
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010) 263

INTRODUCTION
Operationally Responsive Space (ORS) encompasses

a vision of a new class of satellites that are rapidly devel-
oped and directly tasked by the warfighter in theater.

The ORS Office, tasked with making this vision a real-
ity, has developed a plan to rapidly develop and deploy
space assets. However, the rapid development and

evelopment of flight software for Operationally Respon-
sive Space (ORS) is not simply the rapid development and

testing of software in time schedules as short as 1 week. By
examining the requirements from the original vision for tactical satellites and the plan
for ORS, one can glean a set of software requirements that describes the needs of ORS
in a more expansive manner. The ORS software solution needs to encompass capa-
bilities that enable modification to meet future needs, to support rapid assembly of a
system from existing component parts, and to provide the flexibility to add new capa-
bilities to a system without compromising the existing development and testing. This
software solution must also cover the entire life cycle from requirements development,
to the time the spacecraft goes operational, and finally to the maintenance phase in
the event that an on-orbit asset must be modified to meet a new need. A better under-
standing of the requirements for ORS software has led APL to define a new concept
architecture made up of five key properties, which are described in this article. APL is
pursuing the development of this architecture across multiple programs. This pursuit is
a practical attempt to achieve our new architecture by coordinating multiple achievable
steps en route to the ultimate goal of software enabling the entire ORS vision.

Flight Software for the Entire Operationally
Responsive Space Vision

George J. Cancro, Edward J. Birrane III, Mark W. Reid,
J. Douglas Reid, Kevin G. Balon, and Brian A. Bauer

G. J. CANCRO et al.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010)264

deployment of spacecraft for ORS is hampered by the
cost and time associated with development, testing, and
integration of software.1

Efforts at the Air Force Research Laboratory (AFRL)
to develop software to support ORS timescales have
focused on self-realization of hardware components by
the software,2,3 much like the current PC model when
you plug in a USB device. While the AFRL effort enables
hardware “plug-and-play,” we believe that the software
application associated with this effort will continue to
increase in size, much like the growth of the number
of .DLL files that the PC needs to enable plug-and-play.
The end result is a large complex piece of software that
may overflow space-qualified processor capabilities, will
be very difficult to test, and may contain the potential
for many different adverse reactions among different
aspects of the code.

Multiple efforts evoking the principles of modularity
and standardization have been proposed and developed
to combat the issues with hardware development, test-
ing, and integration.4 Concepts of plug-and-play archi-
tectures suggest rapid development through the assembly
of existing parts. The question can be asked: Is there an
analog for software development?

This article first returns to the original ORS vision
and plan for rapidly developed spacecraft and attempts
to develop requirements for an ORS software architec-
ture. An analysis is performed by looking critically at
the software requirements that are needed to support the
desired ORS tiers. Next, a new architecture is outlined
in terms of the features needed to meet these require-
ments. Finally, this article demonstrates how APL is
moving toward the ultimate goal of software designed
for ORS. By moving out in multiple arenas and with
different customers, APL is slowly building and gain-
ing confidence in all elements of the final architecture
needed for ORS before bringing it all together. Each step
brings a new usable capability and is closer to enabling
the elements outlined in the ORS plan.

ORS SOFTWARE REQUIREMENTS AND ANALYSIS
By examining statements and documents from

the ORS community, one can glean a set of software
requirements that provide a basis for the development of
software for ORS.

Admiral Cebrowski, in his statement to the Senate
Armed Services Committee,5 stated: “The time func-
tion for responsiveness is then driven by adaptive con-
tingency planning cycles rather than predictive futures
or scripted acquisition periods.” Cebrowski envisioned a
new class of rapidly developed satellites directly tasked
by the warfighter in theater. The Plan for Operationally
Responsive Space6 divides these planning cycles into
three tiers. Tier-1 uses or modifies existing assets to
deliver capabilities in minutes to hours. Tier-2 uses field-

ready, or already produced, assets to deliver capabilities
in days to weeks. Tier-3 develops new capabilities to be
delivered for use in months to 1 year.

Requirements from Tiers-1 and -2 suggest that future
systems will have a capability to be modified. The ORS
plan states: “Tier-1 solutions will not typically involve
the design, engineering, or fabrication of new material
items.” Therefore, to produce new capabilities, the con-
cept of operations of a spacecraft has to change. This
must be accounted for either in operations or in soft-
ware and leads to the following requirements for rapid
development.

ORS Software Requirement 1 (OSR-1)
Flight software systems shall be able to be rapidly
modified at any time after the deployment to field-
ready or flight status.

The ORS plan goes on to describe “mission or system
utilization analyses may be needed” such that any modi-
fication must be accompanied by rapid analyses to deter-
mine the modifications that are required for the existing
capability to meet the new need and whether these mod-
ifications result in a safe and workable capability. This
is due to the fact that changing any aspect of the asset
risks the asset itself as a result of the faults that may be
induced indirectly by the change.

ORS Software Requirement 2 (OSR-2)
A software system’s capability to be modified shall
be accompanied by the ability to certify that the
change is providing the desired capability and not
endangering the existing asset.

The ORS plan describes Tier-2 activities as “achiev-
ing responsive . . . capabilities through rapid assembly
integration, testing, and deployment of a small, low cost
satellite.” Given that the time frame for Tier-2 capabili-
ties is days to weeks, there is no opportunity for develop-
ment or testing of any software. As the ORS plan states,
“much of the ORS work will be anticipatory in nature.”
Therefore, all software development and testing must be
accomplished before call-up.

ORS Software Requirement 3 (OSR-3)
Software systems shall enable complete development
and testing before integration into a target.

FLIGHT SOFTWARE FOR OPERATIONALLY RESPONSIVE SPACE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010) 265

If software can be developed and tested before a proj-
ect starts, software development is then shifted from
coding to integration of preexisting parts, and therefore
the software must support rapid development in the
form of easy and rapid integration.

ORS Software Requirement 4 (OSR-4)
Software systems shall enable construction through
the rapid integration of preexisting software elements
without negating any prior testing.

Requirements from Tier-3 suggest that new capabili-
ties must be delivered in less than 1 year. To deliver a
spacecraft in 1 year, the software development process
must be completed in 2–3 months to allow for system-
level design and testing. The duration of the 2- to
3-month development schedule relegates new develop-
ment to potentially only one or two new functions. The
2- to 3-month schedule, however, does not leave any time
to modify and retest the existing code to accommodate
these new functions. In a standard spacecraft software
system, modifying the existing code would force a series
of regression tests of the entire software system, which is
extremely time consuming. In an ORS software system,
the software must be architected such that the addition
of new functionality does not force the modification or
retest of existing code to be reused.

ORS Software Requirement 5 (OSR-5)
Software systems shall enable the addition of
new software applications without modification
of existing software or negation of existing
software testing.

Rapid development for ORS in the minds of
Cebrowski5 and Wegner7 extends past traditional soft-
ware development and even past the launch to the point
at which the checkout phase completes and the space-
craft operational capability is brought online. Cebrowski
states that ORS spacecraft must “reach the required
orbit without months of state-of-health checks . . . by
large squadrons of satellite controllers.” Therefore, the
software system must be sufficiently autonomous to assist
the rapid drive to operational status.

ORS Software Requirement 6 (OSR-6)
Software systems shall be sufficiently autonomous to
support rapid on-orbit checkout.

CONCEPT ARCHITECTURE
Considering the requirements described in the previ-

ous section, a conceptual software architecture for ORS
can be constructed consisting of the following five key
properties:

1. Modular components
2. Test-once testing
3. Autonomous checkout and calibration
4. Ability to modify both before and after launch
5. Fault detection and self-healing

These properties are described in detail in the following
sections.

Modular Components
The term “modular components” defines a principle

that software is developed, stored, tested, and deployed
at the functional level rather than at an overall appli-
cation level. Whereas traditional development of space-
craft flight software follows the model of custom-built,
tightly coupled software compiled into a monolithic
architecture, the modular-components model advocates
the development of flight software into smaller modules
at the functional level. By reducing the size of software
components and using a modular approach, an orga-
nization can maximize the use of common parts and
reduce the complexity for the rapid-response workforce
to implement a wide variety of missions.

Developing components at the functional level
enables a new development process, shown in Fig. 1, in
which requirements, the source code, the executable
code, and test cases are stored together for each module.
The formation of a new project begins with a require-
ments gap analysis to determine which modules meet
project requirements and which requirements may result
in new modules. The process ends with a requirements
document formed by the summation of module require-
ments, a test suite formed by the summation of test cases,
and a software system formed by the list of executable
code files from the modules selected. This new process
meets the development portions of OSR-3, OSR-4,
and OSR-5.

The modular-components model offers a contrast-
ing strategy to the AFRL Software Data Model con-
cept2 of self-realization discussed in the introduction to
this article. The modular-components model advocates
the development of a software application warehouse,
as shown in Fig. 2, filled with already tested software
modules, very similar to the hardware plug-and-play
approach. According to the modular-components
model, software is selected from a warehouse on the
basis of individual project needs. Applications can also
be associated with specific pieces of hardware. Either
way, only the necessary applications for each project are

G. J. CANCRO et al.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010)266

to meet the testing portions of OSR-4 and OSR-5, the
integration of modular components must not invalidate
the testing of the components or other existing mod-
ules. Component tests are invalidated if the component
under test is changed to enable the integration or if the
component test environment used to validate the com-
ponent is not the same environment as the integration
environment. In addition, to comply with OSR-3, the
complete functional testing of a module must be able to
be performed before integration.

To accomplish these goals, APL advocates that each
application be tested and executed in isolation (i.e., its
own “little world” with fixed boundaries in processor
time and memory and a single interface to other appli-
cations that does not require assumptions about who
or what else exists in the system). Figure 3 shows the
test and integration environment using the test-once
process. The test environment includes a software bus,
the application in its memory partition, and another test
application in another memory partition providing data
on the bus to stimulate the application on the target
processor. The remainder of the memory space is empty.
The application being tested runs in its own time slice,
as does the test application, but the remainder of the
processor time map is idle. As long as the memory and
time allocations are the same and the same software bus
communication interface is used, the test environment
and the deployed environment are the same; therefore,
the test-once testing is sufficient to establish the correct-
ness of the module for all future deployments.

Autonomous Built-in Checkout and Calibration
Autonomous built-in checkout and calibration defines

a capability to rapidly prepare in-flight spacecraft for

Application unit
acceptance test

procedures

Software application: Independent,
separately compilable blocks of
software. May include multiple
tasks. Access to other application
data only via messaging
scheme over software bus.

Application unit
object (HW/OS/
tools tagged)

Application
unit design

documentation

Application
unit
code

Application
unit

requirements

Analyze
project

requirements

Select existing
application

units

De�ne new
application unit
requirements

Acceptance
test new

application unit

Create new
library application

unit entry

Software
system
stress
testDe�ne new

application unit
Code new

application unit

Load separate
application unit

objects, integrate
(target new units)

De�ne
project-speci�c
software system

stress test

Software system stress test:
Overall test that exercises
a nominal case as well as

extreme and/or anomalous
conditions that cause maximum

CPU and memory usage

Con�gured Software Application Library

Initial project
requirements

Final project
software

requirements

Figure 1. Modular-component development process. CPU, central processing unit; HW, hardware; OS, operating system.

Figure 2. Software application warehouse.

Design and
develop

Software
application 1

Select and
deploy stored
applications,
forming a
software system
that can be
executed

Store applications
for later use

Design, develop, and
test individual applications

Test

Execute

DeployDeploy

Software System

Software
application 1

Software
application 3

Software
application 2

Application
warehouse

integrated together, resulting in a more compact system
with improved testing capabilities.

Test-Once Testing
Test-once testing advocates the development of an

isolation infrastructure that enables testing and system
integration without invalidating any new or existing
software component. With traditional highly coupled
software, making a change to any heritage code usually
results in a repeat of the entire testing program. However,

FLIGHT SOFTWARE FOR OPERATIONALLY RESPONSIVE SPACE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010) 267

Application
warehouse Software Bus

Real-time processes

Major frame timelineMajor frame timeline

Time required to
run for application 1

Flight Environment 1Test Environment

Software
application 1

Software
application 3

Software
application 2

Software Bus

Major frame timeline

Time required to
run for application 1

Application 1

Real-time
processes

Software
application 1

Real-time processes

Software
application 1

Tester
application

Software Bus

Figure 3. Testing and integration environment.

operations. The principles of ORS are not complete at
launch. To support combat commanders and warfighters
on the ground, the ORS concept must extend through-
out all phases until the spacecraft goes operational in
the desired theater. To rapidly go operational, ORS sat-
ellites require the capabilities to perform autonomous
checkout of the bus and the payloads and to perform
calibration of payloads.

These capabilities are essential for meeting OSR-6 for
both ORS Tier-2 and Tier-3 missions because all space-
craft and sensors must be analyzed to ensure that the
required spacecraft performance survived launch.

To achieve this, APL advocates a fully automated
checkout and calibration of payloads through a built-
in test (BIT) feature. This feature would be a separate
software module existing alongside the standard flight
software functions (i.e., built-in) on the flight proces-
sor. The BIT module would exist on the flight processor
throughout the development, testing, and postlaunch
phases, providing a single method of performing check-
out for the instrument or spacecraft function through-
out the entire life cycle. In this manner, the detail of
the checkout or calibration matures with the develop-
ment and also increases the speed of checkout on the
ground and in flight. In addition, we advocate the devel-
opment of standards for the BIT to enable instrument
developers to develop their own BIT modules. This
would allow checkout procedures to be paired with
instruments, such that the integration of an instrument
into an ORS spacecraft bus includes integration of the
instrument into the bus and integration of their BIT
into the flight software.

Ability to Modify Both Before and After Launch
Modification of onboard executing software usu-

ally requires patching activities or the long process of
replacing an entire software system on board and then
rebooting the processor for the change to take effect.
Both processes are time consuming and dangerous to

the existing asset. Therefore, currently most late or
postlaunch changes are implemented by increasing the
burden or requirements on operations staff. Increasing
this burden results in an increase in the size of opera-
tions teams, which is contrary to the ORS plan.

Because modifications range in size, we advocate
development of a capability that enables modification at
two levels to comply with the postlaunch modification
OSR-1. Level 1 modification would occur at a functional
level through independent module loading, and level 2
modification would occur within the function through
the use of engine-based designs.

Functional-Level Modifications
A functional-level modification would consist of the

addition or replacement of a software module. This is
viewed as an extension of the modular-components con-
cept discussed previously in this article except that the
new module is added to the existing code after launch.

Engine-Based Designs
In some aspects, modifications may need to be made

at a finer level than at the functional-level module.
However, making just basic modifications to an appli-
cation will invalidate the testing and therefore create a
new application. In the event that an application will be
known to be modified in future missions, we advocate
developing that application as an engine-based design.

An engine-based design is one in which the applica-
tion acts as a generic interpreter for a data set rather than
requiring a developer to hard-code the entire software
module (Fig. 4). The data set (or memory object) is an
expansion of programming parameters. The difference is
that the memory object can be modified without having
to modify or recompile the module. In this manner, the
module does not change and does not invalidate the
testing done before integration. The memory object
contains the information to enable the interpreter to act
correctly in a specific mission. The combination of the

G. J. CANCRO et al.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010)268

Subsystem
engineer

Memory
object

Interpreter

Spacecraft
System

engineer

Design
representation

Graphical depiction
of how the

spacecraft will act
Mission

operations

Fault
protection

Equivalent

Figure 4. Engine-based design with generic interpreter and data set (memory object).

memory object and the generic interpreter produces the
mission-specific functionality.

Analysis must still be performed to determine whether
the change has achieved the desired benefit and to
confirm that it does not endanger the system as stated
in OSR-2. But with engine-based designs, the analysis
is performed on the memory object; the benefit is that
the analysis of the memory object may be trivial or can
be performed offline and parallel to the integration of
applications into the final system. In addition, other test
techniques, including different automated methods such
as model checking, which drastically reduces the time to
check the memory object versus the requirements, can be
used on the memory objects that could not be employed
on the application code.

Fault Detection and Self-Healing
Fault detection and self-healing defines an ability to

restart individual software tasks or functions, in the event
that a task exception or fault occurs, without affecting
the other tasks or rebooting the processor. One method
to achieve the ability to modify existing assets without
endangering the asset, as stated in OSR-2, is to ensure
that a fault occurring in the new software module does not
propagate to other existing software modules. In contrast,
in traditional systems a fault that occurs in even a low-
priority task compromises all software on that processor,
and all activity on the central processing unit may need
to be restarted through a cold or warm reboot. If this
central processing unit were the active one on board,
the reset could result in the spacecraft stopping opera-
tions and retreating to a “safe” mode, which may require
weeks and a large ground staff to recover. The principle
of self-healing enables the fault detection and response
to faults with individual modules to be localized to that
module only. The remaining modules continue as the
faulty application is stopped or restarted by reloading
the application from persistent storage to random-access
memory. The end result is that new software modules
can be fault isolated from existing modules, enabling the
ability to modify or add to the software of a spacecraft

without risking the existing asset to
meet ORS Tier-1 objectives.

ACHIEVING ORS SOFTWARE
For APL, enabling a software

architecture that enables rapid
development for ORS is not only a
requirement or conceptual exercise,
but also a practical drive to gain the
capabilities described in this article.
We are moving toward achieving
these principles on multiple proj-
ects. The following sections detail a

sample of projects advocating one or more of the archi-
tecture principles described above.

Radiation Belt Storm Probes Software Bus
APL software engineers on the NASA Radiation

Belt Storm Probes (RBSP) program8 are making prog-
ress in the area of modular components. Key to the
achievement of the modular components concept is the
ability to add and remove software components without
having to modify components that already exist. The
direct fallout from this statement forces communica-
tion between software modules to a singular interface
that cannot change based on the number of modules
in the system. RBSP will use NASA Goddard’s Core
Flight Executive9 software bus architecture to imple-
ment a single common interface for all software mod-
ules. Figure 5 shows the RBSP modular-component
software bus architecture. By implementing a bus archi-
tecture, RBSP takes the first step toward the modular-
component addition necessary for rapid development
with ORS software.

RBSP is also advocating a modular-component
approach in development of software. Requirements and
code will be separated by function, with each function
being a separate entity on the software bus. This rep-
resents a first step in the software-warehouse concept
outlined previously. Future missions that use the same
software bus architecture should be able to select RBSP
software components and get immediate requirements
and code reuse.

Naval Research Laboratory–ORS Modular, Self-Healing
Patterns

APL has also been working with the Naval
Research Laboratory to develop software technolo-
gies for ORS. The architectural concept developed by
this effort describes a “buffet-style” software approach
to software development whereby missions configure
flight software through the assembly of existing soft-
ware modules followed by integration testing. This

FLIGHT SOFTWARE FOR OPERATIONALLY RESPONSIVE SPACE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010) 269

approach significantly reduces software development
schedules and budgets once a set of software building
blocks has been created. This architectural concept was
broken down into seven software-development patterns
that eventually matured into the architecture properties
discussed in the previous sections: modular components,
fault detection and self-healing, and ability to be modifi-
able before and after launch.

Software in the Loop
APL, using independent research and development

funding, has been working on a concept called SWIL
(software-in-the-loop) testing. The concept advocates
colocating test software with flight software in the
flight processor, as shown in Fig. 6. The benefits of this
include reducing the cost of test infrastructure (i.e.,
SWIL can replace some aspects of hardware-in-the-
loop testing) and eliminating bandwidth issues associ-
ated with testing high-speed spacecraft guidance and
control algorithms.

SWIL also made progress in the area of test-once
testing and autonomous BIT. To achieve isolation

Scheduler

Application
scheduler

Autonomy
rules

Time-tagged
commands

File
de�nitions

Downlink
de�nitions

Monitor
de�nitions

Instrument time-
tagged commands

Data collection
buffer

Autonomy

Macros

Spacecraft
interfaces

G&C
interfaces

SSR
playback

Memory
scrub

SSR record Telemetry
output

Memory
manager

Instrument
manager

Command
manager

Command
ingest

Time tag
Housekeeping

telemetry
monitor

cFE services, cFE messaging, and APL libraries
VxWorks operating system layer

Processor Hardware
Compact PCI interface

Ethernet interface

Developers and testers

Commands

Temporary
(development)

Te
le

m
et

ry
 (f

ra
m

es
)

Co
m

m
an

ds
 (c

od
e

bl
oc

ks
)

W
or

kb
en

ch
 In

te
rfa

ce

Telemetry

Spacecraft interface card
SSR card
(16 Gbit)

accessed by
file system

Front-end
Windows

PC

L3 ground
system mini

mission
operations

center

Developer
Linux

workstation/
workbench

tools

Command
code

blocks

Spacecraft
telemetry

(TRIOs, VRIO,
separation

switches, etc.)

Spacecraft
commands
(PDU, PSE,

etc.)

Instrument
sun

sensor
commands

Instrument
sun

sensor
telemetry

Telemetry
frames

Test bed
(transceiver
emulation)

Test bed
(spacecraft and instrument emulation)

Figure 5. RBSP modular-component software bus architecture. cFe, NASA Goddard’s Core Flight Executive; PDU, power distribution unit;
PSE, power system electronics; SSR, solid-state recorder; TRIOs, temperature remote input output; VRIO, voltage remote input output.

between the tester and the application under test,
SWIL used a memory partition, called a real-time pro-
cess, in the real-time operating system VxWorks 6.3.
Memory partitioning is the first step in achieving iso-
lation between modules described above in test-once
testing. In addition, the SWIL concept was a trailblazer
for testing the environment outlined above, in which
the test application and the application under test can
exist in a single target processor without corrupting
the test.

Finally, the SWIL concept forms the basis for our
development of autonomous BIT. APL is currently
investigating how to extend this concept to allow the
test software to coexist with the flight software all the
way from development through launch and into flight.
The in-flight SWIL could be used to perform in-flight
checkout and/or in-flight calibration of instruments.
Having this feature from development into flight pro-
vides a consistent test capability rather than having to
add in-flight checkout or calibration late in the develop-
ment. In this manner, the ground checkout or calibra-
tion is the flight checkout or calibration.

G. J. CANCRO et al.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010)270

SWIL
command and

telemetry

SWIL
launcher
(kernel)

SIM
(RTP)

RT2BC/
BC2RT

1 PPS
50 Hz

1 Hz
50-Hz Sem

Test bed

Flight software

Telemetry

Te
le

m
et

ry

Co
m

m
an

d
Q

ue
ue

Queue

Queue
Telemetry

Command Command

100-Hz synchronization

G&C
(RTP)

1553 bus
emulation

(RTP)

Interface board
emulation

(RTP)

C&DH
(RTP)

Bus SM

Bus
control

FSW SM

Figure 6. SWIL testing where command and data handling (C&DH) software and guidance and control (G&C) software can be tested
against hardware emulations and physics-based simulations all within the flight processor. FSW, flight software; PPS, pulse per second;
RTP, real-time process; Sem, semaphore; SIM, simulation (dynamics, environment); SM, shared memory.

SmallSat Software Isolation Architecture
The NASA Small Explorers Office has initiated a

study with APL with the purpose of introducing inno-
vative approaches to lowering the cost and improving
the performance of 50- to 200-kg spacecraft. The Small-
Sat study leveraged work done on the RBSP, SWIL,
and Naval Research Laboratory initiatives to advance
multiple software concepts, including test-once test-
ing, fault isolation and self-healing, and function-level
postlaunch modification. Engineers working on this
study have demonstrated the combination of memory
partitioning with software bus architectures enabling
isolated modules to talk to each other without adversely
affecting each other. The SmallSat study also demon-
strated self-healing, the ability to automatically reboot
and restart a single offending application after an error
without affecting the rest of the system, through an
experiment with a four-module system in which one of
four threw an exception every minute for 12 hours. The
demonstration proved that the offending module could
fail repeatedly without disturbing the other three func-
tions and without growing the memory required for the
entire system. Finally, the SmallSat study used the abil-
ity to self-heal to load a new application over an existing
one, demonstrating a method to achieve function-level

postlaunch modification without affecting existing exe-
cuting applications.

ExecSpec Engine-Based Autonomy
APL has been working on a concept called ExecSpec,

which is an engine-based solution to onboard autonomy.
In this concept, described in another article by Cancro
in this issue, the memory object is a diagram describ-
ing how the system should react to faults or operational
situations on board. The interpreter is a generic piece of
flight code that interprets the diagram on the basis of
onboard telemetry and enables a user to load or remove
diagrams by command before or after launch. To test
memory objects, ExecSpec uses model checking, a test
technique that automatically and exhaustively veri-
fies whether the diagram of spacecraft fault responses
achieves the written requirements on the system. With
model checking, ExecSpec can verify most requirements
at a rate of one requirement per second.

ExecSpec provides an example showing that the
properties of engine-based design can be used to meet
objectives of OSR-1 and OSR-2. APL believes that the
engine-based example can be also extended to multiple
other applications, including the following:

FLIGHT SOFTWARE FOR OPERATIONALLY RESPONSIVE SPACE

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010) 271

•	 Software bus controllers (e.g., a generic 1553 appli-
cation with a memory object describing all of the
bus transactions)

•	 Downlink data management (e.g., a generic down-
link application with a memory object describing
rates and quantities of packets to downlink)

•	 Housekeeping (e.g., generic application that builds
housekeeping packets based on memory objects
that define the data contents and formats for each
packet)

•	 Observation scheduling (e.g., a generic applica-
tion that executes time-based schedules based on
memory objects that describe observations with
types, start times, and stop times)

CONCLUSIONS
APL has returned to the original founding docu-

ments of ORS in an effort to understand the real needs
of rapid development expressed by the ORS Office. A
set of requirements has been gleaned from these docu-
ments, and these requirements, in turn, have been used
to develop a new software architecture that can achieve
the vision expressed in all three tiers of ORS.

APL is pursuing this software architecture across
multiple programs. This pursuit is a practical attempt to
achieve our rapid development architecture by coordi-

nating multiple achievable steps toward our goal of rapid
software development. APL will continue to move for-
ward in this area and hopes that ORS will benefit from
the concepts that we have already achieved as well as
from the completed architecture in the near future.

REFERENCES

 1Center, K. Murphy, G., and Strunce, R., “Software as a Tall Poll in
Achieving Rapid Configuration and Integration,” in Proc. 3rd Respon-
sive Space Conf., Los Angeles, CA, paper RS3-2005-4003 (2005).

 2Sundberg, K., Cannon, S., Hospodarsky, and Fronterhouse, D., “The
Satellite Data Model,” in Proc. International Conf. on Embedded Sys-
tems and Applications (ESA’06), Las Vegas, NV (2006).

 3Cannon, S. R., “Responsive Space Plug & Play with the Satellite Data
Model,” in Proc. AIAA InfoTech@Aerospace 2007, Rohnert Park, CA,
paper AIAA-2007-2924 (2007).

 4Lyke, J., “Space-Plug-and-Play Avionics (SPA): A Three-Year Prog-
ress Report,” in Proc. AIAA InfoTech@Aerospace 2007, Rohnert Park,
CA, paper AIAA-2007-2928 (2007).

 5Cebrowski, A., “Statement of the Director of Force Transformation,”
Statement Before the Subcommittee on Strategic Forces, Armed Ser-
vices Committee, United States Senate, 25 Mar 2007.

 6U.S. Department of Defense, Plan for Operationally Responsive Space:
A Report to Congressional Defense Committees, Department of Defense
Report (17 Apr 2007).

 7Wegner, P. M., and Kiziah, R. R. “Pulling the Pieces Together at
AFRL,” in Proc. 4th Responsive Space Conf., Los Angeles, CA, paper
RS4-2006-4002 (2006).

 8RBSP website, http://rbsp.jhuapl.edu (accessed 5 May 2010).
 9Wilmot, J., “Implications of Responsive Space on the Flight Software

Architecture,” in Proc. 4th Responsive Space Conf., Los Angeles, CA,
paper RS4-2006-6003 (2006).

http://rbsp.jhuapl.edu

G. J. CANCRO et al.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010)272

The Authors
George J. Cancro is the Assistant Group Supervisor of the Embedded Applications Group in the Space Department. He holds a B.S. in engi-
neering science from Penn State University and an M.S. in mechanical engineering–astronautics from the George Washington University.
Before joining APL in 2002, he worked at the NASA Jet Propulsion Laboratory and NASA Langley Research Center on projects such as
Mars Global Surveyor Aerobraking and the Dawn Mission to Vesta and Ceres. Since joining APL, he has worked as a systems engineer on
the MESSENGER, New Horizons, and STEREO missions; a project manager for the NASA SmallSat project; and a principal investigator
of two research projects in the areas of autonomy and telemetry visualization. He is currently a principal investigator of a research project
investigating spacecraft tactical commanding and an advisor to the NASA Constellation program in the area of fault detection, isolation,
and recovery. His areas of interest include modular software, hardware/software architectures, fault protection, and spacecraft autonomy.
Edward J. Birrane III is a Section Supervisor in the Embedded Applications Group in the Space Department. He holds a B.S. in computer
science from Loyola College in Maryland (now Loyola University Maryland) and an M.S. in computer science from The Johns Hopkins Uni-
versity (JHU). Before joining APL in 2003, he worked in both the communications satellite and telecommunications sectors. Since joining
APL, he has worked as a software engineer and software lead on New Horizons, the Revolutionizing Prosthetics 2009 program, the SMC/SY
Integrated Space Situational Awareness (ISSA) program, and NASA efforts to define and implement disruption-tolerant space networks.
He is currently pursuing a Ph.D. at the University of Maryland, Baltimore County, in the area of computer networking. His areas of interest
include disruption-tolerant networks, real-time operating systems, software reuse and maintenance, and onboard data processing systems.
Mark W. Reid is a member of the Senior Professional Staff of the Embedded Applications Group in the Space Department. He holds a B.A.
in mathematics with a minor in physics from Western Kentucky University and an M.S. in computer science from JHU. Before joining APL
in 2005, he worked at the NASA Goddard Space Flight Center and Northrop Grumman Electronic Systems, where he developed flight
software for various NASA missions. His experience includes guidance and control, command and data handling, instrument control, power

subsystem, and autonomy subsystem software. He has received numerous NASA achieve-
ment awards, and his work in software development has been presented at both American
Institute of Aeronautics and Astronautics (AIAA) and Institute of Electrical and Electron-
ics Engineers (IEEE) conferences. Mark joined APL in support of the New Horizons mission
and is currently the flight software lead engineer on the Radiation Belt Storm Probes mis-
sion. He is also a member of the JHU faculty in the Engineering for Professionals Program
of the Whiting School of Engineering, where he teaches software engineering management.
J. Douglas Reid is a member of the Senior Professional Staff in the Embedded Applications
Group of APL’s Space Department, where he develops and tests guidance and control flight
software as well as dynamic and environmental simulation software for missions such as
TIMED, CONTOUR, MESSENGER, STEREO, and New Horizons. His interests include
astronomy, celestial navigation, arboriculture, entomology, sedimentary geology, and 18th-
century history. He received his B.Sc. in applied science from the Royal Military College,
Canada, and a master’s degree in applied physics from JHU. Kevin G. Balon is a member of
the Space Department’s Senior Professional Staff specializing in embedded flight software
engineering. He holds a B.S. in electrical engineering (magna cum laude) from the Univer-
sity of Maryland, College Park, and has pursued additional graduate courses there, complet-
ing his coursework toward an M.S.E.E. Before joining APL, as an aircraft avionics flight test
engineer he supported development and flight certification of military, commercial, and
corporate avionics, including the Enhanced Vision System currently used on Gulfstream
aircraft. At APL, he developed C&DH flight software for the MESSENGER mission and is
presently the C&DH flight software lead for STEREO. He is currently a principal investiga-
tor considering ARINC-653 for spacecraft use. Brian A. Bauer is a space systems engineer
with the Space Systems Engineering Group. He earned a B.S. and an M.S. in aerospace
engineering from Washington University in St. Louis. His area of expertise is in spacecraft
fault protection and autonomy. For further information on the work reported here, contact
George Cancro. His e-mail address is george.cancro@jhuapl.edu.

Edward J. Birrane IIIGeorge J. Cancro

Mark W. Reid J. Douglas Reid

Brian A. BauerKevin G. Balon

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

