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ith an increasing concern over emerging infec-
tious diseases, efficient and reliable public health 

monitoring is critical. The prototype models described 
in this article were built to aid public health officials in monitoring the health of their 
communities by increasing situational awareness and reducing false-positive iden-
tification of disease outbreaks. This comprehensive capability is needed to bolster 
public health acceptance of biosurveillance systems by making the complex infor-
mation environment more manageable and by achieving performance that is more 
robust. The models introduced in this article were built to recognize and differenti-
ate influenza outbreaks from the other seasonal respiratory activities. The models 
were tested with historical data collected by the Electronic Surveillance System for 
the Early Notification of Community-based Epidemics (ESSENCE) in the National 
Capital Region. Results show significant improvement in both the sensitivity and 
specificity of the detections compared with the ESSENCE algorithms.

INTRODUCTION
The increased threat of bioterrorism and naturally 

occurring diseases, such as pandemic influenza, continu-
ally forces public health authorities to review methods for 
evaluating data and reports. The objective of biosurveil-
lance is to process large amounts of data automatically 
to provide the user with an awareness of the health of 
the community.1–3 The report on bioterrorism prepared-
ness put out by the Agency for Healthcare Research and  

Quality identified several syndromic surveillance systems 
that are in use or in development.4 The Electronic Sur-
veillance System for the Early Notification of Commu-
nity-based Epidemics (ESSENCE), developed by APL 
under the sponsorship of the Defense Advanced Research 
Projects Agency for use in the Department of Defense 
Global Emerging Infections Surveillance and Response 
System,5 is one of these systems. ESSENCE is used in both  
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civilian health departments and military bases through-
out the United States and worldwide. In addition, 
ESSENCE is deployed as a network in both military and 
civilian installations. In the National Capital Region 
(NCR), the ESSENCE network allows the public health 
departments of Washington, DC, and several counties in 
the states of Maryland and Virginia to closely coordinate 
their work. Data collected within this network provide a 
unique resource for APL to work jointly with local health 
departments to develop new public health collaboration 
models that will enhance situational awareness. This 
requires a fundamentally new approach for the develop-
ment of algorithms for biosurveillance.

Algorithms currently deployed in most of the syn-
dromic surveillance systems provide statistical analysis 
of individual data streams to successfully detect data 
anomalies. These algorithms are capable of high sen-
sitivity, but this sensitivity comes at the cost of exces-
sive false positives,6 especially when multiple syndrome 
groups and data types are processed. These algorithms, 
which use univariate statistical anomaly detection tech-
niques, are good tools for quickly identifying potentially 
large disease outbreak events.7,8 System users manage 
false-alarm rates by ruling out the statistical data anom-
alies with alternative hypotheses derived from alterna-
tive syndromic and nonsyndromic sources. Thus, the 
function of the detection algorithms is early detection of 
the potential public health events, but the user’s objec-
tive is to make an informative decision based on a reli-
able situational-awareness picture. Another disadvan-
tage of syndromic surveillance systems is their inability 
to detect an anomalous health event that presents as 
only a few cases because the chief complaint data are 
not specific enough.

The tendency to deploy multivariate algorithms9,10 
and the need to increase users’ situational awareness 
mean that electronic syndromic surveillance should use 
decision support systems designed to directly aid clinical 
decision-making.11,12 The increasing volume of infor-
mation and its distributed nature requires the develop-
ment of advanced tools to enhance users’ performance 
in critical situations.

This article highlights three decision support models. 
Development of these models was initiated as an APL 
independent research and development project in 2007 
and later funded by the Centers for Disease Control and 
Prevention (CDC) as one of the projects for the JHU/
APL Center of Excellence in Public Health Informatics.

The first model is the Bayesian Information Fusion 
Model (BIFuM). Our research showed that a Bayesian 
Network (BN) performing multivariate information 
fusion can not only improve the specificity of the syn-
dromic surveillance system but can also increase users’ 
situational awareness by inferring data and recognizing 
the trends of outbreaks. The proposed method seeks 
to incorporate in the structure of the BN the subject 

matter expert’s decision-making process. The model is a 
probabilistic network that accepts the outputs of statisti-
cal algorithms and performs the inference to recognize 
disease trends in the same way that an epidemiologist 
would. The process includes multisource (rather than 
single-source) data processing and fusion. Information 
received from multiple health data sources is processed 
to detect anomalous data counts and then fused to dif-
ferentiate epidemiologically significant events from 
mathematical anomalies in the data that are irrelevant 
to the epidemiologist’s objective.

Furthermore, to show that emulating the collabora-
tive decision-making process can significantly increase 
situational awareness, we built a second model that is a 
network of the BN in the decision space.

Finally, to address the problem of syndromic data 
quality, we introduced our third model, which integrates 
diagnostic information and clinical data from electronic 
medical records (EMRs) within a syndromic surveil-
lance system.

All three models are decision-support rather than 
decision-making tools. They are not intended to replace 
public health experts; instead, the system analyzes avail-
able information and generates alarms that require the 
attention of a public health expert to decide whether 
additional investigation is necessary.

BIFuM
BIFuM is a probabilistic decision support model that 

consists of temporal anomaly detection algorithms and 
the BN.13–15 Temporal analysis algorithms detect statisti-
cal anomalies in the selected data queries within available 
data sources and generate alerts for anomalies above the 
threshold. The BN is used to estimate the epidemiological 
significance of the alerts and the public health status in 
a manner similar to the decision-making processes of the 
epidemiologist. Figure 1 shows the data-processing steps 
in the BIFuM. As an initial step, the model processes 
data counts from each data source using algorithms that 
ESSENCE currently deploys5 to detect statistical anoma-
lies within selected data queries. Queries were selected 
based on the correlations found when anomalies in the 
data were compared with published outbreak informa-
tion from the local health departments. In addition, 
queries were discussed with epidemiologists to refine and 
verify the epidemiological relevance of selected queries to 
the target disease. For example, during an influenza out-
break, fever, cough, or sore throat are words commonly 
found in chief complaints, which suggests that one of the 
selected queries should be a combination of these words. 
After discussion with the epidemiologist, the query was 
refined to “fever and cough or fever and sore throat” and 
selected for use in the model. Queries were processed on 
a daily basis, and alerts were generated when an anoma-
lous number of counts was detected.
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The next step is to synchronize the time offsets of 
detected anomalies for each query using a 7-day sliding 
window. The 7-day time period was chosen to incorpo-
rate a day-of-the-week effect within the model’s deci-
sion-making logic. The alert states are calculated every 
day for all of the selected queries. An alert state is “true” 
if an anomaly is detected within a query on the current 
day or any of the previous 6 days; otherwise, it is “false.” 
For example, for the query “fever” on 10 January, the 
alert status will be true if an anomalous number of data 
counts was detected on any day between 5 January and 
10 January. The alert statuses are used as inputs to the 
BN (Fig. 2), which is the final step in data processing. 
The BN estimates whether detected anomalies jointly 
create a pattern of the epidemiologically significant 
event relevant to the user’s objective.

The BN is a probabilistic graphical model presented 
as a directed acyclic graph. Nodes of the graph represent 
variables, and edges represent probabilistic dependencies 
between variables. The BN calculates the probability of 
the clusters of influenza cases within infant, child, adult, 
and elderly age groups and the probability of the out-
break within civilian and military data sources. Figure 
2 illustrates the structure of the network to calculate the 
conditional probability of the potential influenza-like ill-
ness (ILI) outbreak. The BN is structured so that it can 
classify alert states by the epidemiological significance 
criteria in the same way that an epidemiologist would do 
so manually. For example, one of the criteria is an age 
distribution in an ill population. If the epidemiologist  
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Figure 1.  Data-processing diagram.

Figure 2.  BN structure to calculate the conditional probability of a potential ILI outbreak. The output node is outlined in blue.
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sees an anomaly in data counts for the child popula-
tion, she or he may examine whether other age groups 
are showing an increased number of counts within the 
past several days, because one is unlikely to see influenza 
among only one age group. Our model will do the same 
thing—it will show a higher probability of an epidemio-
logically significant health event if more than one age 
group is affected by the disease within the past 7 days. 

Another criterion is the health data source. If anoma-
lies are detected within a particular data source (e.g., a 
military facility), the model will show a high probabil-
ity of the outbreak based on the source factors. If node 
military_factor (Fig. 2) has high probability for the true 
state, this means the military population across all age 
groups is affected by the disease. The civilian_factor 
node shows high probability of the true state when the 
civilian population is affected. This information may be 
potentially useful in identifying a manmade outbreak 
that may target a specific population. For example, if 
military_factor is most likely true but civilian_factor 
is most likely false, this means the affected population 
is predominantly military. The sources that the model 
processes are either chief complaints from emergency 
department (ED) ILI visits or military and civilian medi-
cal office visits with an International Classification of 
Diseases, Ninth Edition, diagnosis code for influenza 
(ICD-9-487). Mathematical data anomalies within each 

of the queries are detected with ESSENCE algorithms. 
Detections were normalized and entered into the BN, 
which estimated the likelihood that the detections rep-
resented an epidemiologically significant event. The 
results were displayed with intelligent visualization 
screens that provide drill-down capabilities and enable 
users to understand the model’s behavior when a high 
probability of an event of interest is occurring. 

The BIFuM was tested with the archived data col-
lected over a 3‑year period in the NCR. These data 
records were collected by ESSENCE between June 2003 
and May 2006. The records include classified and pro-
cessed chief complaints, discharge diagnoses and disposi-
tion from ED visits, ICD‑9 diagnosis codes from visits to 
physicians’ offices at military and civilian facilities, and 
over-the-counter (OTC) pharmacy transactions. All of 
these data are available to the users via ESSENCE.

Results showed a significant reduction in alerts com-
pared with the ESSENCE algorithms, as well as an 
improvement in specificity. Figure 3 shows the number 
of alerts that ESSENCE generated for the query “fever 
and sore throat” or “fever and cough” during a 3-year 
period. Figure 4 shows the probabilities of influenza 
generated by BIFuM. The clusters when BIFuM shows 
a high probability of ILI correlated well with both an 
increase in ILI cases in data counts and the laboratory-
confirmed influenza shown in Fig. 5. 
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Figure 3.  ESSENCE alarms and ED visits.

Figure 4.  Probabilities of influenza outbreak.
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The following is a detailed description of the high 
probability clusters for the 3-year period:

1.	 For the 2003–2004 season, influenza cases first 
appeared during weeks 45 and 46; the system detected 
46% probability of the outbreak on 12 November 
2003 (week 45) and >80% probability of outbreak at 
the end of November (weeks 47 and 48).

2.	 For the 2004–2005 season, influenza cases first 
appeared during weeks 49 and 50, with an increase in 
cases during week 52 to week 1, followed by the peak 
at the end of January and a second wave in the begin-
ning of February. BIFuM detected 56% probability of 
an outbreak on 12 December 2004 (week 50) and 
>80% probability of an outbreak at the beginning of 
January 2006 (week 1), followed by another increase 
in probability at the end of January. The system 
showed a high probability of outbreak until the end 
of February. However, the model showed a cluster of 
high probability of outbreak in the beginning of May, 
when there were still confirmed cases of influenza, 
but the number of counts was not increasing.

3.	 The 2005–2006 influenza season started later than 
usual. The first few cases appeared during week 52 
and then again during week 2, with a slight increase 
starting during weeks 4 and 5. The peaks were on 
weeks 8 and 11. BIFuM showed a high probability 
of outbreak during week 52 (30%) and then during 
weeks 1, 3, and 5; the last detection was during week 
10 (starting 12 March).

For all 3 years, BIFuM showed timely detection of 
the seasonal influenza outbreaks compared with state-
reported laboratory-confirmed results. It reduced the 
number of epidemiologically insignificant alerts com-
pared with the ESSENCE algorithms.

DECISION SUPPORT NETWORK OF THE BN
Although BIFuM showed a significant increase in 

the performance of the syndromic surveillance system, 

it used only local jurisdictions’ data and did not take 
advantage of existing regional networks and available 
regional information. The Decision Support Network 
of the BN (DSN BN) was built to utilize available 
regional information and provide users with the knowl-
edge based on the regional situational awareness pic-
ture. DSN BN was built for the NCR, which includes 
Washington, DC, the counties of Northern Virginia, 
and Montgomery County and Prince George’s County 
in Maryland. ILI was selected as the target disease. The 
network consists of ILI detection models to support 
county-, state-, and regional-level health authorities. 
The DSN BN is composed of BIFuMs for each locale. 
In addition to the data available to the local user, the 
network can integrate information received from 
the other models representing neighboring jurisdic-
tions in the region (Fig. 6). The situational picture in  
neighboring jurisdictions increases signals for the 
events that are happening within several counties. 
This is especially relevant for respiratory communi-
cable diseases such as influenza in large metropolitan 
areas where very often people commute daily from one 
county to another. For counties that have sparse data, 
a timely detection of the events is generally considered 
to be a challenging problem. To test our regional net-
work-centric model, we selected a county of Northern 
Virginia with sparse data and two neighboring counties 
where data were not sparse. Two fusion models for the 
county with the sparse data were built. The first model 
was receiving data from the local hospital and outpa-
tient medical facility visits only. The second model, in 
addition to the local data, was receiving information 
from two other fusion models about the probability of 
influenza in the neighboring counties. Although both 
models detected two seasonal influenza outbreaks, 
the second model detected both outbreaks earlier and 
showed a higher probably of the influenza not only in 
the beginning of the outbreak but also for all of the 
time periods when influenza cases were increasing. This 
finding suggests that the model may be sensitive to the 
different waves of influenza.
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Figure 5.  State-reported confirmed influenza cases. MMWR, MMWR Morbidity and Mortality Weekly Report.
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CLINICAL AND PUBLIC HEALTH DATA FUSION: EMR  
INTEGRATION IN SYNDROMIC SURVEILLANCE SYSTEM

The data sources that traditional syndromic surveil-
lance systems use are ED visits, chief complaints, OTC 
medication sales, school absenteeism, etc. These data 
sources and how they are organized have limitations such 
as data quality and lack of links between data sources. 
For example, there is no way to confirm that the person 
who buys OTC medication also had an outpatient medi-
cal facility visit. Also, available chief complaint data 
for hospital ED visits often do not accurately reflect the 
patient’s condition and present disease.

The objective of this research is to explore meth-
ods that will effectively integrate both clinical and  

syndromic surveillance data and 
develop decision support algorithms 
that provide information to both 
public health and clinical users pro-
actively. Multivariate information 
fusion algorithms based on utiliz-
ing new linked data sources from 
EMRs, in addition to the traditional 
syndromic data, will enhance out-
break recognition performance and 
will increase the public health user’s 
situational awareness. Our focus 
is to examine the value of labora-
tory, prescription medication, and 
radiology data linked to the patient 
encounter and build a model that 
can incorporate and utilize clinical 

linked data within syndromic surveillance systems. Our 
main objective is to use linked clinical data from EMRs to 
enhance the decision support component of the syndro-
mic surveillance system. Another objective is to increase 
the sensitivity of the model in order to detect initial cases 
of disease in the case of a bioterrorist attack.

The important new requirement to the model is to 
have a capability to perform data fusion with both linked 
and non-linked data and, based on processed individual 
patients’ records, derive a knowledge of the epidemio-
logical situation in the larger population. To address this 
requirement, a multilayer information fusion approach 
was developed (Fig. 7). 

Linked data have a common identifier showing 
that, for example, encounters, laboratory orders, and 

Figure 6.  Network of networks.
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Figure 7. Clinical and public health data integration model.
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radiology requests were from the same patient’s record. 
Selected linked data sources, such as laboratory requests 
and results, radiology requests, and prescription medica-
tion records were associated with the individual patient 
encounter number. These linked data records should 
be processed on the individual patient level and then a 
severity score assigned for each patient encounter. The 
severity score is calculated by considering both objective 
and subjective factors. The objective factors are relevant 
ICD-9 encounters, laboratory orders, prescriptions for 
medication, radiology orders, a history of chronic illness, 
or high-risk patient status. Subjective factors are patient 
or physician behavior, where the model’s goal is to detect 
unusual behavioral trends.

Severity scores are calculated for all of the patients 
who had an ILI encounter within the past 3-week period. 
Adjusted daily counts were calculated based on the sever-
ity scores and the number of daily visits. The adjusted 
daily count is a sum of the severity scores for the patients 
who have an ILI encounter. Patients are divided into 
infant, child, adult, and elderly age groups, and adjusted 
daily counts for each of the age groups are calculated. 
Adjusted daily counts are also calculated for patients with 
chronic diseases and those in the high-risk group.

Then, the model deploys temporal anomaly detection 
algorithms to detect anomalies in adjusted daily counts 
time series. Once an anomaly is detected, an alert state 
will be set up to true for a particular age group. For exam-
ple, on 9 January, the adjusted daily count for infants 
was higher than the expected value, which will result in 
setting alert status true for infants. Alert status values 
for each of the age groups are input to the Population 
Health BN that fuses this information with unlinked 
data sources, such as OTC medications. The Population 
Health BN is ultimately the estimator of the epidemio-
logical significance of the present situation.

CONCLUSIONS
Our analysis showed that fusion mechanisms can sig-

nificantly improve the performance of the syndromic sur-
veillance systems. Most importantly, our models showed 
that the specificity of the systems can be improved with-
out compromising sensitivity. Both specificity and sen-
sitivity can be improved when multivariate information 
fusion methods and temporal anomaly detection algo-
rithms are utilized within same model. While temporal 
anomaly detection algorithms can show high sensitivity 
on the single data streams, the information fusion algo-
rithms can “rule out” epidemiologically irrelevant pat-
terns, thus refining specificity of the system.

We are planning to diversify our models and create new 
ones that will be capable of detecting other illnesses and 
syndromes in addition to influenza. A new model being 
developed is targeting viral gastrointestinal illness (GI). 
Because cases of influenza are monitored and reported 
yearly to the public by CDC and local public health  

departments, we can retrospectively evaluate the perfor-
mance of each model. Although these models are show-
ing visible improvement in the specificity of detection 
compared to the historical ESSENCE data, the lack of 
reliable ground truth for most of the syndromes does not 
allow us to accurately measure each model’s performance. 
There are a number of system performance evaluation 
approaches16–18 for syndromic surveillance systems, but 
they mainly focus on the early detection function of the 
univariate algorithms; consequently, there is a need for 
evaluation methodologies for multivariate syndromic sur-
veillance systems. In addition, simulation of the outbreaks 
in multiple data sources remains a nontrivial problem.

Our next steps in development and evaluation of 
the decision support models for biosurveillance should 
be focused on cultivating APL’s existing close working 
relationship with local health departments to gather 
feedback and reliable ground truth information to  
prospectively evaluate model performance and to 
enhance the algorithms.

The JUH/APL Center of Excellence in Public Health 
Informatics is addressing these fundamental issues. Our 
ongoing initiatives include developing a standard meth-
odology for evaluating multivariate decision support sys-
tems for the public health domain, as well as develop-
ing simulation models to generate an outbreak based on 
linked clinical and public health data.
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