI counts differences between 
sample pairs assigned in either (i) the same or (ii) dif-
ferent clusters. These counts are compared between the 
algorithm-derived and ground-truth labels, and the score 
is adjusted for random chance. This provides a similarity 
measure between two clusterings and is a score between 
–1.0 and 1.0. A score of 1.0 is a match.33] Figure 5 shows 
quartile information for these ARI experiments, high-
lighting outliers (the small circles in the figure). These 
results illustrate the potential of semantic embeddings 
such as doc2vec to differentiate diversity strategies.

ROP Gadgets
Our clustering approach in the preceding section is 

applicable across a range of diversity strategies and was 
able to differentiate variants generated by several strate-
gies. It is unclear, however, how to link these results with 
attacker costs. Practically, any measure of the effective-
ness of diversity for security should be driven by a mea-
surement of the reusability of a single exploit across a 
population of variants. To this end, we proposed count-
ing the number of ROP gadgets, an important building 
block used by modern exploits, shared across a diversi-
fied population. Specifically, a ROP gadget is a sequence 
of bytes in a program that can be interpreted as valid, 
unprivileged, nonbranching instructions terminating 
with a return instruction. Such gadgets are the build-
ing blocks of a ROP attack, a class of code reuse attacks 
wherein an attacker executes a series of ROP gadgets in a 
“ROP chain” to accomplish his or her objective.

With the hypothesis that an attacker’s effort 
increases as the common set of executable code snip-
pets (ROP gadgets) decreases across application vari-
ants, we explore how different diversification techniques 
affect the set of ROP gadgets available to an attacker. 
Successful reuse of an exploit against diversified applica-
tion variants requires all variants to share the same code 
snippets used in the ROP attack.

To explore this common set of ROP gadgets, we com-
piled 100 diversified variants of the core utilities appli-
cations. We then used Floyd’s sampling algorithm34 to 
select 4000 unique combinations of variants for experi-
mentation. This approach provides a uniform number of 
samples (i.e., an even random sample) for our analysis. 
We assume that a gadget is only useful to an attacker 
when the gadget has the same functionality at the same 
address. Otherwise, the attack must be modified for use 
against other binaries.

Figure 6 displays the percentage of surviving ROP 
gadgets across our random sample of variant combina-
tions with sizes from 2 to 16 binaries. For each diversity 
technique, Fig. 6 graphs the mean of the median values 
of surviving gadgets for each binary in the GNU core 
utilities. Of the strategies evaluated, we found control 
flow flattening to be most effective. All diversification 
techniques except function shuffling eventually achieve 
a survival rate of less than 5% for larger sets of binaries. 
Function shuffling and schedule randomization improve 
rapidly from two to four binaries, starting at a 26% and 
9% survival rate but eventually converging to an 8% and 
a 3% survival rate.

Many attacks against common applications require 
only a handful of unique gadgets in the payload (approx-
imately 10–20).35 Our analysis suggests that these diver-
sity techniques are on the threshold of preventing these 
attacks outright, leaving attackers with the challenge of 
adapting their payload to use these surviving gadgets, 
which may not always be feasible.

Feature type

AR
I

0.8

0.7

0.6

0.5

0.4

0.3

doc2vec TF-IDF raw

Figure 5. ARI comparison of feature types. TF-IDF, term-
frequency, inverse document frequency.

http://www.jhuapl.edu/techdigest


J. Coffman and A. S. Gearhart

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest528    

We created a visualization to understand the rela-
tionship between the locations of gadgets common to 
multiple variants (Fig. 7). Usually surviving gadgets 
reside at the beginning of the binary where the diversity 
technique (function shuffling) has had little opportu-
nity to influence the output. Occasionally techniques 
like function shuffling will, by chance, align the same 
functions late in the binary, creating a zone of surviving 
gadgets deep in the binary. While it is logical to con-
sider the combination of various diversity techniques, 
preliminary analysis indicated that the more effective 
techniques dominate, causing combinations to perform 
similarly to high-performing individual techniques.

Interestingly, the tail of our effectiveness distributions 
shows little change as the population increases from 6 
to 16 variants (Fig. 6). Other researchers’ results (e.g., 
Ref. 35) also suggest that some gadgets simply cannot be 
diversified away; our results support this finding.

Despite a small set of residual gadgets, attackers are 
still left with what might be a significant challenge. An 
intriguing question remains: is it possible to identify 

a  priori the gadgets that survive diversification? If the 
core surviving gadgets are identifiable in some fashion, 
attackers will naturally adjust their techniques to target 
the gadgets that are present in all variants. Although we 
did identify the likely location of surviving gadgets that 
appear at the same location in memory (Fig. 7), additional 
research is necessary to identify other relationships among 
these surviving gadgets that attackers could exploit.

Automated Validation via a Set of Vulnerable Binaries
The analysis diversity strategies via clusters and 

common ROP gadgets are at best indirect methods to 
measure attacker effort. Clustering relies on distances 
between sets of features in an abstract space, something 
difficult to link back to attackers. Further, our ROP anal-
ysis assumes that fewer shared gadgets is correlated with 
attacker effort. While the above approaches are useful to 
build intuition, we would like to compare strategies for 
their direct impact on the behavior of exploits.

In 2015 and 2016, DARPA’s Cyber Grand Challenge 
program developed a set of challenge binaries (CBs) 
with known vulnerabilities and working exploits. These 
CBs present an opportunity to study diversity, and our 
basic idea was to evaluate the effectiveness of diversity 
techniques by measuring how well they stop exploits 
across a population of variants. Some portion of the 
diversified variants should be immune to the exploit if 
diversity is an effective defense. Two types of exploits 
were examined:

•	 Type	1: These exploits cause the program to fault at 
an address negotiated with the testing system, with 
one of the general-purpose registers set to a second 
negotiated value. In the real world, these attacks 
allow an attacker to gain control of the program, 
potentially compromising the entire system.

Increasing memory address 

Figure 7. Gadget locations in two variants (red, blue) of the dirname application, with surviving gadgets circled in green. Function shuf-
fling was used to diversify the two variants. This visualization shows the executable memory segments of the binaries normalized to 
the start of the first gadget (with some padding for visual clarity) and aligned on 64-byte addresses. Each column represents 64 bytes of 
memory (e.g., the first column shows memory addresses 0–63).

Function shuf�ing
Random scheduling
Instruction substitution
NOP insertion
Bogus control �ow
Control �ow �attening 

15

10

5

0

No. of binaries
2 4 6 8 10 12 14 16

20

25

%
 o

f s
ur

vi
vi

ng
 g

ad
ge

ts

Figure 6. Median gadget survival across the GNU core utilities.

http://www.jhuapl.edu/techdigest


Diversity as an Enabler for Cyber Resilience

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 529    

•	 Type	 2: These exploits, after negotiation with 
the testing framework, can read a certain number 
of bytes from anywhere within a specific region of 
memory. In a real program, this could lead to the 
exposure of sensitive data such as administrator 
passwords or restricted information, similar to the 
Heartbleed vulnerability (http://heartbleed.com).

To perform our experiments, we built each CB in eight 
ways, once with the standard compiler, once for each of 
the six diversity techniques, and once with all the diver-
sity techniques enabled at the same time. We repeated 
this process to produce a population of 100 diversified 
binaries for each (CB, diversity strategy) pair. We then 
ran exploits against these binaries to evaluate the effec-
tiveness of the diversity at mitigating the attacks.

Figure 8 displays the percentage of exploits mitigated 
across all the variants. It represents the success rate 
taken over every variant for each exploit. Therefore, 
it indicates the average coverage for each strategy. For 
example, bogus control flow has a 34.1% effectiveness. 
This means that exploits were successfully mitigated 
(i.e., broken) in approximately 4,194 of the 12,300 tests 
(123 exploits * 100 variants). The graph illustrates a dis-
parity between type 1 and type 2 exploits. Whereas some 
diversification strategies demonstrated considerable suc-
cess in mitigating type 1 exploits, such as control flow 
flattening at 66.0%, all the techniques examined were 
largely ineffective for type 2 exploits. At best, diversifi-
cation was able to prevent 13.2% of type 2 exploits, when 
all strategies were combined. At worst, diversification 
had no effect at all, as in the case of random scheduling.

How well a diversification strategy performs is of criti-
cal import to how broadly it is adopted. In particular, 
adoption of new security techniques often requires the 
execution time penalty to be less than 5–10%.36 This 
facet of software diversity has been well studied in general, 
with results often reported in the aforementioned range 

(see Table III in Ref. 18). Figure 9 
shows our performance results. 
Four of the strategies (NOP inser-
tion, random scheduling, function 
shuffling, and instruction substi-
tution) have a marginal overhead. 
The impact of bogus control flow 
is more pronounced (≈40% over-
head) but may be tolerable given 
its impact to exploits and aim to 
hinder reverse engineering. In 
comparison, control flow flat-
tening increases execution time 
by ≈360%; this overhead prohib-
its the use of this diversification 
strategy in most real-world set-
tings except when its anti-tamper 
properties are critical. Combining 

all the techniques further decreases performance—a 
mean increase in execution time of ≈793%. Although 
the significant overhead of these final three diversifica-
tion strategies may seem high, our results are in line with 
prior research that found “a performance penalty by a 
factor of less than 10,”27 particularly in computationally 
intensive code.

These experiments indicate significant variation 
in the effectiveness of software diversity strategies at 
mitigating exploits. Intuitively, there is a link between 
mitigation success and two dimensions of diversification: 
scope and extent. We note that random scheduling, 
instruction substitution, and NOP insertion all operate 
on instruction-level scope, each making decisions on a 
per-instruction basis. Function shuffling, on the other 
hand, operates at a program scope. These strategies 
have little success at exploit mitigation, so scope does 
not appear to be a sufficient quality of the strategy. Fur-

100

90

80

70

60

50

40

30

20

10

0

All

Type 1

Type 2

0.8 1.6 0.0

10.8
16.9

5.1 6.5 8.5
4.7 3.1 5.6

35.8

0.8

66.0

8.0

34.1

57.9

41.7

72.6

12.1 13.2

Random
scheduling

Instruction
substitution

NOP
insertion

Function
shuf�ing

Control �ow
�attening

Bogus control
�ow

All

%
 o

f e
xp

lo
its

 m
iti

ga
te

d

Diversity strategy

Figure 8. Percentage of exploits mitigated across all variants.

No
rm

al
iz

ed
 e

xe
cu

tio
n 

tim
e

Diversity strategy

9

8

7

6

5

4

3

2

1

0
Random
sched-
uling

Instruction
substi-
tution

NOP
insertion

Function
shuf�ing

Control
�ow

�attening

Bogus
control
�ow

All

Figure 9. Performance overhead of diversity techniques. Times 
are normalized to the mean of five runs of the baseline (i.e., undi-
versified) program. Because of extreme outliers, this graph includes 
only the 99th percentile of the results of each diversity strategy.

http://www.jhuapl.edu/techdigest


J. Coffman and A. S. Gearhart

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest530    

ther investigation is required to quantify the extent of a 
diversity strategy.

While these results are intriguing, they are not fully 
representative of those that would be encountered 
in practice. The purpose of the Cyber Grand Chal-
lenge exploits is only to demonstrate the presence of a 
vulnerability, rather than the development of a com-
plete attack. Real-world attacks are more extensive and 
often occur in stages, providing greater opportunity for 
mitigation through diversification. We believe that our 
results likely underestimate the impact of diversity in 
real-world scenarios.

CHALLENGES
From a practical perspective, several outstanding 

challenges must be resolved before a secure, scalable, and 
broadly applicable software diversity system can be cre-
ated. Fundamentally, there are two key open questions:

1. How can we measure and characterize the impact 
of a particular diversity strategy on security and 
dependability?

2. Does diversity inherently conflict with existing poli-
cies, particularly the accreditation and certification 
requirements for critical systems?

This section discusses these questions and highlights 
particular areas that require further investigation.

Impact of Diversity
As discussed earlier, the current software monoculture 

contributes to the reuse of exploits across instances of an 
application. Diversity breaks the assumption of software 
consistency with the goal of improving cyber resilience 
but may inadvertently reduce resilience in other areas 
because of the increased difficulty of managing diversi-
fied variants and preventing the use of existing security 
tools such as those that whitelist known-good software. 
(Whitelisting tools store cryptographic signatures of 
binaries that are considered “safe” for a particular enter-
prise. If the signature generated by a binary differs from 
the safe signature, the unknown binary is flagged as 
potentially malicious. Multiple variants of an application 
would require such a system to keep track of signatures 
for each variant independently, potentially significantly 
increasing the required storage and runtime for effective 
whitelisting to be performed, or adopt alternative meth-
ods, e.g., code signing, to designate trusted binaries.) 
Further, a diversity strategy may result in a small subset 
of variants that are actually easier to exploit even if the 
entire population demonstrates improved average cyber 
resilience. Depending on the mission scenario, this situ-
ation may be unacceptable.

As noted by Larsen et al.,18 there is little research 
on metrics that measure the diversity produced by 

various automated strategies. Logical arguments about 
security are common, as is measuring entropy,37,38 but 
no research to date has shown a relationship between 
these approaches and adversaries’ efforts. To be truly 
useful for cybersecurity, such metrics should be demon-
strably correlated with attacker effort. This is a difficult 
problem that is not easily handled via red team stud-
ies.39 Recent papers that compare diversity strategies 
via symbolic execution40,41 and the results presented 
in this article are a step in this direction. Future work 
may use formal methods (e.g., abstract interpretation) 
or machine learning to define additional means of dif-
ferentiating the populations of variants generated by 
diversity strategies.

Diversity techniques may serve as excellent obfusca-
tors and improve cyber resilience on average. It is crucial 
to understand the relationship between diversity and the 
targeted classes of vulnerability. Approaches that may 
mitigate this risk include combining multiple diversity 
techniques and creating a larger number of variants than 
is needed, and then down-sampling based on a set of cri-
teria. For example, a diversity technique could generate 
1000 variants and use symbolic execution to choose the 
100 variants that are most “secure” (or that adhere to 
a set of performance requirements). This strategy raises 

DIVERSITY FOR SOFTWARE TESTING
As an additional interesting note, we observed issues 
with several CBs during the testing process. When 
CBs were built without diversification, provided code 
patches successfully prevented all exploits for these CBs 
(as expected). When they were built with diversifica-
tion, however, three of the CBs always terminated with 
a segmentation fault. Initially, we suspected a flaw in 
the implementation of the diversity technique. On fur-
ther inspection, we determined that diversification was 
not responsible for these failures. Rather, the process of 
diversification revealed the following latent faults:

•	 One program depended on an uninitialized variable 
(which was assumed to be initialized to zero), lead-
ing to a buffer overflow.

•	 One program lacked proper bounds checking, lead-
ing to a segmentation fault.

•	 One program failed because of a compiler fault in 
LLVM 3.4, in which an unaligned load led to a 
segmentation fault following a register spill onto the 
stack.

The exposure of these faults highlights another poten-
tial benefit of diversification. Whereas a reliance on 
undefined behavior can go unnoticed under normal 
compilation, deviation across variants in diversified 
binaries breaks such assumptions, revealing potential 
vulnerabilities. This ability to expose code faults sug-
gests that automated diversity may be used as a low-cost 
“booster” for software testing.

http://www.jhuapl.edu/techdigest


Diversity as an Enabler for Cyber Resilience

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest 531    

questions related to the yield of a diversity technique, 
another direction of potential future research.

Finally, diversity strategies to protect populations of 
binaries and to improve resilience (e.g., n-version pro-
gramming) assume the failure independence of variants 
under similar inputs. This assumption should be rigor-
ously confirmed on any diversity system. With n-version 
programming, the problem is subtle. Not only must vari-
ants behave differently under malicious inputs, but they 
must also exhibit these differences in a manner that is 
rapidly detectable and verifiable. This is a significant 
challenge that requires careful specification of diversity 
strategies, as well as creative representation of program 
state within the complete system.

Policy and Certification
Beyond the challenges associated with scaling and 

validating a system that includes diversity, the presence 
of unique software variants may conflict with policies 
regarding the certification of mission- and safety-critical 
software. For example, the nondeterministic nature of 
some automated diversity techniques presents difficul-
ties when attempting to confirm alignment with a speci-
fication. An example would be confirming that a critical 
software function conforms to timing requirements after 
diversification. (Although this article focuses on soft-
ware diversity for resilience, such challenges are also 
pertinent to diversified hardware devices.) Most aca-
demic research focuses on preservation of a program’s 
semantics (i.e., correctness)42 rather than its temporal 
properties. However, the latter must be addressed before 
applying diversity to safety-critical embedded devices 
that have tight timing bounds and resource constraints.

The certification process for critical software often 
includes a number of defined stages involving specifica-
tion checks, independent code reviews, static analysis, 
and live testing. This process may involve many partici-
pants and significant expense, and individual stages may 
not scale efficiently with the number of software vari-
ants. Live testing is particularly problematic in this con-
text because diversity’s power relies on subtle differences 
among variants. The incorporation of software diversity 
into critical systems requires understanding the time 
and financial cost of current certification steps, poten-
tial scaling of the process with software variants, and 
any changes required to incorporate automated diver-
sity. An example paradigm shift that may be required 
is eliminating policies that implicitly depend on the 
compiled form of software (e.g., live testing with execut-
able binaries) because such results would not apply to 
multiple variants. As an alternative, certification might 
test one variant but also require greater use of formal 
methods to prove the correctness of the source code and 
also the correctness of the generation of variants (e.g., a 
certified compiler43).

CONCLUSIONS
Geer44 summarizes the typical reactions to diversity 

in the context of cybersecurity: (i) embrace monocul-
ture, since it allows you to get consistent risk manage-
ment exactly because everything is alike; or (ii) run from 
monoculture in the name of survivability.

Automated software diversity promises to improve 
system resilience to both random faults and cyber 
threats. With recent advances in compiler design, binary 
rewriting, and cloud computing, the practical develop-
ment and application of diversity strategies is becom-
ing feasible. However, much research is still required to 
develop a science of system resilience that accounts for 
the effect of diversity on both random faults and deter-
mined attackers. Further, current security tools and pro-
cesses for critical software certification may need to be 
replaced or modified to account for deliberately breaking 
the software monoculture.

Diversity is not a cybersecurity panacea. It does not 
obviate the need for traditional techniques to ensure a 
system’s dependability and security, and we recommend 
that such techniques be applied throughout the life cycle 
of acquisition programs. Nevertheless, diversity comple-
ments such approaches, adding defense in depth and 
resilience against many threats. Automated approaches 
to software diversity—such as diversifying compilers 
and ISA randomization—hold the most promise as a 
cost-effective form of cyber defense. These same tech-
niques hold promise for uncovering dormant faults, as 
evidenced by our results that demonstrate the ability of 
diversified variants to uncover compiler bugs.

REFERENCES

 1Long, T., “Sept. 26, 1983: The Man Who Saved the World by 
Doing . . . Nothing,” Wired, 26 Sept 2007.

 2Leveson, N. G., and Turner, C. S., “An Investigation of the Therac-25 
Accidents,” Computer 26(7), 18–41 (1993).

 3Burke, D., All Circuits Are Busy Now: The 1990 AT&T Long Distance 
Network Collapse, Report CSC440-01, California Polytechnic State 
University, San Luis Obispo, CA (1995).

 4Patriot Missile Defense: Software Problem Led to System Failure at Dhah-
ran, Saudi Arabia, Report IMTEC-92-26, U.S. Government Account-
ability Office, Washington, DC (1992).

 5Chen, T., and Abu-Nimeh, S., “Lessons from Stuxnet,” Computer 
44(4), 91–93 (2011).

 6Forrest, S., Somayaji, A., and Ackley, D. H., “Building Diverse Com-
puter Systems,” in Proc. 6th Workshop on Hot Topics in Operating Sys-
tems, Cape Cod, MA, pp. 67–72 (May 1997).

 7Geer, D., Schneier, B., Metzger, P., Bace, R., and Gutmann, P., Cyber-
Insecurity:  The  Cost  of  Monopoly, Computer & Communications 
Industry Association, Washington DC ( 2003).

 8Taylor, C., and Alves-Foss, J., “Diversity as a Computer Defense 
Mechanism,” in Proc. 2005 Workshop on New Security Paradigms, Lake 
Arrowhead, CA, pp. 11–14 (2005).

 9Seeley, T. D., and Tarpy, D. R., “Queen Promiscuity Lowers Disease 
within Honeybee Colonies,” Proc. Biol. Sci. 274(1606), 67–72 (2007).

10Lardner, D., “Babbage’s Calculating Engine,” Edinburgh Rev. 59, 263–
327 (1834).

11McHugh, J., “Software Diversity: Use of Diversity as a Defense Mech-
anism,” in Proc.  2005  Workshop  on  New  Security  Paradigms, Lake 
Arrowhead, CA, pp. 19–20 (2005).

http://www.jhuapl.edu/techdigest


J. Coffman and A. S. Gearhart

Johns Hopkins APL Technical Digest, Volume 34, Number 4 (2019), www.jhuapl.edu/techdigest532    

12Avižienis, A., Laprie, J.-C., Randell, B., and Landwehr, C., “Basic 
Concepts and Taxonomy of Dependable and Secure Computing,” 
IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004).

13Gray, J., Why Do Computers Stop and What Can Be Done About It?, 
Report 85.7, Tandem Computers, Cupertino, CA (1985).

14Committee on National Security Systems, National  Information 
Assurance (IA) Glossary, CNSS Instruction No. 4009 (26 Apr 2010).

15Rogers, P., “Software Fault Tolerance,” Ada User J. 30(2), 125–127 (2009).
16Avižienis, A., “Design of Fault-Tolerant Computers,” in Proc. 1967 Fall 

Joint Computer Conf., Anaheim, CA, pp. 733–743 (1967).
17Lions, J.-L., ARIANE  5:  Flight  501  Failure, Report by the Inquiry 

Board, European Space Agency, Paris (July 1996).
18Larsen, P., Homescu, A., Brunthaler, S., and Franz, M., “SoK: Auto-

mated Software Diversity,” in Proc. 2014 IEEE Symp. on Security and 
Privacy, San Jose, CA, pp. 276–291 (2014).

19Avižienis, A., and Kelly, J. P. J., “Fault Tolerance by Design Diversity: 
Concepts and Experiments,” Computer 17(8), 67–80 (1984).

20Knight, J. C., and Leveson, N. G., “An Experimental Evaluation of 
the Assumption of Independence in Multiversion Programming,” 
IEEE Trans. Softw. Eng. SE-12(1), 96–109 (1986).

21Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., et al., “N-Variant 
Systems: A Secretless Framework for Security through Diversity,” in 
Proc. 15th USENIX Security Symp., Vancouver, pp. 105–120 (2006).

22Franz, M., “E Unibus Pluram: Massive-Scale Software Diversity as a 
Defense Mechanism,” in Proc. 2010 Workshop on New Security Para-
digms, Concord, MA, pp. 7–16 (2010).

23Barrantes, E. G., Ackley, D. H., Forrest, S., Palmer, T. S., Stefanovic, D., 
and Zovi, D. D., “Randomized Instruction Set Emulation to Disrupt 
Binary Code Injection Attacks,” in Proc. 10th ACM Conf. on Com-
puter and Communications Security, Singapore, pp. 281–289 (2003).

24Kc, G. S., Keromytis, A. D., and Prevelakis, V., “Countering Code-
Injection Attacks with Instruction-Set Randomization,” in Proc. 10th 
ACM  Conf.  on  Computer  and  Communications  Security, Singapore, 
pp. 272–280 (2003).

25Ammann, P. E, and Knight, J. C., “Data Diversity: An Approach to 
Software Fault Tolerance,” IEEE Trans. Comput. 37(4), 418–425 (1988).

26Homescu, A., Neisius, S., Larsen, P., Brunthaler, S., and Franz, M., 
“Profile-Guided Automated Software Diversity,” in Proc. 2013 IEEE/
ACM  International  Symp.  on  Code  Generation  and  Optimization, 
Shenzhen, China, pp. 1–11 (2013).

27Junod, P., Rinaldini, J., Wehrli, J., and Michielin, J., “Obfuscator-
LLVM: Software Protection for the Masses,” in Proc. 1st International 
Workshop on Software Protection, Florence, Italy, pp. 3–9 (2015).

28Collberg, C., Thomborson, C., and Low, D., “Manufacturing Cheap, 
Resilient, and Stealthy Opaque Constructs,” in Proc. 25th ACM SIG-
PLAN-SIGACT Symp. on Principles  of Programming Languages, San 
Diego, CA, pp. 184–196 (1998).

29László, T., and Kiss, Á., “Obfuscating C++ Programs via Control Flow 
Flattening,” Ann. Univ. Sci. Budapest. Sect. Comput. 30, 3–19 (2009).

30Sæbjørnsen, A., Willcock, J., Panas, T., Quinlan, D., and Su, Z., “Detect-
ing Code Clones in Binary Executables,” in Proc.  18th  International 
Symp. on Software Testing and Analysis, Chicago, IL, pp. 117–128 (2009).

31Le, Q., and Mikolov, T., “Distributed Representations of Sentences 
and Documents,” in Proc. 31st International Conf. on Machine Learn-
ing, Beijing, China, pp. 1188–1196 (2014).

32Lau, J. H., and Baldwin, T., “An Empirical Evaluation of doc2vec with 
Practical Insights into Document Embedding Generation,” in Proc. 
1st  Workshop  on  Representation  Learning  for  NLP, Berlin, Germany, 
pp. 78–86 (2016).

33Hubert, L., and Arabie, P., “Comparing Partitions,” J. Classification 
2(1), 193–218 (1985).

34Bentley, J., and Floyd, B., “Programming Pearls: A Sample of Bril-
liance,” Commun. ACM 30(9), 754–757 (1987).

35Pappas, V., Polychronakis, M., and Keromytis, A. D., “Smashing the 
Gadgets: Hindering Return-Oriented Programming Using In-Place 
Code Randomization,” in Proc. 33rd IEEE Symp. on Security and Pri-
vacy, San Francisco, CA, pp. 601–615 (2012).

36Szekeres, L., Payer, M., Wei, T., and Song, D., “SoK: Eternal War in 
Memory,” in Proc. 31st IEEE Symp. on Security and Privacy, San Fran-
cisco, CA, pp. 48–62 (2013).

37Pendleton, M., Garcia-Lebron, R., Cho, J.-H., and Xu, S., “A Survey on 
Systems Security Metrics,” ACM Comput. Surv. 49(4), 62:1–62:35 (2016).

38Herlands, W., Hobson, T., and Donovan, P. J., “Effective Entropy: Secu-
rity-Centric Metric for Memory Randomization Techniques,” in Proc. 7th 
Workshop on Cyber Security Experimentation and Test, San Diego (2014).

39Williams, D., Hu, W., Davidson, J. W., Hiser, J. D., Knight, J. C., and 
Nguyen-Tuong, A., “Security Through Diversity: Leveraging Virtual 
Machine Technology,” IEEE Secur. Priv. 7(1), 26–33 (2009).

40Banescu, S., Collberg, C., Ganesh, V., Newsham, Z., and 
Pretschner, A., “Code Obfuscation Against Symbolic Execution 
Attacks,” in Proc. 32nd Annual Conf. on Computer Security Applica-
tions, Los Angeles, CA, pp. 189–200 (2016).

41Banescu, S., Collberg, C., and Pretschner, A., “Predicting the Resil-
ience of Obfuscated Code Against Symbolic Execution Attacks via 
Machine Learning,” in Proc. 26th USENIX Security Symp., Vancou-
ver, Canada, pp. 661–678 (2017).

42Sridhar, M., Wartell, R., and Hamlen, K. W., “Hippocratic Binary 
Instrumentation: First Do No Harm,” Sci. Comput. Program. 93(B), 
110–124 (2014).

43Leroy, X., “Formal Certification of a Compiler Back-end or: Pro-
gramming a Compiler with a Proof Assistant,” in Proc.  33rd  ACM 
SIGPLAN-SIGACT  Symp.  on  Principles  of  Programming  Languages, 
Charleston, SC, pp. 42–54 (2006).

44Geer, D., “Monoculture on the Back of the Envelope,” login 30(6), 
6–8 (2005).

Joel	 Coffman, Department of Com-
puter and Cyber Sciences, United 
States Air Force Academy, Colorado 
Springs, CO

Joel Coffman is an assistant professor 
in the Department of Computer and 
Cyber Sciences at the United States 
Air Force Academy. He received a 

B.S. in computer science from Furman University and an 
M.S. and a Ph.D. in computer science from the University 
of Virginia. From 2012 to 2018, Joel was a member of the 
Senior Professional Staff in APL’s Asymmetric Operations 
Sector. In this role, he served as an assistant program man-
ager for the Engineering for Professionals Computer Sci-
ence, Cybersecurity, and Information Systems Engineer-
ing programs and contributed to a variety of sponsored 
and internally funded research and development projects, 
including being the co-principal investigator for Proteus, 
the nexus for the work described in this article. Joel’s 
research interests include the study of automated software 
diversity, cloud computing security, and keyword search in 
databases. His e-mail addresses are joel.coffman@jhu.edu 
and joel.coffman@usafa.edu.

Andrew	 S.	 Gearhart, Asymmetric 
Operations Sector, Johns Hopkins 
University Applied Physics Labora-
tory, Laurel, MD

Andrew S. Gearhart is a member of 
the Senior Professional Staff in APL’s 
Research and Exploratory Develop-
ment Department. He received a B.S. 

in computer science and mathematics and a B.A. in psychol-
ogy from the University of Delaware, and a Ph.D. in com-
puter science from the University of California, Berkeley. 
He serves as a lecturer for the Engineering for Professionals 
Computer Science program and served as the co-principal 
investigator for Proteus, a multiyear investigation of soft-
ware diversity for cyber defense. Andrew’s research interests 
include the study of software diversity, machine learning, 
and the application of data analytics to health care appli-
cations. His e-mail address is andrew.gearhart@jhuapl.edu.

http://www.jhuapl.edu/techdigest
mailto:joel.coffman@jhu.edu
mailto:joel.coffman@usafa.edu
mailto:andrew.gearhart@jhuapl.edu

	Diversity as an Enabler for Cyber Resilience
	Joel Coffman and Andrew S. Gearhart
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	Dependability and Security

	DIVERSITY
	ANALYSIS OF COMPILER-BASED SOFTWARE DIVERSITY STRATEGIES
	Clustering
	ROP Gadgets
	Automated Validation via a Set of Vulnerable Binaries

	CHALLENGES
	Impact of Diversity
	Policy and Certification

	SIDEBAR: DIVERSITY FOR SOFTWARE TESTING
	CONCLUSIONS
	REFERENCES
	Author Bios
	Figure 1. The relationships among dependability and security and their constituent attributes.
	Figure 2. The relationship between faults, errors, and failures.
	Figure 3. The impact of software diversity to attackers.
	Figure 4. doc2vec feature vectors for dir with labels from ground truth.
	Figure 5. ARI comparison of feature types. 
	Figure 6. Median gadget survival across the GNU core utilities.
	Figure 7. Gadget locations in two variants of the dirname application.
	Figure 8. Percentage of exploits mitigated across all variants. 
	Figure 9. Performance overhead of diversity techniques. 




