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INTRODUCTION
The detection, classification, and geo-location of 

ground-based signal sources is one of the primary mis-
sions of modern military surveillance aircraft. Example 
signals of interest are the search radar of an enemy 
missile site, the radio communications between enemy 
combatants, and the distress radio beacon being trans-
mitted by a downed friendly pilot. The ability to locate 
such signal sources is of obvious importance, especially 
during times of conflict.

The geo-location of ground targets is performed by 
surveillance aircraft using the output of sensors attached 
to the aircraft. In order to determine the target’s loca-

tion on Earth, the sensor measurements are processed 
by some form of estimation algorithm. This geo-location 
algorithm provides both a location estimate and an esti-
mation error covariance matrix. The covariance matrix 
gives a statistical representation of the uncertainty in 
the location estimate and is used to construct a target 
location confidence region, such as an “error ellipse,” 
which can be displayed to the signals intelligence system 
operator on the aircraft or in a remote ground station. 
Geo-location performance is driven by the number of 
measurements, measurement error statistics, and engage-
ment geometry.

assive geo-location of ground targets is commonly performed by surveillance air-
craft using direction finding angles. These angles define the line of sight from the 

aircraft to the target and are computed using the response of an antenna array 
on the aircraft to the target’s RF emissions. Direction finding angles are the 

inputs required by a geo-location algorithm, which is typically an extended Kalman filter 
or a batch processor. This modality allows a single aircraft to detect, classify, and localize 
ground-based signal sources. In this article, the direction finding angles used for geo-loca-
tion are defined and a mathematical model is developed that relates measurements 
of these angles to the target’s position on Earth. Special emphasis is given to the angle 
measurement provided by a linear antenna array. An algorithm is presented that uses 
iterated least squares to estimate a target’s position from multiple angle measurements. 
Simulation results are shown for a single aircraft locating a stationary ground target.
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Active sensors using radar and imaging techniques 
provide accurate measurements of range, range rate, 
position, and velocity of ground targets. However, these 
sensors do not make direct use of the target’s transmitted 
signal and therefore do not distinguish between (say) a 
radar and a radio. To determine the location of a specific 
radar, the output from active sensors must be correlated 
with measurements from passive sensors that process 
and identify the signal type. Also, by transmitting 
energy in order to produce the measurements needed for 
geo-location, an active system can reveal the presence of 
the host platform to hostile forces.

Passive systems can detect and locate a signal source 
without the assistance of an active system and with-
out revealing the presence of the host platform. When 
compared with active systems, passive systems typically 
provide lower geo-location accuracy but are less com-
plicated and lower in weight. A passive system requires 
only one or more antennas, a receiver, and the necessary 
signal-processing hardware and software. Such systems 
are used on platforms ranging from small unmanned 
aerial vehicles (UAVs) to large surveillance aircraft.

One method of passive geo-location involves the tar-
get’s signal being received by at least two aircraft. The 
collected data are then transmitted to a common pro-
cessing node where measurements of time difference 
of arrival (TDOA) and frequency difference of arrival 
(FDOA)1 are extracted for each pair of aircraft. When 
the engagement geometry is favorable, the isograms 
associated with the TDOA and FDOA measurements 
will have a near-orthogonal intersection, which allows 
a target location estimate to be computed with only one 
pair of measurements. High geo-location accuracy can 
be achieved using TDOA and FDOA measurements, but 
doing so requires the coordinated operation and time 
synchronization of multiple collection platforms within 
the area of operation.

Another sensor measurement that can be generated 
passively and used for geo-location is a direction finding 
(DF) angle. A DF angle is one of several possible angles 
used to define the line of sight (LOS) from the aircraft 
to the signal source and is computed using the response 
of an antenna array, phase interferometry, and signal 
processing. In order to be completely specified, the LOS 
must be resolved into two angles such as azimuth and 
elevation relative to a coordinate frame attached to the 
array. Depending upon the array configuration, the DF 
system may or may not be able to determine both angles. 
A planar array is able to measure both angles, but a 
linear array measures only the conical angle between 
the axis of the array and the LOS, as discussed in the 
next section. In this article, we refer to azimuth, eleva-
tion, and the conical angle as DF angles.

One advantage of using DF angles for geo-location is 
that the signal processing and geo-location algorithms 
involved are less complicated than those needed to pro-

cess TDOA and FDOA measurements. The primary 
advantage, however, is that the use of DF angles allows 
a single aircraft, operating independently, to detect 
a signal, identify its type, and locate its source on the 
ground. The use of DF angles for geo-location is there-
fore very common and critically important.

The purpose of this article is to present the math-
ematical model of DF angles needed for geo-location 
algorithm development. Because of their widespread 
use, we first discuss linear antenna arrays and their asso-
ciated DF angle measurement. Following this, the geo-
metrical relationship between DF angles and position 
on Earth is developed. We then derive the measurement 
matrix needed by a geo-location algorithm. Finally, sim-
ulation results are shown for a single surveillance aircraft 
attempting to locate a stationary ground target.

LINEAR ANTENNA ARRAYS AND DF ANGLES
Consider a linear antenna array mounted along 

the longitudinal axis of an aircraft and a signal source 
located such that the angle between this axis and the 
LOS is l. Neglecting interactions between the signal 
and the aircraft body, the phase response across the 
array for this signal source will also be produced by any 
emitter located such that the conical LOS angle is l.2 
Processing the phase response produces a cone of ambig-
uous directions from the aircraft to the possible target 
locations, as illustrated in Figs. 1 and 2.

In these figures, the coordinate frame shown is a 
forward-right-down frame attached to the aircraft, the 
target is the red dot, and the LOS is the red line. The 
target is located at an azimuth of 20° and an elevation 
of –30°, which gives a conical LOS angle l of approxi-
mately 35.5°. This is the angle between the x axis and 
the red line and is also the angle between the x axis and 
any point on the cone.

Any emitter located such that its LOS is along the 
cone will produce the same phase response across the 
array as the emitter located at this specific azimuth and 

Figure 1.  3-D view of cone of possible emitter locations.
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elevation. As a result, it is not possible in this situation 
to determine the target’s azimuth and elevation when 
using a linear antenna array and only the array phase 
response. However, when the aircraft operates at a signif-
icant distance from the signal source, the elevation angle 
to the target will be small in magnitude. If during such a 
“standoff” mission the azimuth angle is close to 90°, then 
azimuth can be accurately approximated by the measured 
conical LOS angle and used solely for geo-location. The 
lack of elevation measurements is not detrimental—they 
would provide little additional information because they 
are known to be close to zero in magnitude.

The relationship between azimuth angle and the coni-
cal LOS angle is shown in Figs. 3 and 4 for elevation angles 
of –5°, –10°, and –15°. Figure 3 shows this relationship for 
an azimuth angle between 0° and 90° and is labeled as 
representing the entire field of view (FOV) of the array. 
The entire FOV actually consists of azimuth angles from 
0° to 180°, but the plot is symmetrical about 90°. The 
range of azimuth angles close to 90° is often referred to 
as the “primary FOV.” Figure  4 shows a primary FOV 
defined for azimuth angles between 60° and 90°.

The DF system on a surveillance aircraft using a 
linear array for geo-location is calibrated using flight 
and/or anechoic chamber data. These data consist of 
the measured array phase response for signal sources at 
known frequencies across a range of known azimuth and 
elevation angle values. The collected phase responses 
will include the effects of signal interaction with the 
aircraft body and will be unique to each aircraft. The 
magnitude of elevation angles used during data collec-
tion will typically be small, say, no greater than 15°, so 
that the conical LOS angle and azimuth will be close 
in value within the primary FOV. The data are then 
used to develop a mathematical model that gives the DF 
angle, either the conical angle or azimuth, and its vari-
ance as a function of phase response. This mathemati-
cal model and the calibration data become part of the 

system’s software and are used operationally to compute 
the DF angle for each received signal, which includes 
the resolution of left–right and front–back ambiguities. 
The DF angle and its variance are the inputs required by 
a geo-location algorithm.

Restricting the elevation angle magnitude to 15° does 
not limit the operational capabilities of a surveillance 
aircraft as much as might be expected. Consider an air-
craft at an altitude of 30,000 ft. The ground range from 
the aircraft to a location on Earth at an elevation angle 
of –15° is 18 nautical miles. At the other extreme, the 
elevation angle to the horizon is –3° and the associated 
ground range is 184  nautical miles. Depending upon 
signal frequency and atmospheric conditions, the actual 
“radio horizon” can be much greater than 184 nautical 
miles. Therefore, calibrating a linear array for eleva-
tion angles between –15° and –3° allows an aircraft in 
level flight at 30,000 ft to compute DF angles and locate 
targets at ground ranges between approximately 20 and 
200 nautical miles. These ranges are reasonable for sur-
veillance aircraft with a standoff mission. Aircraft oper-
ating closer to the target signal source require a lower 
altitude and/or a different antenna array configuration.
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Figure 3.  Azimuth versus conical angle for the entire FOV.

90

85

80

75

70

65

60
60           65           70           75           80           85           90

Conical angle (°)

A
zi

m
ut

h 
(°

)

Elevation = –5°
Elevation = –10°
Elevation = –15°

Figure 4.  Azimuth versus conical angle for the primary FOV.

y

z

Figure 2.  Front view of cone of possible emitter locations.



GEO-LOCATION USING DIRECTION FINDING ANGLES

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 31, NUMBER 3 (2013) 257

If a signal source is located at an elevation angle out-
side of the range used for calibration, then the received 
signal will produce a phase response across the array 
that is a poor fit to the calibration data. In this situa-
tion, either the signal will be rejected or it will be used 
but with a large variance assigned to the computed DF 
angle. If this DF angle is used for geo-location, the large 
variance assigned will cause it to be “de-weighted” when 
used with other measurements by the geo-location algo-
rithm. Other geo-location methods, such as probabilistic 
data association,3 perform probabilistic weighting of the 
measurements in order to account for the case where a 
non-target-originated measurement is accepted. These 
methods are of practical interest4 but are not considered 
in this article.

Angle of arrival (AOA) is a term that, unfortunately, 
is applied to both azimuth and the conical LOS angle. 
The definition of AOA seems to vary with each system 
and aircraft, resulting in confusion. For the remainder 
of this article, we will define AOA to be the conical 
LOS angle l to distinguish it from azimuth. Direction 
of arrival (DOA) is the angle equivalent to azimuth or 
AOA when defined relative to a local-level coordinate 
frame at the current aircraft position. DOA is computed 
using azimuth or AOA, an estimate of the elevation 
angle to the target, the antenna array mounting angles 
on the aircraft, and aircraft inertial navigation system 
(INS) output. A simplified relationship between AOA 
and DOA is illustrated in Fig. 5.

The geo-location systems on some surveillance 
aircraft depend entirely upon DF angle measurements 
produced by a linear antenna array, i.e., they do not have 
access to other measurement types such as range, range 
rate, TDOA, or FDOA. These systems will often convert 
the measured DF angles to DOA and use DOA for geo-
location. One advantage of using DOA measurements 
is that it simplifies the geo-location algorithm: the 
estimation problem can be solved in a plane tangent 
to Earth’s surface instead of in 3-D space relative 

to a spherical or ellipsoidal Earth model. Another 
advantage is that a planar algorithm using DOA for 
geo-location is more stable than a 3-D algorithm using 
azimuth when there are few measurements and the true 
DOA changes little during the collection. A planar 
algorithm may produce a solution in situations where 
a 3-D algorithm will diverge. A disadvantage is that 
additional coordinate transformations are required. 
A plane tangent to Earth’s surface is constructed at 
some point within the area of operation, typically at 
the initial aircraft position. The aircraft positions and 
DOA angles are projected onto this plane, the geo-
location problem is solved, and then the planar target 
location is projected onto the Earth model to produce 
a 3-D estimate.

If DF angle measurements are to be used with other 
measurement types, then there is no advantage in using 
DOA instead of azimuth or AOA and attempting to 
solve the geo-location problem in a local tangent plane. 
The reason for this is that it is difficult, if not impossible, 
to generate accurate planar approximations of measure-
ment types such as TDOA and FDOA. The mathemati-
cal model needed for geo-location using DOA will not 
be developed in this article.

COORDINATE FRAMES
The following Cartesian coordinate frames are defined 

to support the processing of DF angle measurements: 
E, Earth-Centered-Earth-Fixed (ECEF); N, North-
East-Down at the aircraft; B, aircraft body forward-
right-down; and A, antenna array. In this article, a left 
superscript is used to indicate the coordinate frame in 
which a vector is represented. For example, Ep is the 
vector p when represented in the ECEF frame E.

The ECEF frame E has its z axis through the North 
Pole, its x axis through the intersection of the equator 
and the Greenwich Meridian, and its y axis oriented to 
create a right-handed coordinate system. The North-
East-Down frame N has its x axis directed north along 
the local longitude line, its y axis directed east, and its 
z axis directed down along the local vertical. The air-
craft body frame B has its x axis directed forward out of 
the nose of the aircraft, its y axis directed to the right 
from the pilot’s perspective, and its z axis directed down 
out of the bottom of the aircraft. The antenna array 
frame A is oriented such that the LOS is along its x axis 
when AOA is zero.

The World Geodetic System 1984 (WGS84)5 models 
the Earth’s surface as an oblate spheroid (ellipsoid), which 
allows Cartesian ECEF positions on Earth’s surface to 
be represented using the angles longitude and geodetic 
latitude. The WGS84 was developed by the National 
Imagery and Mapping Agency, now the National Geo-
spatial-Intelligence Agency, and has been accepted as a 
standard for use in geodesy and navigation.
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Figure 5.  AOA and DOA.
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ROTATION MATRICES
The matrices associated with a rotation of (say)  

about the x, y, and z axes of a coordinate frame are
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The relative orientation of frames E and N is defined in 
terms of aircraft longitude ac and geodetic latitude ac 
using the following rotation matrix: 

	 , ,TEN R z R y2– –ac ac 
= ^ `h j.	

The notation “TEN” is interpreted to mean the Trans-
formation to frame E from frame N, i.e., p pTENE N$= ,
for any vector p. The relative orientation of frames N 
and B is defined using aircraft INS output

	 , , ,TNB R yaw z R pitch y R roll x= ^ ^ ^h h h.	

The relative orientation of frames B and A is defined 
by the antenna array mounting angles , , and  using

	 , , ,TBA R z R y R x  = ^ ^ ^h h h.	

The relative orientation of any two coordinate frames 
can be found by multiplying the appropriate rotation 
matrices. For example, the relative orientation of frames 
E and B is given by TEB = TEN  TNB. Also, the inverse 
of any rotation matrix is given by its transpose. For 
example, TNE = [TEN]T.

MEASUREMENT MODEL
Let  and  represent the unknown target WGS84 

longitude and geodetic latitude, respectively. We will 
assume that target altitude a is either known or can be 
computed as a function of longitude and latitude using 
Digital Terrain Elevation Data. The target location 
in ECEF coordinates is given by the following 3  ×  1 
vector:6
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is Earth’s transverse radius of curvature,  is Earth’s 
eccentricity, and req is Earth’s equatorial radius. Note 
that the left superscript E has been suppressed to sim-
plify notation. The position of the target relative to the 
aircraft in ECEF coordinates is

	 p p p–E
tgt ac= ,

where pac is the aircraft’s position in ECEF coordinates. 
This relative position vector in frame A is

	 p pTAEA E$= .	

A unit vector along the LOS in frame A is

	 u
p

p1A
A

A= ,	

where pA  is the range from the aircraft to the target.
Let , h, and l represent the DF angles azimuth, eleva-
tion, and AOA, respectively. Then

	 u , ,
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This definition of azimuth and elevation is such that if 
frame A is aligned with frame B, then a positive azimuth 
indicates that the target is to the right of the pilot, and a 
negative elevation indicates that the target is below the 
pilot. The DF angles are related to the unit vector Au by
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Now let fi be the function defined by the calculations 
shown above such that fi(ptgt) gives the true value of azi-
muth, elevation, or AOA at aircraft position i for i = 1, 
2,  .  .  . n, where n is the number of DF angle measure-
ments. Each DF angle is also a function of the aircraft 
position vector pac, but this dependency has been sup-
pressed to simplify notation.

The 2 × 1 vector to be estimated is

	 x



= ; E.	

Define the measurement function hi such that
	 x p xh fi i tgt=^ ^^h hh,	
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and let zi be the DF angle measurement. Then

	 xz h vi i i= +^ h , 	

where vi is the measurement error. If we assume that 
these errors are unbiased, uncorrelated, and Gaussian 
with known variances, then

	 ,v 0Ni i
2+ ` j,	

where i is assumed to be known for each i. This error 
model is obviously idealistic, but it is sufficient for geo-
location when the DF system has been properly cali-
brated. The measurement model in vector form is

	 z h x v= +^ h 	

	 v 0,RN+ ^ h,	
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is the n × n positive definite measurement error covari-
ance matrix.

GEO-LOCATION
Determining the target’s location involves using the 

given measurement model to compute an estimate xt  of 
the parameter vector x defined in Measurement Model. 
Doing so is equivalent to solving a nonlinear optimal 
estimation problem. The algorithms used to solve such 
problems fall into one of two broad categories: recur-
sive or batch. A recursive algorithm processes only the 
most recent measurement to refine the estimate of the 
unknown parameter vector computed from the previous 
measurement. A batch algorithm processes all measure-
ments simultaneously to produce one estimate. There 
are advantages and disadvantages of each approach. In 
general, batch algorithms are more stable than recursive 
algorithms but require more data storage and compu-
tation time. The recursive algorithm typically used for 
geo-location is the extended Kalman filter.7–9 Examples 
of batch processors are iterated least-squares (ILS) and 
the Levenberg–Marquardt algorithm.10, 11

Both recursive and batch geo-location algorithms 
require an initial estimate x0t  that can be computed for 
DF angles as follows. Using two or more of the early azi-
muth or AOA measurements, compute the associated 
DOA values. Using these angles and Brown’s closed-form 
algorithm,1 compute a planar target location estimate. 
Project this estimate onto the WGS84 Earth model to 
form initial estimates of target longitude and latitude.

If we treat the parameter vector x as an unknown 
constant instead of a random variable, then the assump-

tion that the measurement errors are Gaussian gives that 
the maximum-likelihood estimate12 of x is

	 x z h x R z h xarg min – –
x

T 1–=t ^^ ^^hh hh.	

This is the parameter estimate for which the observed 
measurements are most likely to have been produced by 
the assumed model. This value can be found using batch 
processing and ILS, which consists of the iteration

	 x x H R H H R z h–k k k
T

k k
T

k1
1 1 1– – –= ++t t ^ h8 B ,	

with the initial estimate x0t  computed as described 
above. In the above expression, the n × 1 measurement 
function is
	 h h xk k= t^ h,	

and the n × 2 measurement matrix is

	 H x
h xk k2
2= t^ h.	

The measurement function h was developed in the pre-
vious section, and the measurement matrix H will be 
developed in Measurement Matrix. Note that in each 
iteration k, hk and Hk are computed using only aircraft 
positions and the current target location estimate x ,kt

i.e., the DF angle measurements are not used. Note also 
that the iteration involved is not the same as with a 
Kalman filter. With ILS, the iteration is repeated until 
some desired convergence tolerance has been met, such 
as x x–k k1+t t  being sufficiently small. With a Kalman 
filter, the iteration simply consists of one step for each 
new measurement. Also, the vector z used by ILS con-
tains all measurements, so all measurements are being 
used in each step. A Kalman filter uses only the most 
recent measurement in each step.

MEASUREMENT MATRIX
The measurement matrix H is

	 H
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Using the chain rule, this derivative can be expressed as 
the following product of five factors:
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The first factor in this product is unique for each DF 
angle. For an azimuth measurement,
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For an elevation measurement,
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For an AOA measurement,
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The remaining factors are the same for each measurement type. Factors 2, 3, and 4 are
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If the target altitude a is constant, then

	 a a 02
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2
2

� �= = .	

Otherwise, these values are computed numerically as gradients of the terrain data.

ESTIMATION ERROR COVARIANCE MATRIX
Let xt  be the target location estimate after convergence of ILS, and let 

	 H x
h x2
2= t^ h.	
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The covariance matrix for the target’s location error in 
WGS84 coordinates (, ) is given by

	 P x x x x H R HE – –x
T T 1 1– –

= =t t^ ^h h6 6@ @ ,	

where E[·] is the statistical expectation operator. A linear 
approximation of the relationship between the target’s 
location in ECEF coordinates (x, y, z) and WGS84 coor-
dinates is given by the truncated Taylor series expansion

	 p p x
p

x x– –tgt tgt
tgt
2

2
=t t^ ^h h; E .	

Using the above approximation, the covariance matrix 
for the target’s location error in ECEF coordinates is

	
.P p p p p x

p
P x

p
E – –p

T
x

T

tgt tgt tgt tgt
tgt tgt

tgt 2

2

2

2
= =t t^ ^h h8 ; ;B E E 	

To construct an error ellipse, the above ECEF covari-
ance matrix is rotated into the coordinate frame used 
by the signals intelligence operator’s workstation, the 
appropriate 2 × 2 submatrix is extracted, and an eigen 
decomposition is performed to determine the length and 
direction of the ellipse axes.

PARAMETER VALUES
In the above development, the quantities that are 

specific to each operational system are the antenna array 
mounting angles (, , ) and the DF angle measure-
ment error . These values will vary widely depending 
on the antenna array size and configuration, signal type, 
frequency, etc.

One common configuration is a single antenna array 
mounted along the fuselage of the aircraft that receives 
signals from both the left and right sides. In this case, 
reasonable values for the antenna array mounting angles 
are (, , ) = (0, 0, 0). Another configuration is two 
arrays mounted on the aircraft such that one receives 
signals emitted from targets on the left side of the air-

craft and the other receives from targets on the right. 
In this case, reasonable values for the array mounting 
angles are (, , ) = (–90°, 0, 0) for the left array and 
(, , ) = (90°, 0, 0) for the right array.

DF measurement errors are produced by a combina-
tion of factors such as antenna array configuration, signal 
frequency, noise levels, interactions between the signal 
and aircraft body, calibration data errors, and error in 
the approximation of the conical antenna response by a 
planar angle. For large linear arrays and measurements 
made within the primary FOV, an azimuth measurement 
error sigma in the range of 0.1°    1.0° is reasonable 
for a wide range of signal types and frequencies. Out-
side of the primary FOV, where AOA is a poor approxi-
mation of azimuth, the sigma values can be an order of 
magnitude higher.

SIMULATION EXAMPLE
The mathematical model developed in this article 

was simulated in MATLAB for a single surveillance 
aircraft attempting to locate a stationary ground target 
during a standoff mission. The parameter values used in 
the simulation are given in Table 1.

The true azimuth values are between –30° and 30°, 
which is a reasonable primary FOV for a linear array 
directed toward the right side of the aircraft. The azimuth 

Table 1.  Simulation parameter values

Parameter Units Value

Initial range from aircraft to target Nautical miles 100
Aircraft altitude Feet 30,000
Aircraft ground speed Knots 400
Mounting angle  Degrees 90
Mounting angle  Degrees 0
Mounting angle  Degrees 0
Number of azimuth measurements — 10
Time between measurements Seconds 90
Measurement error sigma Degrees 0.1
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Figure 6.  Surveillance geometry and lines of bearing.
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Figure 7.  Final location estimate and 95% error ellipse.
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measurements were generated by adding to each true azi-
muth value a Gaussian random error having a mean of 0 
and a sigma of 0.1°. The isogram associated with each azi-
muth measurement is a “line of bearing.” The surveillance 
geometry and these lines are shown in Fig. 6. Note that 
the simulation was performed in WGS84 coordinates, as 
developed in this article, but the results are displayed in a 
local tangent plane for the sake of visualization.

The geo-location algorithm used in the simulation 
was ILS. The initial target location estimate was com-
puted using the first two azimuth measurements and 
Brown’s algorithm,1 as described in the Geo-Location 
section. The final results are shown in Fig. 7.

A metric commonly used to quantify geo-location 
performance is elliptical error probable, which is the 
length of the semimajor axis of the error ellipse. This 
quantity is plotted in Fig. 8 to illustrate the improvement 
in geo-location performance as a function of number of 
measurements. The final value is approximately 820 m 
at the end of a 13.5-min flight.

CONCLUSION
The focus of this article was to present the mathe-

matical model of DF angles needed for geo-location algo-
rithm development. We defined DF angles and discussed 
the advantages of their use for geo-location when com-
pared with other measurement types, both active and 
passive. The primary advantage of using DF angles is 
that it allows a single aircraft to passively detect, identify, 
and locate a ground signal source. A simulation example 
was used to quantify the geo-location performance that 
can be expected when an aircraft is using DF angles for 
geo-location during a standoff surveillance mission.
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Figure 8.  95% elliptical error probable.

Michael T. Grabbe joined APL in 2011 as a member of the Weapon and Targeting Systems Group within the Force Pro-
jection Department. His work is primarily in the areas of ground emitter geo-location, target tracking, signal processing, 
and missile navigation. Before joining APL, he worked in these areas at L-3 Communications, Raytheon Missile Systems, 
and Texas Instruments. Brandon M. Hamschin joined APL in 2011 as a member of the Weapon and Targeting Systems 
Group within the Force Projection Department. While with APL his work has been primarily in the areas of geo-location 
and radar signal processing. Before joining APL, he was a graduate student at the University of Pittsburgh conducting 
research in the application of joint time-frequency signal processing methods to detection, classification, and signal 
design for sonar applications related to buried mines in littoral environments. Previous work experience includes time at 
the University of Washington Applied Physics Lab and L-3 Communications, where he developed algorithms for target 
geo-location, target tracking, and data association. For further information on the work reported here, contact Michael 
Grabbe. His e-mail address is michael.grabbe@jhuapl.edu.

The Authors

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

mailto:michael.grabbe@jhuapl.edu
www.jhuapl.edu/techdigest

	Geo-Location Using Direction Finding Angles
	Michael T. Grabbe and Brandon M. Hamschin
	INTRODUCTION
	LINEAR ANTENNA ARRAYS AND DF ANGLES
	COORDINATE FRAMES
	ROTATION MATRICES
	MEASUREMENT MODEL
	GEO-LOCATION
	MEASUREMENT MATRIX
	ESTIMATION ERROR COVARIANCE MATRIX
	PARAMETER VALUES
	SIMULATION EXAMPLE
	CONCLUSION
	REFERENCES
	The Authors

	Figures and Tables
	Figure 1. 3-D view of cone of possible emitter locations.
	Figure 2. Front view of cone of possible emitter locations.
	Figure 3. Azimuth versus conical angle for the entire FOV.
	Figure 4. Azimuth versus conical angle for the primary FOV.
	Figure 5. AOA and DOA.
	Figure 6. Surveillance geometry and lines of bearing.
	Figure 7. Final location estimate and 95% error ellipse.
	Figure 8. 95% elliptical error probable.
	Table 1. Simulation parameter values




