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INTRODUCTION

Background
The 21st century has seen advances in many aspects of 

global disease surveillance.1 These advances have been 
driven by heightened concerns over perceived threats 
to public health both from natural pathogens and from 
bioterrorism. These concerns have led to mandated 
improvements at the international level, through revi-
sion of International Health Regulations of the World 
Health Organization,2 and also in the United States at 
the national level.3

Particular concern exists for surveillance in resource-
limited settings (i.e., areas with limited access to medical 
care; inadequate or no laboratory diagnostic capability; 
insufficient numbers of first responders, care providers, 
and public health workers; and sometimes deficiencies 
in fundamental hygienic needs such as clean drinking 
water).4, 5 As a result of these issues, such regions are 
vulnerable to outbreaks of diseases, such as cholera and 
typhoid fever, that are not seen in advantaged settings.

ublic health surveillance faces many challenges in geographic regions lacking 
modern technology and infrastructure. This article addresses the role of analytic 

methods in such regions and evaluates temporal alerting algorithms using both 
authentic and simulated data sets. Evaluation analyses give the technical background 

for the statistical methods provided by the Johns Hopkins University Applied Phys-
ics Laboratory (APL) Suite for Automated Global Electronic bioSurveillance (SAGES), a 
collection of modular, open-source software tools to enable electronic surveillance in 
resource-limited settings. Included in the evaluation are only those statistical methods 
that are broadly applicable to multiple evolving-background time-series behaviors with 
limited data history. Multiple detection performance measures are defined, and a prac-
tical means of combining them is applied to recommend preferred alerting methods 
for common scenarios. Effective usage of these methods is discussed in the context of 
routine health-monitoring operations.
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individuals. For example, a typical input time series 
is the succession of daily or weekly counts of medical 
encounter records whose chief complaint field contains 
words related to febrile illness, such as “temperature,” 
“fever,” and “feverish.” Candidate alerting methods were 
algorithms that could flag relevant target signals in the 
data at manageable background alarm rates. The term 
background alarm is used here in place of false alarm 
because false positives are difficult to verify in authen-
tic surveillance data; indeed, given the practical con-
straints of public health response, many alerts are not 
investigated at all. The section called Target Signals for 
Aberration Detection explains how true positives were 
determined in the two phases of this work.

It is assumed that SAGES users have access only to 
selected clinical report counts, not to exogenous clinical 
variables, nor to nonclinical information such as envi-
ronmental data. Candidate methods may not assume 
more than a few months of data history, because even 
in situations when quality data are available for multiple 
successive years, the older data may not be useful for 
training or baseline determination because of changes in 
data provider participation, information systems, or diag-
nosis coding. Another requirement is that the methods 
be easily implemented and maintained without assum-
ing future availability of statistical expertise for tuning 
or model refitting. Implementation and routine usage on 
health monitoring systems rules out methods that require 
excessive time to calculate baselines and produce results 
for input data streams that may be improvised. Transpar-
ency is also an essential requirement for SAGES alerting 
algorithms; the user need not understand the underly-
ing mathematical detail, but the basic concept should 
be clear enough that the SAGES user can see why an 
alert is indicated. Many methods noted in recent survey 
articles8 do not meet all of these requirements.

For these reasons, the initial set of SAGES alerting 
methods was restricted to adaptive versions of the con-
trol charts long used in the statistical quality assurance 
community.9 Adaptive features, noted in the descrip-
tions below, were considered essential for alerting that 
is robust relative to common data quality issues such as 
data dropouts and abrupt changes in the background 
mean for prompt recovery of sensitivity after a large 
authentic or artifactual spike. Future enhancements 
will modify the provided alerting methods according to 
evolving needs and capabilities of SAGES users.

Candidate Alerting Methods with Descriptions
This section briefly describes four chosen alerting 

methods, denoted Z-score_SAGES, EWMA_SAGES, 
CuSUM_SAGES, and GS_SAGES. Each is intended to 
alert when the excess of recent time series values above 
the baseline expectation is statistically significant, indi-
cating the possibility of an outbreak. These tests ignore 

SAGES Program at APL: Mission, History, Status
The Johns Hopkins University Applied Physics Labo-

ratory (APL) has contributed advances in electronic dis-
ease surveillance since the late 1990s,6 before the surge 
of development stimulated by the terrorist attacks of 
2001. SAGES (Suite for Automated Global Electronic 
bioSurveillance) is a collaboration between APL and the 
US Armed Forces Health Surveillance Center to extend 
these advances to resource-limited settings. SAGES 
is an open-source software tool set for data collection, 
analysis, visualization, and reporting.7 These tools were 
designed to maintain and extend established user-driven 
features of ESSENCE (Electronic Surveillance System for 
the Early Notification of Community-based Epidemics).6 
The tools were designed to meet a range of institutional 
needs and capabilities and for convenient integration 
with local health-monitoring tools. The purpose of this 
article is to improve the SAGES evaluation/visualization 
tools by identifying and tuning statistical alerting meth-
ods for given contexts. For example, given the amount 
of historical data available, whether monitoring is done 
daily or weekly, and whether data are sparse or rich with 
cyclic patterns, which alerting methods should be used?

Alerting Methods: Principles and Current Objective
The value of statistical alerting methods in a syn-

dromic surveillance system is for detection of statistical 
anomalies, not detection of actual health events whose 
confirmation requires definitive evidence that is not 
immediately available to most SAGES users. In such a 
system, an alert is signaled when the output of an algo-
rithm for monitoring a data stream crosses a threshold 
indicating behavior that is statistically aberrant, or too 
far from expected values to be plausible from random 
variation alone. The anomaly alerts, especially in com-
bination with other evidence, are useful to prompt inves-
tigation of true health events, but the alerts have other 
causes, including batched data reports, changes in data 
participation, and changes in diagnosis coding. This 
article provides the basis for the alerting methods and 
chosen parameters supplied through the SAGES web-
site7 as of early 2014, with guidance for effective usage. 
This guidance does not require sophisticated or time-
consuming analysis from SAGES users, who range from 
part-time technicians to medically trained epidemiolo-
gists with varying backgrounds and levels of availability.

METHODS

Selection of Candidate Alerting Methods
The data available to current and near-term SAGES 

users restricted this project and the initial SAGES open-
source alerting methods to algorithms for a single time 
series derived by aggregation of select clinical data on 
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tribution with degrees of freedom equal to the baseline 
length – 1.

EWMA_SAGES
The exponential weighted moving average (EWMA) 

method evaluated for SAGES replaces the current 
observed value xt in Eq. 1 with the recursively weighted 
average,

	 E x E1 –t t t 1– = + ^ h ,	 (2)

for a fixed smoothing constant , 0<<1, that expresses 
how the weight of tested observations is distributed 
backward in time. For a value of  near 1, only the most 
recent values influence this average, whereas reducing 
the value of  increases the influence of older values.12 
Statistical corrections for the weighted averaging are 
applied to the standard error and threshold calcula-
tions.10 This modification adds sensitivity to the gradual 
signals that form the data signature of many outbreaks of 
interest, but it reduces sensitivity to single spikes. For the 
current evaluation, combinations of the baseline value, 
guard band, smoothing constant, and alerting threshold 
were tested to seek the best detection performance.

CuSUM_SAGES
Like the EWMA method, the CuSUM chart has 

also been shown to be timelier than the X-bar chart at 
detecting small mean shifts and gradual signals.13 Appli-
cations for biosurveillance have focused on aberrations 
above the baseline expectation.14 The CuSUM_SAGES 
implementation uses a sliding baseline as in the Z-score_
SAGES method and recursively calculates an upper sum 
SH,t of scaled differences zt of xt above the baseline mean 
estimate Xt :

	 ,maxS z S0 – k, ,H t t H t 1–= +^ h.	 (3)

In this expression, only differences of the observation 
xt above (Xt  plus k standard deviations) are added to the 
running test sum, while smaller differences are ignored. 
Equation 3 assures that the upper sum is nonnegative, 
and the method alerts if SH,t exceeds a computed thresh-
old. The initial value SH,0 of this statistic is set at half 
the alerting threshold to enable prompt alerting as in 
the Fast-Impulse-Response CuSUM,15 and it is reset to 
this value after an alert to avoid persistent, unwanted 
alerts because of an extremely high (possibly erroneous) 
value, while still maintaining sensitivity.

Although many authors have found the detection per-
formance of the CuSUM similar to that of the EWMA, 
the methods are substantially different. A CuSUM chart 
does not use the strict time-based weighting of past 
observations but is influenced only by those observations 
with scaled baseline exceedance above a fixed level. For 

anomalously low values. In each method, the modifi-
cations below, detailed in a previous issue of this jour-
nal,10 are implemented where applicable to account for 
common characteristics and challenges of the surveil-
lance data environment:

•	 Evolving data streams: Candidate methods use a 
sliding, fixed-length baseline to calculate the mean 
and standard error, in place of values derived from 
phase I analysis in industrial control charts. In the 
latter context, in-control data behavior is typically 
stable, and data-generating processes can be stopped 
and adjusted when the data go out of control.

•	 Accommodation of sparse or vanishing baselines: 
Each method uses a minimum baseline standard 
deviation to avoid excessive statistic values and 
to enable the use of these methods for sparse data 
streams.

•	 Non-Gaussian distribution of time-series data: 
A correction to computed p-values is applied to 
account for the fact that count distributions are typi-
cally Poisson rather than Gaussian.

•	 Robustness to data dropouts: The methods test 
for historically implausible strings of zeros and reset 
to avoid prolonged, excessive alerting when data 
reporting resumes.

Based on the issues described above and on the prac-
tical requirement that methods must produce sensible 
alerting for time series formed from ad hoc queries with-
out noticeable response delays, the following methods 
were chosen for comparison.

Z-score_SAGES
This method implements a standard control chart, 

an X-bar chart that is a generalization of the EARS 
C2 algorithm,11 globally the most widely used alerting 
method for biosurveillance. Like the C2 method, it uses 
a sliding baseline with a fixed buffer between the test 
period and baseline. The test statistic at time step t is 
then the Z-score zt,

	 /z x X s–t t t t= t^ h ,	 (1)

where xt is the current time series element, Xt  is the 
mean of the time series over the current baseline, and 
stt  is the baseline standard deviation. Numerous global 
implementations of C2 use a 7-day baseline, 2-day guard 
band, and a fixed alerting threshold of 3 standard devia-
tions above the mean. ESSENCE and other systems 
have expanded the baseline to 28 days to achieve more 
stable alerting behavior. In the current study, the base-
line, guard band, and threshold are varied for optimal 
detection performance. A p-value threshold is derived as 
a lookup of the Z-score value using the Student’s t dis-
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with s = 7 for weekly pattern adjustment. The k-step 
ahead forecast is then:

	 y m kb cn k n n n n s k–= +;+ +t ^ ^h h.	 (7)

This last quantity may be used for either smoothing 
or estimation; i.e., it may be used to replace either the 
test quantity xt, as in EWMA_SAGES, or the sliding 
baseline mean in Eq. 1.18 From trying both options on 
SAGES data, GS_SAGES replaces xt with the Eq. 4 fore-
cast. The standard error in Eq. 1 is stratified by day of 
week when a weekly pattern is present. Implementation 
of these equations requires a careful choice of smoothing 
constants , ,  and of initial values c0, c1,…,cs, m0, b0. 

Data Sets for Alerting Algorithm Evaluation
The alerting algorithms were evaluated and compared 

in two phases. The first phase used authentic reports of 
dengue/dengue-like illness from the National Epidemi-
ology Center of the Republic of the Philippines (RP). 
The second phase used simulated, stochastic time-series 
counts to test algorithm performance on less disease-
specific time series with systematic background behavior 
such as day-of-week effects and temporal correlation.

Authentic Dengue-Related Report Time Series
Collaboration with the RP, the source of the authen-

tic data described in this article, has broadly informed 
SAGES development. Dengue is a viral infection for 
which there is no approved vaccine. It remains a severe 
health threat in the RP and is included in that country’s 
list of officially reportable diseases. Globally, dengue sur-
veillance is important because there are up to 100 mil-
lion annual infections in tropical climates and because 
prompt treatment can prevent severe illness.19

The patient report data were provided by the 
National Epidemiology Center of the RP Department of 
Health. Before 2008, dengue-related illness was reported 
through the National Epidemic Sentinel Surveillance 
System (NESSS), which gathered data from multiple 
hospital surveillance sites. After the 2002 emergence of 
severe acute respiratory syndrome, surveillance meth-
ods changed, and NESSS was replaced by the Philip-
pines Integrated Disease Surveillance and Response 
system (PIDSR), which became operational in 2008. 
The number of reportable diseases was increased, and 
disease-reporting units were added. Some of the data 
collection, processing tools, and methods were also 
changed under this new system, enabling access to more 
complete information.

The time series used for the algorithm evaluation 
and comparison were regional daily counts of dengue/
dengue-like illness reports from the NESSS or PIDSR 
system covering nearly 19  years, from the beginning 
of 1993 to the end of 2011. Regions used for aggrega-

this reason, the CuSUM threshold is usually determined 
empirically,9 and the CuSUM_SAGES version derives 
p-values from lookup tables calculated by running the 
algorithm on simulated time series of length 100,000.

GS_SAGES
This method was adapted16 for SAGES user groups 

wishing to monitor  daily count data, such as counts of 
selected clinic reports. In many SAGES settings, only 
count data are available, with no catchment or popula-
tion-at-risk data to allow estimation of incidence rates. 
The main utility of this method is for monitoring daily 
time series with systematic day-of-week effects, includ-
ing any regular weekly pattern, which the method can 
infer and progressively modify. For monitoring with con-
trolled bias, statistical alerting algorithms must adjust to 
such known systematic data behaviors. The GS_SAGES 
algorithm is robust to common situations such as clinic 
closings on weekends or only on a particular day of the 
week and also on known calendar holidays. The algo-
rithm requires only a couple of months of representative 
startup data. It is useful for series of counts that are not 
too sparse in the sense that an overall median count of 
at least three reports per day is preferred. For median 
counts closer to zero (i.e., no reports on the majority of 
days), a simpler adaptive method based on the EWMA 
or CuSUM control chart is recommended (see the sec-
tion Results Using Simulated Syndromic Data).

The GS_SAGES algorithm applies generalized expo-
nential smoothing for rapid adjustment to short-term 
trends and weekly patterns. It has been chosen in place 
of regression modeling as used in other systems10 because 
conventional least-squares regression has been shown 
vulnerable to large errors when short-term trends affect 
the data.17 GS_SAGES uses a prediction based on recur-
sive smoothing equations given below, not on regression 
or any other global model. These equations can adapt to 
local changes in the mean value of the observed counts, 
as in a conventional EWMA chart, but the smoothing 
is generalized so that the prediction can also adapt to 
changes in the trend and in the weekly pattern.

For the smoothing equations, let a, b, g denote 
smoothing coefficients for updating terms correspond-
ing to the level, trend, and seasonality, respectively, and 
let s be the length of the season in the data. If yt is the 
observed count on day t, then terms for level mt, trend 
bt, and seasonality ct are updated as with the following 
equations:

,m c
y

m b1 0 1Level: –t t s

t
t t1 1– – – 1 1  = + +^ ^h h , (4)

,b m m b1 0 1Trend: – –t t t t1 1– – 1 1  = +^ ^h h ,	 (5)

	 ,c m
y

c1 0 1Seas nality: –t t

t
t s– 1 1   = + ^ h ,	 (6)
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alerting timeliness on authentic daily time series. Alerts 
during the 96 chosen event intervals were considered 
true positives, and alerts outside these intervals were 
considered false positives.

Simulated Syndromic Background Data
The second evaluation phase used time series that 

were richer, in scale and in background behavior, and 
more syndromic (i.e., less disease specific). This phase was 
motivated by the syndromic report-count data increas-
ingly available on a daily basis in resource-limited set-
tings. For example, the SAGES system also collects daily 
illness data using short message service (SMS) cellular 
telephone technology,1 but the SMS data available for the 
current analysis covered only one full season and were 
not used in the method evaluation. Lacking sufficient 
SAGES data history for more syndromic data, we created 
background data and target signals with simulation.

The simulated time series were modified random vec-
tors drawn from Poisson distributions, often representa-
tive of count data. Based on exploratory analysis of the 
available syndromic SAGES data, we applied three types 
of modification to these random vectors.

1.	 Scale: Time series were computed for daily Poisson 
mean (equivalently, variance) levels 0.5, 3, 10, and 
50. This range of values gave report count scales from 
the small municipality level to the province level.

2.	 Autocorrelation coefficient: For each scale level, 
time series were generated with lag-1 autocorrelation 
coefficient 0 (for independent daily counts), 0.3, and 
0.6 (for extreme next-day dependence). The trans-
formations adding these temporal dependencies pre-
served the Poisson property.

3.	 Day-of-week pattern: Three day-of-week patterns 
were applied for each combination of scale and lag-1 
autocorrelation. The first pattern was uniform, with 
no day-of-week weighting, similar to the PIDSR data 
series. The second pattern was drawn from past syn-
dromic data, with relative weighting of (0.15, 2.15, 
1.55, 0.95, 0.95, 0.95, 0.30) for Sunday through Sat-

tion were the entire province of Cebu, Cebu City, and 
the eight largest municipalities in the province, for 
a total of 10 time series of report counts. Algorithms 
were applied to both daily and aggregated weekly time 
series. Province-level weekly report counts are plotted 
in Fig. 1. The time series showed no characteristic day-
of-week effects or other cyclic or systematic background 
behavior other than an annual epidemic whose severity, 
timing, and duration vary from year to year. Compared 
with less disease-specific time series with complex back-
ground features, these data present less of a challenge for 
anomaly detection, but they are of primary importance 
because they represent a known annual threat that calls 
for prompt public health response.

Target Signals for Authentic Dengue Report Count Series
Evaluating the alerting performance of statistical 

methods requires a sufficient number of target signals 
in the data. Detailed specification of outbreak dates 
was unavailable for the 10 PIDSR time series, although 
dengue epidemics were evident in each time series. 
These events are associated with the rainy season in RP 
between June and February, when the mosquito vector 
for the dengue virus is most prolific.

A total of 96 outbreak intervals were selected from 
the 10 time series, with at least five intervals from each 
municipality. The selections were based on experience 
recognizing aberrant signals in time series from mul-
tiple surveillance settings. Although these signal selec-
tions are subject to judgment bias, the lack of precise 
truth data, an obstacle characteristic of biosurveillance 
research and practice, has led to similar target specifica-
tion procedures in other method evaluations.20 More-
over, the procedure in the current effort had nearly 
19 years of usable authentic dengue-like case reports from 
multiple municipalities, clearly visible target events, and 
a relatively quiet background outside the event intervals.

To avoid the subjective choice of exact beginning and 
ending dates for an epidemic in the noisier daily data, 
event dates were chosen from weekly plots and used to 
evaluate alerting on both daily and weekly data. This 
decision acknowledged the imprecision of measuring 
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Figure 1.  Weekly counts of dengue-related clinic hospital reports in Cebu Province from November 1992 through November 2011.
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Target Signals for Aberration Detection
Target Signals for Simulated Syndromic Count Series

The strategy for injecting target signals into the sim-
ulated background data was to select a realistic signal 
shape, sample from that shape on selected event dates 
to obtain daily case count injects attributable to an out-
break, and add those injects to the simulated background 
counts. With this procedure, the signal start, peak, and 
end dates are known precisely. The strength of the signal 
was chosen to give a detectable target that would be a 
challenge to the candidate alerting algorithms. One such 
injected signal was thus added to each simulated time 
series. In testing the algorithms, alerts during inject inter-
vals were considered true positives, and alerts on other 
days false positives. For false alarm calculation, alerts 
on non-inject days were considered false positives. The 
advantage of evaluation using simulated data is that no 
effects of unknown outbreaks are hidden in the data, so 
that alerts outside of known signal intervals may be accu-
rately called false alerts rather than background alerts.

urday. The third pattern, with weighting vector (0, 
2.15, 1.55, 0.95, 0.95, 0.95, 0), assumed no counts on 
weekends, representing report counts from clinics 
open only weekdays, a scenario of practical interest 
in many resource-limited areas.

The modifications described above give 36 combina-
tions of scale, lag-1 autocorrelation, and day-of week 
effect. For each such combination, 18 stochastic time 
series of report counts of length 730 days, exactly 2 years, 
were generated as benchmark data for alerting algorithm 
evaluation.

Figure 2 gives examples of the simulated daily counts 
used for algorithm evaluation. Sample simulated series 
with daily means of 3 and 10 report counts are plotted. 
The upper half of the figure shows simulated series with 
no day-of-week effect, whereas series in the lower half 
are modified with day-of-week proportions extrapolated 
from authentic report data. As discussed above, 18 such 
series were generated for each combination of daily mean, 
autocorrelation coefficient, and day-of-week effect.
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and threshold. Recommended algorithms were chosen 
as follows: Consider only algorithms whose sensitivity, 
specificity, and coherence meet strict minimum criteria. 
To accommodate the imprecision in alerting timeliness, 
drop algorithms whose average alerting timeliness is 
more than a full day longer than the shortest delay among 
those remaining. Among the remaining algorithms 
within 0.005 of the highest PPV value, the one with the 
shortest average alerting delay was recommended.

RESULTS
Methods tested on the dengue data were Z-score_

SAGES, CuSUM_SAGES, and EWMA_SAGES. For 
the noisier simulated data, typical of less specific syn-
dromic series, the GS_SAGES method was also tested.

Results Using Weekly Dengue-Related Report Data
The testing procedure described in Methods was 

applied to the weekly aggregated counts of the 10 report 
time series described above to examine alerting perfor-
mance on the 96 target events. Each series consisted of 
992 weeks of counts, with the first 42 weeks reserved as 
warm-up intervals for the longest algorithm baselines, so 
that alerts considered false positives could occur in 950 
weeks minus the event intervals.

Tested parameter/threshold sets included 120 param-
eter/threshold combinations for the Z-score_SAGES 
method, 720 combinations for CuSUM_SAGES to test 
values of k, and 840 combinations for EWMA_SAGES, 
including additional combinations for the latter two 
methods to vary the k and  constants. These 1680 
algorithm combinations were applied to test detection 
performance on the 96 target signals. From the resulting 
algorithm output, candidate methods were restricted to 
those with specificity > 95%, specificity > 95%, coher-
ence > 66%, and alerting delays less than 1.5 weeks. The 
remaining combinations are tabulated in Table 1 with 
sorted PPV values above 0.70. No Z-score combination 
met the timeliness criterion with high PPV. Detection 
performance for the tabulated combinations is favorable 
because the weekly data aggregation yields good coher-
ence and high PPV at the required sensitivity/specificity 
levels for the seasonal target events. Many other CuSUM 
and EWMA combinations yielded slightly lower PPV 
values. Analysis of the full table indicated the use of 
CuSUM_SAGES, and the parameter combination in 
the second row with an alerting threshold of p = 0.01 
can be considered the best PPV/timeliness result.

Results Using Daily Dengue-Related Report Data
The same methods were applied with a similar 

number of parametric combinations to the 10 daily den-
gue-report time series without aggregation. Each series 
contained 6939 days of counts, with the first 300 days 

For the signal shape, we chose the lognormal distribu-
tion proposed by Sartwell in 195021 and widely used since 
then as representative of the epidemic curve distribution 
of many infectious disease.10 The rationale is that the dis-
tribution of care-seeking dates plausibly reflects the distri-
bution of symptom-onset dates (i.e., the epidemic curve).

Evaluation Measures
Multiple criteria have been recommended for evalu-

ating surveillance algorithms.22 The results described 
below apply a combination of these measures including 
sensitivity, specificity, timeliness, and positive predic-
tive value (PPV). After reviewing published attempts 
to combine these measures,23 we sought a straightfor-
ward comparison approach emphasizing priorities of 
the resource-limited setting. We first list operational 
definitions of the performance measures applied to the 
authentic dengue data with known events and to the 
simulated syndromic data with injected events:

•	 Event Sensitivity, the ratio of alerted target events 
to all target events: Of the total number of events 
known or injected, for how many does the algorithm 
alert before the peak date of the event?

•	 Specificity, or (1 – the background alert rate): Of the 
dates that are not during known or injected events, 
for what percentage does the algorithm correctly fail 
to alert?

•	 Timeliness: What is the delay in days between the 
start of a target event signal and the first algorithm 
alert?

•	 Temporal Sensitivity (Coherence): On what pro-
portion of the days during target events does the 
algorithm alert?

•	 PPV: What proportion of all algorithm alerts occur 
during known or injected events?

Event sensitivity is the value adopted by many authors 
for surveillance alerting methods and is often weighed 
against the specificity measure, computed on the basis 
of event days, not events. The temporal sensitivity or 
coherence measure is rarely published because during 
the course of an event lasting more than a week, the data 
may be anomalous only on a few days around the peak, so 
values of coherence are typically low, especially in non-
specific data. In practice, however, health monitors often 
cope with the lack of time and resources by investigating 
only after several alerts are seen, so the coherence mea-
sure was included in this evaluation. The PPV as defined 
above tells how many alerts are likely to be investigated 
before an event of interest is found. In practice, this mea-
sure is more relevant than specificity, a function of dis-
ease prevalence, for evaluating algorithm utility.

From these considerations, we defined an algorithm 
as an alerting method with a fixed set of parameters 
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binations are tabulated in Table 2. Again, no Z-score_
SAGES combination met the timeliness criterion with 
acceptable PPV.

From Table  2, 16 algorithm combinations met the 
event sensitivity/specificity requirement with PPV values 
above 0.7.

Coherence values are lower and alerting thresholds 
higher than in Table 1. The EWMA_SAGES algorithm 
in the top row achieved a PPV of 0.77 with a mean delay 

reserved for algorithms with long baselines, so that false 
positives could occur in each series on 6639 days minus 
the event intervals. Because of the increased volatility 
of daily count data, few algorithm combinations yielded 
a coherence measure above 50%. From the resulting 
algorithm output, candidate methods were restricted to 
those with sensitivity > 95%, specificity > 95%, coher-
ence > 40%, and alerting delays less than 4.5 days. The 
remaining CuSUM_SAGES and EWMA_SAGES com-

Table 1.  Algorithms/parameter/threshold combinations yielding best alerting performance for weekly report count data

Algorithm

Baseline 
Length 
(weeks)

Guard 
Band 

Length 
(weeks)

Parameter 
(CuSUM k, 
EWMA )

Alerting 
Threshold

Speci-
ficity

Event 
Sensitivity

Coher-
ence PPV

Delay 
(weeks)

Delay 
(days)

CuSUM_SAGES 12 2 0.3 0.01 0.96 0.99 0.73 0.75 1.48 10.39

CuSUM_SAGES 12 2 0.2 0.01 0.96 0.99 0.75 0.75 1.39 9.74

CuSUM_SAGES 12 2 0.4 0.02 0.96 1.00 0.78 0.75 1.42 9.96

CuSUM_SAGES 12 2 0.5 0.03 0.95 1.00 0.79 0.74 1.45 10.18

CuSUM_SAGES 12 2 0.1 0.01 0.95 1.00 0.77 0.73 1.35 9.45

CuSUM_SAGES 12 1 0.4 0.02 0.96 1.00 0.74 0.73 1.46 10.25

CuSUM_SAGES 12 2 0.07 0.01 0.95 1.00 0.77 0.73 1.37 9.60

CuSUM_SAGES 12 1 0.5 0.03 0.95 1.00 0.76 0.72 1.48 10.39

EWMA_SAGES 12 2 0.7 0.03 0.96 1.00 0.71 0.71 1.49 10.46

Table 2.  Algorithms/parameter/threshold combinations yielding best alerting performance for daily report count data

Algorithm

Baseline 
Length 
(days)

Guard Band 
Length 
(days)

Parameter 
(CuSUM k, 
EWMA )

Alerting 
Threshold Specificity

Event 
Sensitivity

Coher-
ence PPV

Delay 
(days)

EWMA_SAGES 112 7 0.5 0.05 0.97 0.98 0.45 0.77 3.95

CuSUM_SAGES 112 7 0.3 0.05 0.97 0.99 0.49 0.77 4.05

CuSUM_SAGES 112 7 0.2 0.05 0.97 0.99 0.56 0.76 4.11

CuSUM_SAGES 112 7 0.4 0.05 0.97 0.99 0.46 0.76 3.69

CuSUM_SAGES 112 2 0.3 0.05 0.97 0.99 0.46 0.76 3.96

CuSUM_SAGES 112 2 0.2 0.05 0.97 0.99 0.53 0.76 3.95

CuSUM_SAGES 112 7 0.5 0.05 0.97 1.00 0.42 0.75 3.72

CuSUM_SAGES 112 2 0.4 0.05 0.97 0.99 0.43 0.75 3.70

CuSUM_SAGES 112 7 0.1 0.05 0.96 0.97 0.66 0.75 4.27

CuSUM_SAGES 112 2 0.1 0.05 0.96 0.97 0.63 0.75 4.30

EWMA_SAGES 84 7 0.5 0.05 0.97 0.99 0.41 0.73 4.21

EWMA_SAGES 112 7 0.3 0.05 0.96 1.00 0.52 0.72 3.38

CuSUM_SAGES 84 7 0.3 0.05 0.97 0.99 0.44 0.71 4.10

CuSUM_SAGES 84 7 0.4 0.05 0.97 0.99 0.41 0.70 4.01

EWMA_SAGES 112 2 0.3 0.05 0.96 1.00 0.48 0.70 3.53

CuSUM_SAGES 84 7 0.2 0.05 0.96 0.99 0.51 0.70 4.18
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data series, PPV is near or below 0.1, indicating that only 
one of 10 alerts results from an injected event. For means 
of 10 or 50, the PPV exceeds 0.3 unless autocorrelation 
is excessive.

Algorithm Recommendations
This section summarizes method recommendations 

depending on the amount of historical data available, 
the data scale represented by the series mean, and the 
day-of-week effect. The chart in Table  4 suggests the 
method of choice given the available data. The base-
line columns represent 2-, 4-, 8-, and 16-week baseline 
lengths. If 112 days of representative data are available, 
the methods in the rightmost column are recommended.

less than 4 days. However, 
a user that values repeated 
alerting during an event 
(higher coherence) could 
prefer the CuSUM_SAGES 
combinations with k-values 
below 0.3.

Results Using Simulated 
Syndromic Data
Relative Method Performance

Compared with alert-
ing performance on the 
PIDSR dengue report data, 
the algorithms were less 
effective on the simulated 
syndromic time series. 
Coherence and positive 
predictive value dropped 
consistently because of the 
higher background noise 
level of Fig.  1, day-of-week 
effects for some of the 
series, and the transient, 
stochastic nature of the 
target signals.

For each combination of 
simulation parameters, the 
alerting method/parameter 
combination was the one 
with the highest PPV given 
specificity and event sensi-
tivity ≥ 95%, coherence > 
20%, and alerting timeli-
ness within 1  day of other 
qualifying combinations. 
The top methods by these 
criteria are listed in Table 3 
with the corresponding 
coherence, PPV, and alerting delay. The GS_SAGES 
method was the choice for series with a day-of-week 
effect whenever the count mean was at least 3, likely 
because of the GS_SAGES adaptation to cyclic pat-
terns. For the sparse time series with mean value 0.5, 
a CuSUM or EWMA was the best choice. As in the 
results from the less noisy dengue data with clearer sea-
sonal target events, none of the Z-score_SAGES algo-
rithm combinations met the combined criteria.

Overall Alerting Quality
The effects of the data scale and of autocorrelation on 

PPV are summarized in the bar charts in Fig. 3 for series 
with and without day-of-week effects. The improvement 
of PPV with the scale of the data is consistent. For sparse 

Table 3.  Optimal alerting method and values of coherence, PPV, and alerting delay for simulated 
daily report count time series with each combination of report count mean, lag-1 autocorrelation 
coefficient, and day-of-week effect

Mean 
Daily Visit 

Count

Temporal Cor-
relation Coef-
ficient (lag-1)

Day-of-
Week 
Effect

Alerting 
Method Coherence PPV

Alerting 
Delay 
(days)

50 0 No EWMA 0.33 0.58 3.89

50 0.3 No CuSUM 0.33 0.41 4.47

50 0.6 No GS_SAGES 0.25 0.37 4.32

50 0 Yes GS_SAGES 0.26 0.41 4.26

50 0.3 Yes GS_SAGES 0.28 0.33 4.63

50 0.6 Yes GS_SAGES 0.20 0.32 4.32

10 0 No CuSUM/EWMA 0.24 0.52 3.89

10 0.3 No GS_SAGES 0.23 0.32 4.79

10 0.6 No GS_SAGES 0.29 0.19 3.21

10 0 Yes GS_SAGES 0.35 0.36 2.79

10 0.3 Yes GS_SAGES 0.22 0.37 4.05

10 0.6 Yes GS_SAGES 0.23 0.22 4.11

3 0 No EWMA 0.38 0.31 3.89

3 0.3 No EWMA 0.40 0.22 3.42

3 0.6 No GS_SAGES 0.32 0.12 3.05

3 0 Yes GS_SAGES 0.28 0.25 3.05

3 0.3 Yes GS_SAGES 0.23 0.15 3.58

3 0.6 Yes GS_SAGES 0.29 0.20 3.05

0.5 0 No CuSUM/EWMA 0.38 0.16 2.42

0.5 0.3 No EWMA 0.26 0.11 3.26

0.5 0.6 No EWMA 0.36 0.10 3.11

0.5 0 Yes CuSUM/EWMA 0.31 0.14 3.58

0.5 0.3 Yes CuSUM 0.23 0.11 3.84

0.5 0.6 Yes EWMA 0.30 0.12 3.58



H. S.  BURKOM  ET AL.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 4 (2014)676

guidance for the open-source methods provided with 
SAGES.7 In view of the wide range of backgrounds and 
experience of SAGES users, only basic knowledge of the 
local data characteristics—e.g., outcomes of interest and 
the scale, seasonal/cyclic behavior, and quality of indica-
tor time series—is required to use this guidance.

From the analysis on the dengue report data, if input 
series counts are aggregated from carefully chosen 
patient records, such as the Cebu dengue-related patient 
reports, then adaptive statistical methods can yield 
timely alerts with high sensitivity and specificity and 
practical PPV. The weekly analysis gave better overall 
PPV and coherence statistics at the cost of alerting time-
liness. From the best timeliness results using the weekly 
data, alerts are not expected until the second week of an 
event. By contrast, analyses using daily data consistently 
showed that alerts could be expected after 4–5  days. 
However, this timeliness advantage has relevance only 

For PPV averaged over all algorithm/parameter com-
binations, the overall dependence of PPV on the base-
line length and time series scale is summarized in Fig. 4. 
Except for sparse data series, a baseline of at least 28 days 
is recommended in view of the jump in PPV from 14 to 
28 days. Additional PPV increases may be realized when 
longer data history of up to 56 days is reliably available. 
Previous experience and other studies10 have suggested 
diminishing returns for baselines longer than 8  weeks 
except for regression methods developed for specific time 
series with mean values above 10 encounters per day.

CONCLUSIONS
The above-described algorithm evaluation analyses 

on authentic and simulated data support the use of alert-
ing methods on surveillance data from resource-limited 
settings. The analyses give the background and usage 
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Figure 3.  Bar chart comparisons of best PPV achieved using simulated time series as a function of daily report count mean, lag-1 auto-
correlation coefficient, and presence of day-of-week effect.

Table 4.  Chart of recommended alerting methods for daily report count data as a function of baseline length, daily mean count, and presence 
of day-of-week effect

Recommended 
Alerting Methods

Daily Mean 
Visits

Baseline length (days)

14 28 56 112

No Day-of-Week 
Effect

0.5 CuSUM, EWMA EWMA EWMA CuSUM, EWMA
3 CuSUM, EWMA CuSUM, EWMA CuSUM, EWMA CuSUM, EWMA
10 CuSUM CuSUM CuSUM, EWMA EWMA
50 CuSUM CuSUM, EWMA CuSUM, EWMA EWMA

Customary Day-of-
Week Effect

0.5 CuSUM EWMA EWMA EWMA
3 CuSUM, EWMA CuSUM, EWMA GS_SAGES GS_SAGES
10 CuSUM, EWMA GS_SAGES GS_SAGES GS_SAGES
50 GS_SAGES GS_SAGES GS_SAGES GS_SAGES
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historical background data pose the 
problem that false alerts cannot be 
verified, so calculated PPV may be 
underestimated. Authentic target 
signals, the footprints of health 
events in data streams, are rarely 
available, and the beginning and 
ending dates of these signals must 
be estimated, as in the dengue 
report data described above. This 
uncertainty compromises the alert-
ing timeliness and coherence mea-
sures. The Cebu dengue report 
counts were chosen to lessen these 
problems. Simulated data streams 

and target signals avoid these problems, but evaluations 
using simulated data have the burden of proving that the 
results are applicable to authentic data. The simulated 
time series described above were designed to capture sta-
tistical properties of observed patient record counts. The 
combination of authentic and simulated data testing was 
intended to supply evidence from both perspectives.

Future efforts will seek to further customize statisti-
cal alerting methods for surveillance data streams, but 
the direction of such improvements must keep pace with 
developing needs in response to global epidemiological 
needs and with advancing data technology.
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