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INTRODUCTION
Operationally Responsive Space (ORS) encompasses 

a vision of a new class of satellites that are rapidly devel-
oped and directly tasked by the warfighter in theater.  

The ORS Office, tasked with making this vision a real-
ity, has developed a plan to rapidly develop and deploy 
space assets. However, the rapid development and 

evelopment of flight software for Operationally Respon-
sive Space (ORS) is not simply the rapid development and 

testing of software in time schedules as short as 1 week. By 
examining the requirements from the original vision for tactical satellites and the plan 
for ORS, one can glean a set of software requirements that describes the needs of ORS 
in a more expansive manner. The ORS software solution needs to encompass capa-
bilities that enable modification to meet future needs, to support rapid assembly of a 
system from existing component parts, and to provide the flexibility to add new capa-
bilities to a system without compromising the existing development and testing. This 
software solution must also cover the entire life cycle from requirements development, 
to the time the spacecraft goes operational, and finally to the maintenance phase in 
the event that an on-orbit asset must be modified to meet a new need. A better under-
standing of the requirements for ORS software has led APL to define a new concept 
architecture made up of five key properties, which are described in this article. APL is 
pursuing the development of this architecture across multiple programs. This pursuit is 
a practical attempt to achieve our new architecture by coordinating multiple achievable 
steps en route to the ultimate goal of software enabling the entire ORS vision.
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deployment of spacecraft for ORS is hampered by the 
cost and time associated with development, testing, and 
integration of software.1

Efforts at the Air Force Research Laboratory (AFRL) 
to develop software to support ORS timescales have 
focused on self-realization of hardware components by 
the software,2,3 much like the current PC model when 
you plug in a USB device. While the AFRL effort enables 
hardware “plug-and-play,” we believe that the software 
application associated with this effort will continue to 
increase in size, much like the growth of the number 
of .DLL files that the PC needs to enable plug-and-play. 
The end result is a large complex piece of software that 
may overflow space-qualified processor capabilities, will 
be very difficult to test, and may contain the potential 
for many different adverse reactions among different 
aspects of the code.

Multiple efforts evoking the principles of modularity 
and standardization have been proposed and developed 
to combat the issues with hardware development, test-
ing, and integration.4 Concepts of plug-and-play archi-
tectures suggest rapid development through the assembly 
of existing parts. The question can be asked: Is there an 
analog for software development?

This article first returns to the original ORS vision 
and plan for rapidly developed spacecraft and attempts 
to develop requirements for an ORS software architec-
ture. An analysis is performed by looking critically at 
the software requirements that are needed to support the 
desired ORS tiers. Next, a new architecture is outlined 
in terms of the features needed to meet these require-
ments. Finally, this article demonstrates how APL is 
moving toward the ultimate goal of software designed 
for ORS. By moving out in multiple arenas and with 
different customers, APL is slowly building and gain-
ing confidence in all elements of the final architecture 
needed for ORS before bringing it all together. Each step 
brings a new usable capability and is closer to enabling 
the elements outlined in the ORS plan.

ORS SOFTWARE REQUIREMENTS AND ANALYSIS
By examining statements and documents from 

the ORS community, one can glean a set of software 
requirements that provide a basis for the development of 
software for ORS.

Admiral Cebrowski, in his statement to the Senate 
Armed Services Committee,5 stated: “The time func-
tion for responsiveness is then driven by adaptive con-
tingency planning cycles rather than predictive futures 
or scripted acquisition periods.” Cebrowski envisioned a 
new class of rapidly developed satellites directly tasked 
by the warfighter in theater. The Plan for Operationally 
Responsive Space6 divides these planning cycles into 
three tiers. Tier-1 uses or modifies existing assets to 
deliver capabilities in minutes to hours. Tier-2 uses field-

ready, or already produced, assets to deliver capabilities 
in days to weeks. Tier-3 develops new capabilities to be 
delivered for use in months to 1 year.

Requirements from Tiers-1 and -2 suggest that future 
systems will have a capability to be modified. The ORS 
plan states: “Tier-1 solutions will not typically involve 
the design, engineering, or fabrication of new material 
items.” Therefore, to produce new capabilities, the con-
cept of operations of a spacecraft has to change. This 
must be accounted for either in operations or in soft-
ware and leads to the following requirements for rapid 
development.

ORS Software Requirement 1 (OSR-1)
Flight software systems shall be able to be rapidly 
modified at any time after the deployment to field-
ready or flight status.

The ORS plan goes on to describe “mission or system 
utilization analyses may be needed” such that any modi-
fication must be accompanied by rapid analyses to deter-
mine the modifications that are required for the existing 
capability to meet the new need and whether these mod-
ifications result in a safe and workable capability. This 
is due to the fact that changing any aspect of the asset 
risks the asset itself as a result of the faults that may be 
induced indirectly by the change.

ORS Software Requirement 2 (OSR-2)
A software system’s capability to be modified shall 
be accompanied by the ability to certify that the 
change is providing the desired capability and not 
endangering the existing asset.

The ORS plan describes Tier-2 activities as “achiev-
ing responsive . . . capabilities through rapid assembly 
integration, testing, and deployment of a small, low cost 
satellite.” Given that the time frame for Tier-2 capabili-
ties is days to weeks, there is no opportunity for develop-
ment or testing of any software. As the ORS plan states, 
“much of the ORS work will be anticipatory in nature.” 
Therefore, all software development and testing must be 
accomplished before call-up.

ORS Software Requirement 3 (OSR-3)
Software systems shall enable complete development 
and testing before integration into a target.
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If software can be developed and tested before a proj-
ect starts, software development is then shifted from 
coding to integration of preexisting parts, and therefore 
the software must support rapid development in the 
form of easy and rapid integration.

ORS Software Requirement 4 (OSR-4)
Software systems shall enable construction through 
the rapid integration of preexisting software elements 
without negating any prior testing.

Requirements from Tier-3 suggest that new capabili-
ties must be delivered in less than 1 year. To deliver a 
spacecraft in 1 year, the software development process 
must be completed in 2–3 months to allow for system-
level design and testing. The duration of the 2- to 
3-month development schedule relegates new develop-
ment to potentially only one or two new functions. The 
2- to 3-month schedule, however, does not leave any time 
to modify and retest the existing code to accommodate 
these new functions. In a standard spacecraft software 
system, modifying the existing code would force a series 
of regression tests of the entire software system, which is 
extremely time consuming. In an ORS software system, 
the software must be architected such that the addition 
of new functionality does not force the modification or 
retest of existing code to be reused.

ORS Software Requirement 5 (OSR-5)
Software systems shall enable the addition of 
new software applications without modification 
of existing software or negation of existing 
software testing.

Rapid development for ORS in the minds of 
Cebrowski5 and Wegner7 extends past traditional soft-
ware development and even past the launch to the point 
at which the checkout phase completes and the space-
craft operational capability is brought online. Cebrowski 
states that ORS spacecraft must “reach the required 
orbit without months of state-of-health checks . . . by 
large squadrons of satellite controllers.” Therefore, the 
software system must be sufficiently autonomous to assist 
the rapid drive to operational status.

ORS Software Requirement 6 (OSR-6)
Software systems shall be sufficiently autonomous to 
support rapid on-orbit checkout.

CONCEPT ARCHITECTURE
Considering the requirements described in the previ-

ous section, a conceptual software architecture for ORS 
can be constructed consisting of the following five key 
properties:

1. Modular components
2. Test-once testing
3. Autonomous checkout and calibration
4. Ability to modify both before and after launch
5. Fault detection and self-healing

These properties are described in detail in the following 
sections.

Modular Components
The term “modular components” defines a principle 

that software is developed, stored, tested, and deployed 
at the functional level rather than at an overall appli-
cation level. Whereas traditional development of space-
craft flight software follows the model of custom-built, 
tightly coupled software compiled into a monolithic 
architecture, the modular-components model advocates 
the development of flight software into smaller modules 
at the functional level. By reducing the size of software 
components and using a modular approach, an orga-
nization can maximize the use of common parts and 
reduce the complexity for the rapid-response workforce 
to implement a wide variety of missions.

Developing components at the functional level 
enables a new development process, shown in Fig. 1, in 
which requirements, the source code, the executable 
code, and test cases are stored together for each module. 
The formation of a new project begins with a require-
ments gap analysis to determine which modules meet 
project requirements and which requirements may result 
in new modules. The process ends with a requirements 
document formed by the summation of module require-
ments, a test suite formed by the summation of test cases, 
and a software system formed by the list of executable 
code files from the modules selected. This new process 
meets the development portions of OSR-3, OSR-4, 
and OSR-5.

The modular-components model offers a contrast-
ing strategy to the AFRL Software Data Model con-
cept2 of self-realization discussed in the introduction to 
this article. The modular-components model advocates 
the development of a software application warehouse, 
as shown in Fig. 2, filled with already tested software 
modules, very similar to the hardware plug-and-play 
approach. According to the modular-components 
model, software is selected from a warehouse on the 
basis of individual project needs. Applications can also 
be associated with specific pieces of hardware. Either 
way, only the necessary applications for each project are 
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to meet the testing portions of OSR-4 and OSR-5, the 
integration of modular components must not invalidate 
the testing of the components or other existing mod-
ules. Component tests are invalidated if the component 
under test is changed to enable the integration or if the 
component test environment used to validate the com-
ponent is not the same environment as the integration  
environment. In addition, to comply with OSR-3, the 
complete functional testing of a module must be able to 
be performed before integration.

To accomplish these goals, APL advocates that each 
application be tested and executed in isolation (i.e., its 
own “little world” with fixed boundaries in processor 
time and memory and a single interface to other appli-
cations that does not require assumptions about who 
or what else exists in the system). Figure 3 shows the 
test and integration environment using the test-once 
process. The test environment includes a software bus, 
the application in its memory partition, and another test 
application in another memory partition providing data 
on the bus to stimulate the application on the target 
processor. The remainder of the memory space is empty. 
The application being tested runs in its own time slice, 
as does the test application, but the remainder of the 
processor time map is idle. As long as the memory and 
time allocations are the same and the same software bus 
communication interface is used, the test environment 
and the deployed environment are the same; therefore, 
the test-once testing is sufficient to establish the correct-
ness of the module for all future deployments.

Autonomous Built-in Checkout and Calibration
Autonomous built-in checkout and calibration defines 

a capability to rapidly prepare in-flight spacecraft for 
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Figure 2. Software application warehouse.
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with improved testing capabilities.

Test-Once Testing
Test-once testing advocates the development of an 

isolation infrastructure that enables testing and system 
integration without invalidating any new or existing 
software component. With traditional highly coupled 
software, making a change to any heritage code usually 
results in a repeat of the entire testing program. However, 
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operations. The principles of ORS are not complete at 
launch. To support combat commanders and warfighters 
on the ground, the ORS concept must extend through-
out all phases until the spacecraft goes operational in 
the desired theater. To rapidly go operational, ORS sat-
ellites require the capabilities to perform autonomous 
checkout of the bus and the payloads and to perform 
calibration of payloads.

These capabilities are essential for meeting OSR-6 for 
both ORS Tier-2 and Tier-3 missions because all space-
craft and sensors must be analyzed to ensure that the 
required spacecraft performance survived launch.

To achieve this, APL advocates a fully automated 
checkout and calibration of payloads through a built-
in test (BIT) feature. This feature would be a separate 
software module existing alongside the standard flight 
software functions (i.e., built-in) on the flight proces-
sor. The BIT module would exist on the flight processor 
throughout the development, testing, and postlaunch 
phases, providing a single method of performing check-
out for the instrument or spacecraft function through-
out the entire life cycle. In this manner, the detail of 
the checkout or calibration matures with the develop-
ment and also increases the speed of checkout on the  
ground and in flight. In addition, we advocate the devel-
opment of standards for the BIT to enable instrument 
developers to develop their own BIT modules. This 
would allow checkout procedures to be paired with 
instruments, such that the integration of an instrument 
into an ORS spacecraft bus includes integration of the 
instrument into the bus and integration of their BIT 
into the flight software.

Ability to Modify Both Before and After Launch
Modification of onboard executing software usu-

ally requires patching activities or the long process of 
replacing an entire software system on board and then 
rebooting the processor for the change to take effect. 
Both processes are time consuming and dangerous to 

the existing asset. Therefore, currently most late or 
postlaunch changes are implemented by increasing the 
burden or requirements on operations staff. Increasing 
this burden results in an increase in the size of opera-
tions teams, which is contrary to the ORS plan.

Because modifications range in size, we advocate 
development of a capability that enables modification at 
two levels to comply with the postlaunch modification 
OSR-1. Level 1 modification would occur at a functional 
level through independent module loading, and level 2 
modification would occur within the function through 
the use of engine-based designs.

Functional-Level Modifications
A functional-level modification would consist of the 

addition or replacement of a software module. This is 
viewed as an extension of the modular-components con-
cept discussed previously in this article except that the 
new module is added to the existing code after launch.

Engine-Based Designs
In some aspects, modifications may need to be made 

at a finer level than at the functional-level module. 
However, making just basic modifications to an appli-
cation will invalidate the testing and therefore create a 
new application. In the event that an application will be 
known to be modified in future missions, we advocate 
developing that application as an engine-based design.

An engine-based design is one in which the applica-
tion acts as a generic interpreter for a data set rather than 
requiring a developer to hard-code the entire software 
module (Fig. 4). The data set (or memory object) is an 
expansion of programming parameters. The difference is 
that the memory object can be modified without having 
to modify or recompile the module. In this manner, the 
module does not change and does not invalidate the 
testing done before integration. The memory object 
contains the information to enable the interpreter to act 
correctly in a specific mission. The combination of the 
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Figure 4. Engine-based design with generic interpreter and data set (memory object). 

memory object and the generic interpreter produces the 
mission-specific functionality.

Analysis must still be performed to determine whether 
the change has achieved the desired benefit and to 
confirm that it does not endanger the system as stated 
in OSR-2. But with engine-based designs, the analysis 
is performed on the memory object; the benefit is that 
the analysis of the memory object may be trivial or can 
be performed offline and parallel to the integration of 
applications into the final system. In addition, other test 
techniques, including different automated methods such 
as model checking, which drastically reduces the time to 
check the memory object versus the requirements, can be 
used on the memory objects that could not be employed 
on the application code.

Fault Detection and Self-Healing
Fault detection and self-healing defines an ability to 

restart individual software tasks or functions, in the event 
that a task exception or fault occurs, without affecting 
the other tasks or rebooting the processor. One method 
to achieve the ability to modify existing assets without 
endangering the asset, as stated in OSR-2, is to ensure 
that a fault occurring in the new software module does not 
propagate to other existing software modules. In contrast, 
in traditional systems a fault that occurs in even a low- 
priority task compromises all software on that processor, 
and all activity on the central processing unit may need 
to be restarted through a cold or warm reboot. If this 
central processing unit were the active one on board, 
the reset could result in the spacecraft stopping opera-
tions and retreating to a “safe” mode, which may require 
weeks and a large ground staff to recover. The principle 
of self-healing enables the fault detection and response 
to faults with individual modules to be localized to that 
module only. The remaining modules continue as the 
faulty application is stopped or restarted by reloading 
the application from persistent storage to random-access 
memory. The end result is that new software modules 
can be fault isolated from existing modules, enabling the 
ability to modify or add to the software of a spacecraft 

without risking the existing asset to 
meet ORS Tier-1 objectives.

ACHIEVING ORS SOFTWARE
For APL, enabling a software 

architecture that enables rapid 
development for ORS is not only a 
requirement or conceptual exercise, 
but also a practical drive to gain the 
capabilities described in this article. 
We are moving toward achieving 
these principles on multiple proj-
ects. The following sections detail a 

sample of projects advocating one or more of the archi-
tecture principles described above.

Radiation Belt Storm Probes Software Bus
APL software engineers on the NASA Radiation 

Belt Storm Probes (RBSP) program8 are making prog-
ress in the area of modular components. Key to the 
achievement of the modular components concept is the 
ability to add and remove software components without 
having to modify components that already exist. The 
direct fallout from this statement forces communica-
tion between software modules to a singular interface 
that cannot change based on the number of modules 
in the system. RBSP will use NASA Goddard’s Core 
Flight Executive9 software bus architecture to imple-
ment a single common interface for all software mod-
ules. Figure 5 shows the RBSP modular-component 
software bus architecture. By implementing a bus archi-
tecture, RBSP takes the first step toward the modular-
component addition necessary for rapid development 
with ORS software.

RBSP is also advocating a modular-component 
approach in development of software. Requirements and 
code will be separated by function, with each function 
being a separate entity on the software bus. This rep-
resents a first step in the software-warehouse concept 
outlined previously. Future missions that use the same 
software bus architecture should be able to select RBSP 
software components and get immediate requirements 
and code reuse.

Naval Research Laboratory–ORS Modular, Self-Healing 
Patterns

APL has also been working with the Naval 
Research Laboratory to develop software technolo-
gies for ORS. The architectural concept developed by 
this effort describes a “buffet-style” software approach 
to software development whereby missions configure 
flight software through the assembly of existing soft-
ware modules followed by integration testing. This 
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approach significantly reduces software development 
schedules and budgets once a set of software building 
blocks has been created. This architectural concept was 
broken down into seven software-development patterns 
that eventually matured into the architecture properties 
discussed in the previous sections: modular components, 
fault detection and self-healing, and ability to be modifi-
able before and after launch.

Software in the Loop
APL, using independent research and development 

funding, has been working on a concept called SWIL 
(software-in-the-loop) testing. The concept advocates 
colocating test software with flight software in the 
flight processor, as shown in Fig. 6. The benefits of this 
include reducing the cost of test infrastructure (i.e., 
SWIL can replace some aspects of hardware-in-the-
loop testing) and eliminating bandwidth issues associ-
ated with testing high-speed spacecraft guidance and 
control algorithms.

SWIL also made progress in the area of test-once 
testing and autonomous BIT. To achieve isolation 
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between the tester and the application under test, 
SWIL used a memory partition, called a real-time pro-
cess, in the real-time operating system VxWorks 6.3. 
Memory partitioning is the first step in achieving iso-
lation between modules described above in test-once 
testing. In addition, the SWIL concept was a trailblazer 
for testing the environment outlined above, in which 
the test application and the application under test can 
exist in a single target processor without corrupting  
the test.

Finally, the SWIL concept forms the basis for our 
development of autonomous BIT. APL is currently 
investigating how to extend this concept to allow the 
test software to coexist with the flight software all the 
way from development through launch and into flight. 
The in-flight SWIL could be used to perform in-flight 
checkout and/or in-flight calibration of instruments. 
Having this feature from development into flight pro-
vides a consistent test capability rather than having to 
add in-flight checkout or calibration late in the develop-
ment. In this manner, the ground checkout or calibra-
tion is the flight checkout or calibration.
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SmallSat Software Isolation Architecture
The NASA Small Explorers Office has initiated a 

study with APL with the purpose of introducing inno-
vative approaches to lowering the cost and improving 
the performance of 50- to 200-kg spacecraft. The Small-
Sat study leveraged work done on the RBSP, SWIL, 
and Naval Research Laboratory initiatives to advance 
multiple software concepts, including test-once test-
ing, fault isolation and self-healing, and function-level 
postlaunch modification. Engineers working on this 
study have demonstrated the combination of memory 
partitioning with software bus architectures enabling 
isolated modules to talk to each other without adversely 
affecting each other. The SmallSat study also demon-
strated self-healing, the ability to automatically reboot 
and restart a single offending application after an error 
without affecting the rest of the system, through an 
experiment with a four-module system in which one of 
four threw an exception every minute for 12 hours. The 
demonstration proved that the offending module could 
fail repeatedly without disturbing the other three func-
tions and without growing the memory required for the 
entire system. Finally, the SmallSat study used the abil-
ity to self-heal to load a new application over an existing 
one, demonstrating a method to achieve function-level 

postlaunch modification without affecting existing exe-
cuting applications.

ExecSpec Engine-Based Autonomy
APL has been working on a concept called ExecSpec, 

which is an engine-based solution to onboard autonomy. 
In this concept, described in another article by Cancro 
in this issue, the memory object is a diagram describ-
ing how the system should react to faults or operational 
situations on board. The interpreter is a generic piece of 
flight code that interprets the diagram on the basis of 
onboard telemetry and enables a user to load or remove 
diagrams by command before or after launch. To test 
memory objects, ExecSpec uses model checking, a test 
technique that automatically and exhaustively veri-
fies whether the diagram of spacecraft fault responses 
achieves the written requirements on the system. With 
model checking, ExecSpec can verify most requirements 
at a rate of one requirement per second.

ExecSpec provides an example showing that the 
properties of engine-based design can be used to meet 
objectives of OSR-1 and OSR-2. APL believes that the 
engine-based example can be also extended to multiple 
other applications, including the following:
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•	 Software bus controllers (e.g., a generic 1553 appli-
cation with a memory object describing all of the 
bus transactions)

•	 Downlink data management (e.g., a generic down-
link application with a memory object describing 
rates and quantities of packets to downlink)

•	 Housekeeping (e.g., generic application that builds 
housekeeping packets based on memory objects 
that define the data contents and formats for each 
packet)

•	 Observation scheduling (e.g., a generic applica-
tion that executes time-based schedules based on 
memory objects that describe observations with 
types, start times, and stop times)

CONCLUSIONS
APL has returned to the original founding docu-

ments of ORS in an effort to understand the real needs 
of rapid development expressed by the ORS Office. A 
set of requirements has been gleaned from these docu-
ments, and these requirements, in turn, have been used 
to develop a new software architecture that can achieve 
the vision expressed in all three tiers of ORS.

APL is pursuing this software architecture across 
multiple programs. This pursuit is a practical attempt to 
achieve our rapid development architecture by coordi-

nating multiple achievable steps toward our goal of rapid 
software development. APL will continue to move for-
ward in this area and hopes that ORS will benefit from 
the concepts that we have already achieved as well as 
from the completed architecture in the near future.
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