
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010)226

INTRODUCTION
Autonomy in a machine is the ability to act inde-

pendently of human control. For unmanned spacecraft
missions performed by the Space Department at APL,
autonomy has grown to be defined as a specialized flight
software facility designed to automatically detect and
react to situations aboard the spacecraft without human
intervention, usually to remedy faulted conditions or for
safing (the process by which a spacecraft is placed in a
safe state).

This article discusses the current state of the APL
spacecraft autonomy system by examining the changes
that have occurred to the autonomy facility. APL’s
evolution of the autonomy system over several genera-
tions provides insight and also sets the stage for our next
generation of autonomy systems, which will use the his-
torical lessons learned to move forward.

Armed with history, we can begin to look at where
we are headed at present and where we should head in
the future. This article outlines the current direction of
autonomy systems at APL and discusses the future direc-
tion by examining all spacecraft onboard functions that
potentially could be automated. From this list of func-
tions, four key themes are extracted and described in
terms of benefit and effect on future National Security
Space (NSS) missions.

AUTONOMY: THE PAST AT APL FROM ACE
TO STEREO

The story of autonomy in APL spacecraft occurs
over three generations, beginning with the Advanced

APL Spacecraft Autonomy:
Then, Now, and Tomorrow

George J. Cancro

pacecraft autonomy has a long and interesting history at APL. From
humble beginnings, APL has developed and gradually increased the

capability of a flexible and expressive autonomy system over three gen-
erations covering 10 years and seven spacecraft programs. Now APL is embarking on
the development of a new set of autonomy systems that will meet the critical chal-
lenges of our National Security Space customers today and in the future. Development
of this new set of autonomy systems will draw on lessons learned from the past, new
technologies being developed today, and a four-pronged vision of what future APL
autonomy systems need to achieve for National Security Space customers.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010) 227

Composition Explorer (ACE) mission, during which
autonomy was first separated from hard-coded software,
and ending with the Solar TErrestrial RElations Obser-
vatory (STEREO), which is the most recent mission
launched by APL. These generations cover 10 years and
seven spacecraft and are described in detail below.

Generation 1 (ACE)
The ACE spacecraft launched in August 1997 with

the goal of understanding and monitoring solar activity.1
The ACE autonomy system, in conjunction with hard-
ware-based fault detection and reaction and together
with the command and data handling (C&DH) and
power subsystems, formed the overall ACE safing strat-
egy. This autonomy system was responsible for preparing
the spacecraft for first contact, monitoring component
health, monitoring overall spacecraft attitude and
maneuver health, and maintaining proper spacecraft
component on/off configurations and other autonomous
actions to support the recorder and hardware-based
reactions.2

The ACE autonomy system, which was a facility of
C&DH software, was based on a set of autonomy rules.
These rules take the form of “if-then” statements that
can be loaded into fixed-size memory locations known
as bins. When the autonomy system is running, it scans
the rules at a regular interval, evaluating each rule in
turn and executing any that evaluate to “true.”3

The “if-section” of an autonomy rule is formulated as
one of six conditional types (equal to A, not equal to A,
greater than A, less than A, within a range of A to B,
outside a range of A to B), and the “then-section” con-
sists of a spacecraft command to issue if the conditional is
true for a predefined number of evaluations. To program
an autonomous behavior, the autonomy designer would
construct a rule by defining the telemetry point (a section
of the spacecraft’s telemetry data block representing a
spacecraft sensor value), defining a mask of the telemetry
point if needed, selecting the conditional type, defining
the A and B values for the conditional types, defining
the number of true evaluations before a command is exe-
cuted, and selecting the command to issue.

The command selected to issue could be a single
command or a call to a block of commands to be run
in sequence. The sequence of commands could also
include pauses in the sequence to provide relative timing
of commands. All commands issued from the autonomy
facility, whether single commands or the command
sequence from a block, are executed at the same priority.
Therefore, only a single autonomy rule could control the
spacecraft at one time.

Development of the ACE autonomy system estab-
lished the separation between rules and hard-coded
autonomy at APL. Before this development, autonomous
behavior was nonexistent or was directly written into

the C&DH software for the spacecraft. This rule-based
approach to meeting autonomy requirements allowed
C&DH design to proceed, even when autonomy con-
ditions and actions had not been fully specified at the
mission level.

Generation 2 (NEAR/TIMED/CONTOUR)
The next generation of APL spacecraft autonomy sys-

tems modified the ACE autonomy design by increasing
the functionality and expressiveness of the autonomy in
response to the increased mission complexity.

First, the expressiveness of the conditional portion
of the rule was expanded. Autonomy rules for the Near
Earth Asteroid Rendezvous (NEAR) Shoemaker space-
craft, launched in 1997 to study and eventually land on
the asteroid Eros,4 were the logical AND or OR combina-
tion of two ACE rule expressions, thereby doubling the
capability of ACE. Comet Nucleus Tour (CONTOUR),
launched in 2002 to understand and assess the diversity
of two comets, and Thermosphere, Ionosphere, Meso-
sphere Energetics and Dynamics (TIMED), launched in
2001 to explore the Earth’s mesosphere and lower ther-
mosphere,5 quadrupled the capability by enabling logi-
cal combinations of four ACE expressions in each rule.
In addition to expressiveness, readability was enhanced
by adding another facility (called arithmetic checks)
that performed conversions of telemetry point values
into engineering units. For example, instead of specify-
ing rules as “IF telemetry_point_5 > 3124 . . . ,” rules
could be specified as “IF imu_power > 14 W. . . .”

Even with this expansion of capability, the number
of rules on each successive mission continued to grow.
ACE had 64 rules, NEAR had 165 rules, TIMED had
256 rules, and CONTOUR had 259 rules. The number
of autonomy system responsibilities was growing, and the
complexity of the responses was increasing. To handle
the growth in complexity of responses, conditional exe-
cution features were added to the APL autonomy system
by allowing autonomy rules to enable or disable other
autonomy rules. This allowed one autonomy rule to
detect a fault and then enable a set of rules to deal with
the fault depending on the current state of the system.

The increase in autonomy system rules was also a
result of APL’s autonomy facility having taken on more
than fault management and safing. For example, TIMED
used the autonomy rule facility to automate routine oper-
ations.6 To support the increased range of responsibili-
ties in terms of criticality, multiple levels of priority were
added to the command execution of autonomy responses
in this generation of autonomy systems. In this manner,
the response to a higher-priority fault could preempt a
lower-priority fault response or automated operations
action currently being executed.

The ability to modify rules was also extended in
generation 2. Instead of being able to modify autonomy

G.  J.  CANCRO

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010)228

rules only before launch, generation 2 system rules
also could be modified by command after launch. This
approach enabled APL operators to modify rule defini-
tions at any time in the program, granting missions the
flexibility to handle postlaunch anomalies and changes
in operations.

Even though the addition of conditional execution
and priority responses solved problems faced by auton-
omy developers within generation 2, we now believe this
was the beginning of the end of the rule-based system. A
good example of the reasons for moving away from the
rule-based approach was evident in the NEAR mission:
“What seemed at first to be a simple rule-based design
actually became quite complex when it came to defining
the checks and command responses needed to coordi-
nate safing for all spacecraft subsystems.”7 Coordinat-
ing multiple rules to implement system-level functions
also drove the testing time necessary to verify the rule
implementations.

Generation 3 (MESSENGER/New Horizons/STEREO)
The next generation of APL spacecraft autonomy

systems responded to the autonomy designers’ resis-
tance to the restrictiveness of the conditional portion
of the autonomy rule by expanding expressiveness again.
The six conditional types used on ACE were replaced
by a generic reverse Polish notation (RPN) expression.
This enabled designers to place in rule expressions any
combination of arithmetic and Boolean operators and
any number of telemetry point operands. Arithmetic
checks, used in generation 2 to increase readability by
translating raw telemetry to engineering units, were
replaced by a new facility called computed telemetry,
which enabled designers to use RPN expressions to
convert telemetry or perform calculations. In August
2003, M. Gomez presented a complete description of the
generation 3 autonomy system, “A Typical Spacecraft
Autonomy System.”8

At this point in the evolution, the number of rules
in a given system began to decrease. CONTOUR, the
last generation 2 system, had 259 rules, but the genera-
tion 3 systems, Mercury Surface, Space Environment,
Geochemistry, and Ranging (MESSENGER), which
launched in 2004 to conduct the first orbital study of
Mercury;9 New Horizons, which launched in 2006 to be
the first spacecraft to study the Pluto–Charon system;10

and STEREO, which launched in 2006 to capture and
study the Sun in three dimensions,11 had 208, 126,
and 156 rules, respectively. However, hidden in this
decrease were more increases in complexity, because
the RPN system allowed more operands in expressions.
For example, CONTOUR averaged 2.4 operands per
rule, whereas MESSENGER averaged 10.2 operands per
rule. Multiplying the number of rules by the number of
operands demonstrates that MESSENGER was approxi-

mately 3.5 times more complex than CONTOUR.12
This hidden complexity continued the trend of reduced
system-level design understandability and increased the
test time necessary to ensure that system-level safety
was maintained.

Trends Across Three Generations
Taking a step back and examining the trends over

multiple years and missions reveals three major trends.
First, what started off as a simple system incrementally

grew to a fully featured system with great amounts of flex-
ibility and expressiveness. Each feature added increased
ability to meet mission complexity; however, the drive
to more and more complexity has pushed the autonomy
rule concept to its practical limits, exposing the trade-
off between simplicity at the individual rule level and
complexity at the system level. In the end, autonomy
designers’ desire for more autonomy features and expres-
siveness resulted in unforeseen consequences on over-
all system complexity and impacted the time necessary
for testing.

Second, the autonomy responsibilities for fault man-
agement and safing defined on ACE remained in all
generations of spacecraft. For example, each generation
developed autonomy rules to handle first contact and com-
ponent health monitoring and to maintain system-level
configurations of component on/off states. Subsequent
generations increased the extent of these responsibilities
and also added new responsibilities in terms of fault pro-
tection, but these core responsibilities remained. What
makes this interesting is that, despite the similarity of
functionality, no reuse in the rules themselves occurred.
The implementations of the same responsibilities did not
carry over from one generation to the next or even from
one mission to another within a generation.

Third, beginning with a single rule responsible for
recorder management on ACE and extending into auto-
mating routine operations on TIMED and handling
instruments and operational modes in generation 3
systems, the autonomy rule facility has taken on an
increasingly important role outside of the initial intent
of a fault management facility. What started out as an
extremely limited set of responsibilities on ACE became
a large set of responsibilities by generation 3. Over the
years, the flexibility of the rule-based system became
more and more enticing to noncritical faults, instrument
management, and then to automating operations.

AUTONOMY: THE PRESENT AT APL
Despite the problems with these trends, there is no

going back. We cannot return to the ACE system for
future missions because the expectations of the level of
autonomy on missions have increased and the complex-
ity of missions continues to increase as well. Instead,
we must now turn to combating the unintended conse-

APL SPACECRAFT AUTONOMY: THEN, NOW, AND TOMORROW

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010) 229

quences of the desired flexibility and expressiveness: lack
of reviewability, lack of reuse, and difficulty in testing.

ExecSpec
Over the last 3 years, APL has invested independent

research and development funds in the development of
the next generation of onboard autonomy systems. This
development was motivated by the need to remedy the
unintended consequences described previously with-
out losing the flexibility to modify autonomy at any
time in the mission and without losing the expressive-
ness required for complex space missions. The result
of this development is a system called ExecSpec (short
for Executable Specification). ExecSpec is a new visual
programming approach to development of autonomy
systems that enables a system designer to visually create
and execute high-level spacecraft functionality and
autonomous behavior in the form of uploadable dia-
grams (Fig. 1).13

Figure 1. ExecSpec diagrams showing that desired functional-
ity can be uploaded directly to the ExecSpec flight component
within the spacecraft for execution.

Comprehensible Context Through the Entire Life Cycle
ExecSpec diagrams are based on finite state machines

and make it easy for non-software experts such as system
engineers, domain experts, and operators to understand
the onboard functionality directly, improving the design
quality and the efficiency of the design process.14 In
addition, this easy-to-understand context is maintained
across the entire program life cycle. The diagrams that
are used to define the design and review the implemen-
tation are the same diagrams that are used to oper-
ate the spacecraft and monitor the autonomy system
telemetry. For example, during operations the diagrams
are animated based on spacecraft telemetry such that
operators can visually monitor the autonomy behavior
during operations.

Advanced Simulation/Test Capability
ExecSpec contains two forms of advanced testing to

provide mechanisms to test highly complex autonomy
systems. The first is an advanced simulation capability
that enables interactive testing and debugging, as shown
in Fig. 2, with which an operator can test the design
by interacting with it through modifying system inputs
and monitoring system outputs visually. This enables
a rapid design-and-test cycle that improves the design
reliability and shortens the time required to produce an
autonomy system.

The second testing capability is automated verifica-
tion granted by combining ExecSpec with NuSMV,
an automated model-checking tool.15 This capabil-
ity, shown in Fig. 3, compares the design to the project
requirements by performing an exhaustive search to find
counterexamples in which the design violates require-
ments. The benefit of this feature is the ability to rapidly
test autonomy requirements. Our initial research into
this effort16 demonstrated examples of requirements
from the NASA STEREO mission being tested at a rate
of up to one requirement per second on a model of the
STEREO autonomy system developed in ExecSpec. In
comparison, the current rate for humans performing
acceptance testing of autonomy systems on the NASA
STEREO mission was 66 requirements over 12 months,
using 6 staff months of effort, or 1 requirement per
14 staff hours.

Although at face value the benefit is large, model
checking cannot be seen as a silver bullet because the
technique becomes intractable with large models, it is
limited by the contents of the model in comparison to
the actual system, and it is not a substitute for testing
on actual spacecraft hardware. However, model check-
ing does provide an additional testing resource that was
not at our disposal in the past, allowing us to combat the
problem of complexity and adverse interactions within
autonomy systems.

G.  J.  CANCRO

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010)230

Reuse Through Prototype Instantiation
One of the most powerful techniques of software

engineering is the use of reusable software components
that can be assembled in various ways to form larger sys-
tems. In ExecSpec, this can be accomplished through a
prototype-instance methodology by which a set of proto-
typical components can be developed, stored in a library,
and then copied and interconnected to form an overall
system, as shown in Fig. 4. This feature enables reuse in
APL autonomy systems and dramatically decreases the
time required to develop systems.

ExecSpec Benefits to NSS

Operationally Responsive Space
The concept of Operationally Responsive Space

(ORS) proposes the fielding of spacecraft assets, from
concept to launch, in weeks. By using the ExecSpec

Requirements

Common checks

Logic
specification

Counterexamples

Autonomy
design

(ExecSpec
model) Model

checker
(NuSMV)

Figure 3. Model-checking process for ExecSpec diagrams using
NuSMV, an automated model-checking tool.

system, a new ORS spacecraft
autonomy system can be rap-
idly assembled from a diagram
library and tested by using the
visual and automated tech-
niques described previously
in this article. After all test-
ing is completed, the design is
loaded directly into the Exec-
Spec flight component, which
is a generic diagram interpreter
that does not change from mis-
sion to mission. The result is an
autonomy system that can real-
istically meet ORS development
timelines.

Increasing the Survivability and
Usability of Space Assets

Space assets imbued with the
ExecSpec system will be flexible
to a changing environment and
a changing mission. Currently
the response to component fail-

ures after launch or mission changes is implemented by
operational workarounds, which drive up the cost and
complexity of the operations and limit onboard func-
tionality. By using the ExecSpec features, changes to
spacecraft functionality can be developed, fully tested,
and uploaded to a vehicle after launch. The end result is
new tactical capability, resulting in an increase in space-
craft survivability and an increase in the usable duration
of space assets.

AUTONOMY: THE FUTURE AT APL
To meet the critical challenges that our nation will

face in the future, we must look beyond our historical
and present developments to new technologies and con-
cepts that will meet future needs of sponsors. To do this,
we have performed a taxonomy analysis of all functions
that can be automated aboard spacecraft. Of the total
set of functions, we selected a subset that we believe is of
interest to NSS customers. The selected functions were
then grouped into four themes, whereby each theme
possesses three increasingly complex functional steps
that eventually lead to the desired end capability. These
four themes are as follows:

1. Fault detection and recovery,
2. Spacecraft as extension of the non-expert user,
3. Streamline operations and enable multiples, and
4. Target of opportunity.

The themes and functional steps are displayed
in Fig. 5 and described in detail in the subsections
below.

Figure 2. Screenshot of ExecSpec demonstrating how state machine systems can be tested
directly in the visual tool, displaying the current state in the diagram view and state history
in the timeline view.

APL SPACECRAFT AUTONOMY: THEN, NOW, AND TOMORROW

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010) 231

Standby

Unknown

On B

Off

IMU_
Disabled

Not_
Operating

ServOff_
Check

ServOff_
Check

ServOff_
Check

ServOff_
Check

ServOff_
Check

Both_
On

Both_
On

Both_
On

Both_
On

Check_
Off

Check_
Off

Check_
Off

Check_
Off

Both_
On

Both_
On

Disabled

Disabled

Nominal

Nominal

Init

Figure 4. Screenshot of ExecSpec demonstrating instantiation of prototype components
through drag-and-drop functionality.

Theme 1: Fault Detection and Recovery
Fault detection and recovery is the original appli-

cation for onboard autonomy because faults can occur
at any time and spacecraft are not always in con-
tact with ground operators. Historically, fault detec-
tion and recovery resulted in driving the system to a
safe state. In the future, fault detection and recov-
ery must move in the direction of recovering the
spacecraft from a fault into an operational state. In
essence, the spacecraft must autonomously recon-
struct an operational system from a faulted one. This
will enable spacecraft to continue their missions and
maintain high levels of availability to users on the
ground.

Finally, as the number of threats to on-orbit space-
craft increases, faults may be induced by hostile actors
outside the spacecraft. In this case, autonomy must
be operationally responsive to these threats (i.e., self-
preservation through autonomous reconfiguration)
such that external threats can be detected, com-
municated to ground operators or other spacecraft,
and handled by the spacecraft modifying itself or its
operational environment to be able to continue the
mission. Therefore, in the near future, fault detection
and recovery should be considered part of the overall
space situational awareness and defensive counterspace
function.

Theme 2: Spacecraft as Exten-
sion of the Non-Expert User

In addition to autonomous
fault detection and recovery,
current spacecraft also act
autonomously outside of ground
contact to execute time-based
scientific or engineering opera-
tions. Historically, time-based
operations have been executed
by spacecraft operational staff
with primitive scripts or time-
tagged commands, usually in
2-week scheduling periods. In
this architecture, the operations
staff becomes the gatekeeper of
spacecraft activity whereby users
can submit requests that even-
tually are translated into space-
craft time-based commands.
Ideally, in the future, onboard
autonomy should enable space-
craft operation to be driven tac-
tically by non-expert users. The
first step toward this goal would
be an agile and flexible tasking
system that would enable adap-

tive planning cycles on the order of a day or an orbit.
This would replace the scripted data acquisition cycles
with a system that is directly responsive to an opera-
tional theater commander. The final step toward the
spacecraft becoming an extension of the non-expert
user is the ability to autonomously request and view
data in context. For example, a field commander requir-
ing surveillance of areas of future operation should be
able to circle an area of a map to ask for updated sat-
ellite imagery of that area. The resulting surveillance
from the satellite should appear to the user as updated
images in the area that the commander identified. In
this manner, the user can request and view data in the
context (the map) in which the user normally works.

Theme 3: Streamline Operations and Enable Multiples
All spacecraft perform a set of one-time and rou-

tine maintenance operations on orbit. These activities
include on-orbit check-out, contact scheduling, cali-
bration, and long-term assessments. Historically, these
operations have been performed manually by operations
staff. APL has automated some of these routine opera-
tions to reduce overall operational costs. Future auton-
omy systems should continue to streamline operations
to reduce cost and increase speed and should strive to
enable the operation of multiple spacecraft with small
operational teams. To achieve these goals, autonomy
development should focus on the ability to rapidly and

G.  J.  CANCRO

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010)232

Spacecraft as an
Extension of

Non-Expert User

Streamline
Operations and
Enable Multiples

Fault Detection
and Recovery

Target of
Opportunity

Spacecraft Autonomy
(operations independent of Earth)

Automate routine
operations

Autonomous rapid
checkout and calibration

HSK summarization and
long-term assessment

Time-based
operations

Agile/�exible tasking

Request and viewing
in context

Sa�ng

Recover
operational state

Operationally
responsive to
external threats

Mission data
summarization

Data selection
based on criteria

Autonomous
tasking based
on observations

Figure 5. Autonomy taxonomy for NSS. HSK, housekeeping.

autonomously check out spacecraft to speed up the time
from launch to operational readiness. Current check-out
times are on the order of several weeks to a month. For
spacecraft to be truly operationally responsive, greater
speed must be achieved from development all the way
to readiness. Because readiness includes calibration of
instruments, one-time and periodic calibrations should
be automated. Finally, all issues with routine operations
become more complex for multiple spacecraft constella-
tions. Autonomy systems should be able to reduce the
burden on operational teams. Housekeeping data sum-
marization and long-term health assessment is one area
that could provide savings. For example, if the spacecraft
could autonomously alert operators about interesting
artifacts in housekeeping, the constellation bandwidth
required for operations would decrease, as would the
workloads of the operators.

Theme 4: Target of Opportunity
As noted previously, target designation and acqui-

sition historically has been accomplished in 2-week
schedules developed on the ground and then executed
using multiple time-based commands on board. All the
resulting data are then downlinked to ground users at
the next contact opportunity. The amount of data col-
lected is therefore limited by the downlink bandwidth.
In the future, the capacity of sensors to produce data
will rapidly overcome the bandwidth available to return
the data, forcing operators to be selective about what
they acquire and return. To address this challenge,
autonomy can be used to prioritize onboard data in a
wide range of options, from providing sensor data sum-
maries so that ground operators can select relevant data
to autonomously selecting data for downlinking on the
basis of predefined criteria. The ultimate extension of
this concept would be the ability for the spacecraft to
autonomously acquire data on the basis of opportunity

or prior observation. In such a
scenario, a spacecraft could take
data in a discovery mode and
then autonomously switch from
discovery mode to an active high-
rate mode to capture relevant
data predefined by mission opera-
tors. In effect, the spacecraft
could then acquire data desired
by ground operators or users with-
out the user specifically request-
ing the exact information.

APL SPACECRAFT
AUTONOMY ROAD MAP

Armed with the four themes
described in the preceding sec-

tions, APL is developing autonomy capabilities to
achieve the goals and functional steps outlined above.
With lessons learned from the past, we have con-
cluded that the predisposition to use the existing
autonomy development facility to implement all of
the desired autonomous functionality has expanded it
to the point of overcomplexity. Therefore, our plan is
to implement desired autonomy functionality as mul-
tiple, separate, specialized applications rather than
follow a one-size-fits-all approach. This approach will
better handle the growing complexity of desired func-
tionality without overcomplicating existing capabili-
ties and will also provide a mechanism for incremental
improvement.

Currently, the ExecSpec system is envisioned to meet
theme 1 (fault detection and recovery). The next APL
mission will use this system as the basis for fault pro-
tection autonomy. The abilities of the system to provide
safing, recover the operational state, and reconfigure
space systems on the basis of external threats will benefit
all space missions and provide the technology to com-
plement onboard space situational awareness detection
sensors and algorithms. In addition, the ability to rapidly
construct autonomous systems through drag-and-drop
reuse will increase the speed of autonomy development
to the level necessary to support ORS.

The next target for APL will be in the development
of an agile and flexible tasking system. In FY2009, APL
began research to develop an agile tasking system that
is based on the use of hierarchical simple temporal
networks. We believe that the ability to move satel-
lite tasking from strategic to tactical users is key to the
concept of ORS and is also useful to other imagery-
intensive organizations such as the National Reconnais-
sance Office.

Finally, APL is also experimenting with real-time
feature extraction and data-mining techniques to begin
investigating the aspect of theme 4 by which data

APL SPACECRAFT AUTONOMY: THEN, NOW, AND TOMORROW

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 29, NUMBER 3 (2010) 233

The Author
George J. Cancro is the Assistant Group Supervisor of the Embedded Applications Group in the Space Department.
He holds a B.S. in engineering science from Penn State University and an M.S. in mechanical engineering–astronautics
from the George Washington University. Before joining APL in 2002, he worked at the NASA Jet Propulsion Labora-

tory and NASA Langley Research Center on projects such as Mars Global Surveyor Aerobraking
and the Dawn Mission to Vesta and Ceres. Since joining APL, he has worked as a systems engineer
on the MESSENGER, New Horizons, and STEREO missions; a project manager for the NASA
SmallSat project; and a principal investigator of two research projects in the areas of autonomy
and telemetry visualization. He is currently a principal investigator of a research project inves-
tigating spacecraft tactical commanding and an advisor to the NASA Constellation Program in
the area of fault detection, isolation, and recovery. His areas of interest include modular software,
hardware/software architectures, fault protection, and spacecraft autonomy. His e-mail address is
george.cancro@jhuapl.edu.George J. Cancro

The Johns Hopkins APL Technical Digest can be accessed electronically at www.jhuapl.edu/techdigest.

selection would be based on criteria. Coupled with the
ExecSpec system and the agile tasking system, we believe
that a unique and powerful autonomous platform can be
created. This future platform would be able to analyze
data taken for desired criteria, the agile task itself, and
then reconfigure itself to continue the mission.

REFERENCES

 1ACE Mission Factsheet, http://sd-www.jhuapl.edu/ACE/ACE_
FactSheet.html (accessed 4 Apr 2010).

 2Chiu, M. C., et al., “ACE Spacecraft,” Space Sci. Rev. 86(1–4), 257–
284 (1998).

 3Bogdanski, J. F, Conde, R. F., and Williams, S. P., ACE Spacecraft
Command & Data Handling Component Specification, JHU/APL Docu-
ment 7345-9030 (8 Mar 1996).

 4NEAR Mission website, http://near.jhuapl.edu/ (accessed 4 Apr 2010).
 5TIMED Mission website, http://www.timed.jhuapl.edu/WWW/index.

php (accessed 4 Apr 2010).
 6Harvey, R. J., “TIMED Autonomy System,” Johns Hopkins APL Tech.

Dig. 24(2), 201–208 (2003).
 7Stott, D. D., et al., “The NEAR Command and Data Handling

System,” Johns Hopkins APL Tech. Dig. 19(2), 220–234 (1998).

 8Gomez, M., “A Typical Spacecraft Autonomy System,” International
Conference on Machine Learning (ICML) Workshop on Machine
Learning Technologies for Autonomous Space Applications, Wash-
ington, DC (21–24 Aug 2003).

 9MESSENGER Mission website, http://messenger.jhuapl.edu/ (accessed
4 Apr 2010).

10New Horizons Mission website, http://pluto.jhuapl.edu/ (accessed
4 Apr 2010).

11STEREO Mission website, http://stereo.jhuapl.edu/ (accessed 4 Apr
2010).

12Hill, A., Autonomy Metrics from the TIMED, CONTOUR, MESSEN-
GER, New Horizons and STEREO Missions, Technical Memorandum
SIE-07-040, JHU/APL, Laurel, MD (Aug 2007).

13Cancro, G., Innanen, W., Turner, R., Monaco, C., and Trela, M.
“Uploadable Executable Specification Concept for Spacecraft Auton-
omy Systems,” in Proc. IEEE Aerospace Conf., Big Sky, MT, pp. 1–12
(2007).

14Turner, R., Hooda, S., Gersh, J., and Cancro, G., “ExecSpec: Visu-
ally Designing and Operating a Finite State Machine-based Space-
craft Autonomy System,” 9th International Symposium on Artificial
Intelligence, Robotics and Automation for Space, Pasadena, CA
(26–29 Feb 2008)

15NuSMV website, http://nusmv.fbk.eu/ (accessed 4 Apr 2010).
16Pekala, M., and Cancro, G., “Verifying Executable Specifications of

Spacecraft Autonomy,” 9th International Symposium on Artificial
Intelligence, Robotics and Automation for Space, Pasadena, CA
(26–29 Feb 2008)

