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A Brief Introduction to Design of Experiments

Jacqueline K. Telford

esign of experiments is a series of tests in which purposeful 
changes are made to the input variables of a system or pro-

cess and the effects on response variables are measured. Design of 
experiments is applicable to both physical processes and computer simulation models. 
Experimental design is an effective tool for maximizing the amount of information 
gained from a study while minimizing the amount of data to be collected. Factorial 
experimental designs investigate the effects of many different factors by varying them 
simultaneously instead of changing only one factor at a time. Factorial designs allow 
estimation of the sensitivity to each factor and also to the combined effect of two or 
more factors. Experimental design methods have been successfully applied to several 
Ballistic Missile Defense sensitivity studies to maximize the amount of information 
with a minimum number of computer simulation runs. In a highly competitive world 
of testing and evaluation, an efficient method for testing many factors is needed.

BACKGROUND
Would you like to be sure that you will be able to 

draw valid and definitive conclusions from your data 
with the minimum use of resources? If so, you should 
be using design of experiments. Design of experiments, 
also called experimental design, is a structured and orga-
nized way of conducting and analyzing controlled tests 
to evaluate the factors that are affecting a response vari-
able. The design of experiments specifies the particular 
setting levels of the combinations of factors at which  

the individual runs in the experiment are to be con-
ducted. This multivariable testing method varies the 
factors simultaneously. Because the factors are varied 
independently of each other, a causal predictive model 
can be determined. Data obtained from observational 
studies or other data not collected in accordance with a 
design of experiments approach can only establish cor-
relation, not causality. There are also problems with the 
traditional experimental method of changing one factor 
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at a time, i.e., its inefficiency and its inability to deter-
mine effects that are caused by several factors acting in 
combination.

BRIEF HISTORY
Design of experiments was invented by Ronald A. 

Fisher in the 1920s and 1930s at Rothamsted Experi-
mental Station, an agricultural research station 25 
miles north of London. In Fisher’s first book on design 
of experiments1 he showed how valid conclusions could 
be drawn efficiently from experiments with natural fluc-
tuations such as temperature, soil conditions, and rain 
fall, that is, in the presence of nuisance variables. The 
known nuisance variables usually cause systematic biases 
in groups of results (e.g., batch-to-batch variation). The 
unknown nuisance variables usually cause random vari-
ability in the results and are called inherent variability 
or noise. Although the experimental design method 
was first used in an agricultural context, the method 
has been applied successfully in the military and in 
industry since the 1940s. Besse Day, working at the U.S. 
Naval Experimentation Laboratory, used experimental 
design to solve problems such as finding the cause of bad 
welds at a naval shipyard during World War II. George 
Box, employed by Imperial Chemical Industries before 
coming to the United States, is a leading developer of 
experimental design procedures for optimizing chemical 
processes. W. Edwards Deming taught statistical meth-
ods, including experimental design, to Japanese scien-
tists and engineers in the early 1950s2 at a time when 
“Made in Japan” meant poor quality. Genichi Taguchi, 
the most well known of this group of Japanese scien-
tists, is famous for his quality improvement methods. 
One of the companies where Taguchi first applied his 
methods was Toyota. Since the late 1970s, U.S. indus-
try has become interested again in quality improvement 
initiatives, now known as “Total Quality” and “Six 
Sigma” programs. Design of experiments is considered 
an advanced method in the Six Sigma programs, which 
were pioneered at Motorola and GE.

FUNDAMENTAL PRINCIPLES
The fundamental principles in design of experi-

ments are solutions to the problems in experimentation 
posed by the two types of nuisance factors and serve 
to improve the efficiency of experiments. Those funda-
mental principles are

•	 Randomization
•	 Replication
•	 Blocking
•	 Orthogonality
•	 Factorial experimentation

Randomization is a method that protects against an 
unknown bias distorting the results of the experiment. 

An example of a bias is instrument drift in an experiment 
comparing a baseline procedure to a new procedure. If 
all the tests using the baseline procedure are conducted 
first and then all the tests using the new procedure are 
conducted, the observed difference between the proce-
dures might be entirely due to instrument drift. To guard 
against erroneous conclusions, the testing sequence of 
the baseline and new procedures should be in random 
order such as B, N, N, B, N, B, and so on. The instru-
ment drift or any unknown bias should “average out.”

Replication increases the sample size and is a method 
for increasing the precision of the experiment. Replica-
tion increases the signal-to-noise ratio when the noise 
originates from uncontrollable nuisance variables. A 
replicate is a complete repetition of the same experi-
mental conditions, beginning with the initial setup. A 
special design called a Split Plot can be used if some of 
the factors are hard to vary.

Blocking is a method for increasing precision by 
removing the effect of known nuisance factors. An 
example of a known nuisance factor is batch-to-batch 
variability. In a blocked design, both the baseline and 
new procedures are applied to samples of material from 
one batch, then to samples from another batch, and 
so on. The difference between the new and baseline 
procedures is not influenced by the batch-to-batch 
differences. Blocking is a restriction of complete ran-
domization, since both procedures are always applied 
to each batch. Blocking increases precision since the 
batch-to-batch variability is removed from the “experi-
mental error.” 

Orthogonality in an experiment results in the factor 
effects being uncorrelated and therefore more easily 
interpreted. The factors in an orthogonal experiment 
design are varied independently of each other. The 
main results of data collected using this design can often 
be summarized by taking differences of averages and can 
be shown graphically by using simple plots of suitably 
chosen sets of averages. In these days of powerful com-
puters and software, orthogonality is no longer a neces-
sity, but it is still a desirable property because of the ease 
of explaining results.

Factorial experimentation is a method in which the 
effects due to each factor and to combinations of fac-
tors are estimated. Factorial designs are geometrically 
constructed and vary all the factors simultaneously and 
orthogonally. Factorial designs collect data at the ver-
tices of a cube in p-dimensions (p is the number of fac-
tors being studied). If data are collected from all of the 
vertices, the design is a full factorial, requiring 2p runs. 
Since the total number of combinations increases expo-
nentially with the number of factors studied, fractions 
of the full factorial design can be constructed. As the 
number of factors increases, the fractions become smaller 
and smaller (1/2, 1/4, 

1/8, 1/16, …). Fractional factorial 
designs collect data from a specific subset of all possible  



J.  K.  TELFORD

Johns Hopkins APL Technical Digest,  Volume 27, Number 3 (2007)226

vertices and require 2p2q runs, with 22q being the frac-
tional size of the design. If there are only three factors in 
the experiment, the geometry of the experimental design 
for a full factorial experiment requires eight runs, and a 
one-half fractional factorial experiment (an inscribed 
tetrahedron) requires four runs (Fig. 1).

Factorial designs, including fractional factorials, have 
increased precision over other types of designs because 
they have built-in internal replication. Factor effects are 
essentially the difference between the average of all runs 
at the two levels for a factor, such as “high” and “low.” 
Replicates of the same points are not needed in a facto-
rial design, which seems like a violation of the replication 
principle in design of experiments. However, half of all 
the data points are taken at the high level and the other 
half are taken at the low level of each factor, resulting 
in a very large number of replicates. Replication is also 
provided by the factors included in the design that turn 
out to have nonsignificant effects. Because each factor 
is varied with respect to all of the factors, information 
on all factors is collected by each run. In fact, every data 
point is used in the analysis many times as well as in the 
estimation of every effect and interaction. Additional 
efficiency of the two-level factorial design comes from 
the fact that it spans the factor space, that is, puts half of 
the design points at each end of the range, which is the 
most powerful way of determining whether a factor has 
a significant effect.

USES
The main uses of design of experiments are

•	 Discovering interactions among factors
•	 Screening many factors
•	 Establishing and maintaining quality control
•	 Optimizing a process, including evolutionary opera-

tions (EVOP)
•	 Designing robust products

Interaction occurs when the effect on the response 
of a change in the level of one factor from low to high 
depends on the level of another factor. In other words, 
when an interaction is present between two factors, the 
combined effect of those two factors on the response 
variable cannot be predicted from the separate effects. 
The effect of two factors acting in combination can 
either be greater (synergy) or less (interference) than 
would be expected from each factor separately.

Frequently there is a need to evaluate a process 
with many input variables and with measured output 
variables. This process could be a complex computer 
simulation model or a manufacturing process with raw 
materials, temperature, and pressure as the inputs. A 
screening experiment tells us which input variables (fac-
tors) are causing the majority of the variability in the 
output (responses), i.e., which factors are the “drivers.” A 

screening experiment usually involves only two levels of 
each factor and can also be called characterization test-
ing or sensitivity analysis.

A process is “out of statistical control” when either 
the mean or the variability is outside its specifications. 
When this happens, the cause must be found and cor-
rected. The cause is found efficiently using an experi-
mental design similar to the screening design, except 
that the number of levels for the factors need not be two 
for all the factors.

Optimizing a process involves determining the shape 
of the response variable. Usually a screening design is 
performed first to find the relatively few important fac-
tors. A response surface design has several (usually three 
or four) levels on each of the factors. This produces a 
more detailed picture of the surface, especially provid-
ing information on which factors have curvature and on 
areas in the response where peaks and plateaus occur. 
The EVOP method is an optimization procedure used 
when only small changes in the factors can be tolerated 
in order for normal operations to continue. Examples of 
EVOP are optimizing the cracking process on crude oil 
while still running the oil refinery or tuning the welding 
power of a welding robot in a car manufacturing assem-
bly line.

Product robustness, pioneered by Taguchi, uses 
experimental design to study the response surfaces asso-
ciated with both the product means and variances to 
choose appropriate factor settings so that variance and 
bias are both small simultaneously. Designing a robust 
product means learning how to make the response vari-
able insensitive to uncontrollable manufacturing process 
variability or to the use conditions of the product by the 
customer.

MATHEMATICAL FORMULATION AND TERMINOLOGY
The input variables on the experiment are called 

factors. The performance measures resulting from the 
experiment are called responses. Polynomial equations 

Figure 1.  Full factorial and one-half factorial in three  
dimensions.
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are Taylor series approximations to the unknown true functional form of the 
response variable. An often quoted insight of George Box is, “All models 
are wrong. Some are useful.”3 The trick is to have the simplest model that 
captures the main features of the data or process. The polynomial equation, 
shown to the third order in Eq. 1, used to model the response variable Y as a 
function of the input factors X’s is

	

    

Y = �0 + �i Xi + �ij
j = 1

p

∑ Xi X j
i = 1

i ≠ j

p

∑ + �ijk
k = 1

p

∑
j = 1

i ≠ j ≠ k

p

∑
i = 1

p

∑ Xi X j Xk + L ,
i = 1

p

∑  (1)

where 

β0	 =	the overall mean response,
βi	 =	the main effect for factor (i = 1, 2,  ... , p),
βij	 =	the two-way interaction between the ith and jth factors, and
βijk	=	the three-way interaction between the ith, jth, and kth factors.

Usually, two values (called levels) of the X’s are used in the experiment for 
each factor, denoted by high and low and coded as 11 and 21, respectively. 
A general recommendation for setting the factor ranges is to set the levels 
far enough apart so that one would expect to see a difference in the response 
but not so far apart as to be out of the likely operating range. The use of only 
two levels seems to imply that the effects must be linear, but the assumption 
of monotonicity (or nearly so) on the response variable is sufficient. At least 
three levels of the factors would be required to detect curvature.

Interaction is present when the effect of a factor on the response variable 
depends on the setting level of another factor. Graphically, this can be seen 
as two nonparallel lines when plotting the averages from the four combina-
tions of high and low levels of the two factors. The βij terms in Eq. 1 account 
for the two-way interactions. Two-way interactions can be thought of as the 
corrections to a model of simple additivity of the factor effects, the model 
with only the βi terms in Eq. 1. The use of the simple additive model assumes 
that the factors act separately and independently on the response variable, 
which is not a very reasonable assumption.

Experimental designs can be categorized by their resolution level. A 
design with a higher resolution level can fit higher-order terms in Eq. 1 than 
a design with a lower resolution level. If a high enough resolution level design 
is not used, only the linear combination of several terms can be estimated, 
not the terms separately. The word “resolution” was borrowed from the term 
used in optics. Resolution levels are usually denoted by Roman numerals, 
with III, IV, and V being the most commonly used. To resolve all of the 
two-way interactions, the resolution level must be at least V. Four resolution 
levels and their meanings are given in Table 1.

IMPLEMENTATION
The main steps to implement 

an experimental design are as fol-
lows. Note that the subject matter 
experts are the main contributors to 
the most important steps, i.e., 1–4, 
10, and 12.

  1.	 State the objective of the 
study and the hypotheses to be 
tested.

  2.	 Determine the response vari-
able(s) of interest that can be 
measured.

  3.	 Determine the controllable fac-
tors of interest that might affect 
the response variables and the 
levels of each factor to be used 
in the experiment. It is better 
to include more factors in the 
design than to exclude factors, 
that is, prejudging them to be 
nonsignificant.

  4.	 Determine the uncontrollable 
variables that might affect the 
response variables, blocking 
the known nuisance variables 
and randomizing the runs to 
protect against unknown nui-
sance variables.

  5.	 Determine the total number 
of runs in the experiment, ide-
ally using estimates of variabil-
ity, precision required, size of 
effects expected, etc., but more 
likely based on available time 
and resources. Reserve some 
resources for unforeseen con-
tingencies and follow-up runs. 
Some practitioners recommend 
using only 25% of the resources 
in the first experiment.

  6.	 Design the experiment, remem-
bering to randomize the runs.

  7.	 Perform a pro forma analy-
sis with response variables as 
random variables to check 
for estimability of the factor 
effects and precision of the  
experiment.

  8.	 Perform the experiment strictly 
according to the experimen-
tal design, including the initial 
setup for each run in a physical 
experiment. Do not swap the run 
order to make the job easier.

Table 1.  Resolution levels and their meanings.

Resolution level Meaning
II Main effects are linearly combined with each other (bi 1 bj).
III Main effects are linearly combined with two-way interactions 

(bi 1 bjk).
IV Main effects are linearly combined with three-way interac-

tions (bi 1 bjkl) and two-way interactions with each other 
(bij 1 bkl).

V Main effects and two-way interactions are not linearly com-
bined except with higher-order interactions (bi 1 bjklm and 
bij 1 bklm).
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  9.	 Analyze the data from the experiment using the 
analysis of variance method developed by Fisher.

10.	 Interpret the results and state the conclusions in 
terms of the subject matter.

11.	 Consider performing a second, confirmatory experi-
ment if the conclusions are very important or are 
likely to be controversial.

12.	 Document and summarize the results and conclu-
sions, in tabular and graphical form, for the report 
or presentation on the study.

NUMBER OF RUNS NEEDED FOR FACTORIAL  
EXPERIMENTAL DESIGNS

Many factors can be used in a screening experiment 
for a sensitivity analysis to determine which factors are 
the main drivers of the response variable. However, as 
noted earlier, as the number of factors increases, the 
total number of combinations increases exponentially. 
Thus, screening studies often use a fractional factorial 
design, which produces high confidence in the sensitiv-
ity results using a feasible number of runs.

Fractional factorial designs yield polynomial equa-
tions approximating the true response function, with 
better approximations from higher resolution level 
designs. The minimum number of runs needed for Reso-
lution IV and V designs is shown in Table 2 as a function 
of the number of factors in the experiment. 

There is a simple relationship for the minimum 
number of runs needed for a Resolution IV design: 
round up the number of factors to a power of two and 
then multiply by two. The usefulness of Table 2 is to 
show that often there is no penalty for including more 
factors in the experiment. For example, if 33 factors 
are going to be studied already, then up to 64 factors 
can be studied for the same number of runs, namely, 
128. It is more desirable to conduct a Resolution V 
experiment to be able to estimate separately all the 
two-way interactions. However, for a large number of 
factors, it may not be feasible to perform the Resolu-
tion V design. Because the significant two-way inter-
actions are most likely to be combinations of the sig-
nificant main effects, a Resolution IV design can be 
used first, especially if it is known that the factors have 
monotonic effects on the response variable. Then a 
follow-up Resolution V design can be performed to 
determine if there are any significant two-way interac-
tions using only the factors found to have significant 
effects from the Resolution IV experiment. If a fac-
torial design is used as the screening experiment on 
many factors, the same combinations of factors need 
not be replicated, even if the simulation is stochastic. 
Different design points are preferable to replicating 
the same points since more effects can be estimated, 
possibly up to the next higher resolution level.

APPLICATION TO A SIMULATION MODEL

Screening Design
Design of experiments was used as the method for 

identifying Ballistic Missile Defense (BMD) system-of-
systems needs using the Extended Air Defense Simu-
lation (EADSIM) model. The sensitivity analysis pro-
ceeded in two steps:

1.	 A screening experiment to determine the main 
drivers

2.	 A response surface experiment to determine the 
shape of the effects (linear or curved)

The primary response variable for the study was pro-
tection effectiveness, i.e., the number of threats negated 
divided by the total number of incoming threats over 
the course of a scenario, and the secondary response 
variables were inventory use for each of the defensive 
weapon systems. 

The boxed insert shows the 47 factors screened in the 
study. These factors were selected by doing a functional 

Table 2.  Two-level designs: minimum number of runs as a function of 
number of factors.

Factors Runs
Resolution IV

    1           2
    2           4 = 22

    3–4           8 = 23

    5–8         16 = 24

    9–16         32 = 25

  17–32         64 = 26

  33–64       128 = 27

  65–128       256 = 28

129–256       512 = 29

Resolution V
    1           2
    2           4 = 22

    3           8 = 23

    4–5         16 = 24

    6         32 = 25

    7–8         64 = 26

    9–11       128 = 27

  12–17       256 = 28

  18–22       512 = 29

  23–31   1,024 = 210

  32–40   2,048 = 211

  41–54   4,096 = 212

  55–70   8,192 = 213

  71–93 16,394 = 214

  94–119 32,768 = 215
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Forty-seven Factors to be Screened TO IDENTIFY BMD SYSTEM-OF-SYSTEMS NEEDS

Threat radar cross section GB lower tier 2 reaction time

Satellite cueing system probability of detection GB lower tier 2 Pk

Satellite cueing system network delay GB lower tier 2 Vbo

Satellite cueing system accuracy SB lower tier time to acquire track

Satellite cueing system time to form track SB lower tier time to discriminate

GB upper tier time to acquire track SB lower tier time to commit

GB upper tier time to discriminate SB lower tier time to kill assessment

GB upper tier time to commit SB lower tier probability of correct discrimination

GB upper tier time to kill assessment SB lower tier Pk assessment

GB upper tier probability of correct discrimination SB lower tier launch reliability

GB upper tier probability of kill (Pk) assessment SB lower tier reaction time

GB upper tier launch reliability SB lower tier Pk

GB upper tier reaction time SB lower tier Vbo

GB upper tier Pk Network delay

GB upper tier burnout velocity (Vbo) Lower tier minimum intercept altitude

GB lower tier time to acquire track Upper tier minimum intercept altitude

GB lower tier time to discriminate ABL reaction time 

GB lower tier time to commit ABL beam spread

GB lower tier probability of correct discrimination ABL atmospheric attenuation

GB lower tier 1 launch reliability ABL downtime

GB lower tier 1 reaction time GB upper tier downtime

GB lower tier 1 Pk GB lower tier downtime

GB lower tier 1 Vbo SB lower tier downtime

GB lower tier 2 launch reliability

decomposition of the engagement process for each defen-
sive weapon system, that is, a radar must detect, track, 
discriminate, and assess the success of intercept attempts 
and the accuracy, reliability, and timeline factors associ-
ated with each of those functions.

A fractional factorial experimental design and 
EADSIM were used to screen the 47 factors above for their 
relative importance in far-term Northeast Asia (NEA) 
and Southwest Asia (SWA) scenarios over the first 10 
days of a war. A three-tiered defense system was employed 
for both scenarios, including an airborne laser (ABL), a 
ground-based (GB) upper tier, and a lower tier comprising 
both ground-based and sea-based (SB) systems.

We initially conducted 512 EADSIM runs to screen 
the sensitivities of the 47 factors in the NEA scenario. 
This is a Resolution IV design and resolves all of the 47 
main factors but cannot identify which of the 1081 pos-
sible two-way interactions are significant. 

After analyzing results from the initial 512 runs, 17 
additional, separate experimental designs were needed 
(for a total of 352 additional EADSIM runs) to identify 
the significant two-way interactions for protection effec-
tiveness. We learned from the NEA screening study that 

more runs were warranted in the initial experiment to 
eliminate the number of additional experiments needed 
to disentangle all the two-way interactions. For the SWA 
screening study, we conducted 4096 EADSIM runs to 
find the 47 main factors and all 1081 two-way interac-
tions for the 47 factors. This was a Resolution V design. 
An added benefit of conducting more experiments is 
that SWA error estimates are approximately one-third 
the size of NEA error estimates, i.e., the relative impor-
tance of the performance drivers can be identified with 
higher certainty in SWA compared to NEA, which can 
be seen in Fig. 2. Note that only a very small fraction of 
the total number of possible combinations was run, 1 in 
275 billion since it is a 247238 fractional factorial, even 
for the Resolution V design.

Figure 2 illustrates the main factor sensitivities to 
the 47 factors for both the NEA and SWA scenarios, 
labeled F1 to F47. The colored dots represent the change 
of protection effectiveness to each factor, and the error 
bars are 95% confidence bounds. The y-axis is the differ-
ence in the average protection effectiveness for a factor 
between the “good” and “bad” values. Factors are deter-
mined to be performance drivers if the 95% confidence 
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Figure 2.  Change in protection effectiveness: 47 main effects and 95% confidence limits.

bounds do not include zero as a probable result. Factors 
shown in red in Fig. 2 were found to be performance 
drivers in both scenarios. Factors in blue were found to 
be drivers in NEA only, and factors in green were found 
to be drivers in SWA only. Factors that were not found 
to be drivers in either scenario are shown in gray. (The 
factors in Fig. 2 are not listed in the same order as they 
appear in the boxed insert.)

The factors in Fig. 2 are sorted in numerical order of 
their effects in the NEA scenario. The red factors all 
appear in the left quarter of the SWA graph, indicat-
ing that many of the same factors that are most impor-
tant in the NEA scenario are also the most important 
in the SWA scenario. The important factors that differ 
between the two scenarios, coded in blue and green, 
result from the geographic (geometric, laydown, and 
terrain) differences in those two theaters.

The two-way interactions (1081) are too numerous to 
show in a figure similar to the one for the main effects. 
However, the vast majority of the two-way interactions 
are quite small. An example of a significant interaction 
effect can be seen in Fig. 3, shown graphically by the 
two lines not being parallel. The increase in protection  

effectiveness from improving 
Factor 6 is large if Factor 9 is at 
the low level, but essentially zero 
if Factor 9 is at its high level. (Fac-
tors 6 and 9 are not the sixth and 
ninth values listed in the boxed 
insert.) Data would not have 
been collected at the 11 level 
for Factors 6 and 9 in the tradi-
tional change-one-factor-at-time 
experiment, starting at the 21 
level for both factors. The pro-
tection effectiveness value at 11 
for both factors would probably 
be overestimated from a change-
one-factor-at-time experiment. 
Only by varying both factors at 
the same time (the Factorial prin-
ciple) can the actual effect of two 
factors acting together be known.

Response Surface Design
Once a screening experiment 

has been performed and the 
important factors determined, 
the next step is often to perform 
a response surface experiment 
to produce a prediction model 
to determine curvature, detect 
interactions among the factors, 
and optimize the process. The 
model that is frequently used to 
estimate the response surface is 

the quadratic model in Eq. 2:

	

   

Y = �0 + �i Xi + �ij
j = 1

p

∑ Xi X j
i = 1

i ≠ j

p

∑ + �ii Xi
2

i = 1

p

∑
i = 1

p

∑ , 	 (2)

where	

β0	=	the overall mean response,
βi 	=	the main effect for each factor (i = 1, 2, ... , p),
βij 	=	the two-way interaction between the ith and jth 

factors, and
βii 	=	the quadratic effect for the ith factor.

To fit the quadratic terms in Eq. 2, at least three 
levels for the input X variables are needed, that is, high, 
medium, and low levels, usually coded as 11, 0, and 21. 
A total of 3p computer simulations are needed to take 
observations at all the possible combinations of the 
three levels of the p factors. If 2p computer simulations 
represent a large number, then 3p computer simulations 
represent a huge number. The value of conducting the 
initial screening study is to reduce p to a smaller number, 
say k. Even so, 3k computer simulations may still be  
prohibitively large.
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The minimum number of runs needed for a three-
level Resolution V design as a function of the number of 
factors is shown in Table 3. From the two-level screen-
ing designs, 11 main effects were statistically significant 
and have at least a 1% effect on protection effectiveness. 
Table 3 shows that for 11 factors, a minimum number of 
243 runs are needed. Notice that 36 factors out of the 
original 47 have been deemed nonsignificant and will be 
dropped from further experimentation. 

An example of a significant quadratic main effect 
(Factor 9) and a significant two-way interaction between 
Factors 6 and 9 for the three-level fractional factorial 
response surface experiment is shown in Fig. 4. There are 
different values in protection effectiveness when Factor 
9 is at the low level (21), depending on whether the level 
of Factor 6 is a the low, medium, or high level, but very 
little difference if Factor 9 is at the high level (11). The 
shape of the lines in Fig. 4 is curved, indicating that a 
quadratic term is needed for Factor 9 in the polynomial 
equation. (Factors 6 and 9 are not the sixth and ninth 
factors listed as in the boxed insert.)

The polynomial equation for protection effectiveness 
with quadratic and cross-product terms resulting from 
the 31126 fractional factorial response surface experiment 
is shown in Eq. 3. The size of a factor effect on protection 
effectiveness is actually twice as large as the coefficients 
on the X terms since the coefficients are actually slopes 
and X has a range of 2 (from 21 to 11).

 	   	

Figure 3.  Protection effectiveness: two-way interaction between 
Factors 6 and 9 from the screening experiment.

The full study comprised not only an examination 
of two theaters (NEA and SWA) but also four force 
levels in each theater. All of the analyses shown previ-
ously were conducted at Force Level 4, which is com-
parable to a “Desert Storm”–level of logistics support 
before the operation. Force Level 1 is a rapid response 
with no prior warning and limited weapons available. 
Force Levels 2 and 3 are intermediate between Levels 
1 and 4. The response surfaces for the four force levels 
in the NEA scenario are shown in Fig. 5. The indi-
vidual graphs are the response surfaces for Factors 9 
and 11, the two largest main effects for Force Level 
4. There is a very noticeable curvature for Factor 9, 
especially at Force Levels 1 and 2. As the force level 
increases, protection effectiveness increases. The dif-
ferent color bands are 5% increments in protection 
effectiveness: red is between 65% and 70% and orange 
is between 90% and 95%. The response surfaces flat-
ten out and rise up as the force level increases, that is, 
protection effectiveness improves and is less sensitive 
to changes in the factors. As the force level increases, 
there are more assets available, so the reliance on the 
performance of any individual asset diminishes. (Fac-
tors 9 and 11 are not the ninth and eleventh values 
listed in the boxed insert.)

Table 3.  Three-level Resolution V designs: minimum number of runs 
as a function of number of factors.

Factors Runs

  1 3

  2 9 = 32

  3 27 = 33

  4–5 81 = 34

  6–11 243 = 35

12–14 729 = 36

15–21 2187 = 37

22–32 6561 = 38

Figure 4.  Protection effectiveness: quadratic main effect and 
two-way interaction between Factors 6 and 9 from the Response 
Surface Experiment.(3)  

PE = 0.938 + 0.035X9 + 0.026X11 + 0.017X5

+ 0.016X2 + 0.015X6 + 0.014 X1 + 0.012 X7

+ 0.011X4 + 0.007X3+ 0.006 X8 − 0.011X6 X9

− 0.007X8 X9 − 0.007X2 X5 − 0.006X5 X7

− 0.005X3 X9 − 0.005X5 X6 − 0.005X1 X5

− 0.019 X9
2 − 0.011X5

2 − 0.009 X11
2 − 0.008 X4

2

− 0.006 X3
2 − 0.006 X2

2 .
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CONCLUSION
Design of experiments has been applied success-

fully in diverse fields such as agriculture (improved 
crop yields have created grain surpluses), the petro-
chemical industry (for highly efficient oil refineries), 
and Japanese automobile manufacturing (giving them 
a large market share for their vehicles). These develop-
ments are due in part to the successful implementation 
of design of experiments. The reason to use design of 
experiments is to implement valid and efficient exper-
iments that will produce quantitative results and sup-
port sound decision making.
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Figure 5.  Protection effectiveness response surfaces for Factors 9 and 11 at four 
force levels in the NEA theater.
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