
Johns Hopkins APL Technical Digest, Volume 26, Number 4 (2005)	 421

THE FUTURE OF SOFTWARE DEVELOPMENT AND ITS IMPACT ON APL

O

The Future of Software Development and Its Impact
on APL

Paul A. Hanke, Hilary L. Hershey, and Pamela A. Smith

n a cold morning in January 2015, Kendall McNeill, an APL Service Ecosystem Software
Developer, arrives at her office and her hand-sized, personal/business computer/phone is auto-
matically connected into the desktop peripheral support station with high-speed, secure network
connections, additional storage, several large touch screen displays, etc. A verbal command vali-
dates her identity and connects her to the peripherals.

One of Kendall’s large displays is dedicated to the online team interaction management space
where team members working at home and located physically throughout APL and its field offices
interact via managed collaboration processes in which development artifacts are tracked and shared.
On a second screen, she brings up the graphical palette through which she does all “programming”
and begins work on an interface ontology that will permit the semantic middleware to expose an
aging system as a collection of user-specified services within the user’s next-generation service
ecosystem. She drags a “web service adapter” component onto the workspace and sets the under-
lying communications as SOAP 3.1. The semantic agent in the adapter displays its best guess at
an interface ontology to map the aging system’s interface to the user’s service interface specifica-
tions; Kendall starts correcting and fine-tuning the agent’s initial guesswork and takes note of the
semantic gaps that will have to be filled by external sources. Meanwhile, a Requirements Change
process workspace appears on her team display, and the voice of the systems engineer on the proj-
ect, Liam Franks, speaks: “I just reviewed the latest User Process Execution Language software
submitted by our client and it introduces a new service abstraction to their ecosystem—I think we
can implement this new service via the system you are currently abstracting. As you can see from
the user’s simulation results, the nonfunctional constraints for this new service are. . . .” Kendall
views the new service specification in real time and tells Liam she needs to pull in Jacob. She drags
Jacob’s picture into the Requirements Change process workspace, where they discuss the viability
of the change as well as potential impacts and rework. Their discussion session is recorded within
the context of the Requirements Change process instance and will be stored in the project archive
for future reference. The group estimates that the change is realizable within project constraints,
and Liam accepts the change. The Requirements Change process concludes by merging the new
service specification and Liam’s design decisions into the project requirements and design artifacts,
respectively, as well as deploying the user’s software to the development environment.

422	 Johns Hopkins APL Technical Digest, Volume 26, Number 4 (2005)

P.  A. H ANKE, H .  L. HERSHE Y  and P .  A. SMI TH 

INTRODUCTION
This scenario is not that farfetched. Traditional

approaches to the development of traditional mono-
lithic software systems have emphasized requirements
discovery, design, coding, testing, and deployment itera-
tions in various time cycles, with each stage having dis-
tinct methods, tools, and terminology. Unfortunately,
such traditional approaches are geared toward the devel-
opment of software systems that address only isolated
parts of the mission of an organization and, with deliv-
ery cycles that can be measured in years, are typically
obsolete with respect to the organization’s evolving mis-
sion by the time they are deployed. Thus, the discipline
is moving away from the development of monolithic
software systems toward the development of integrated
systems of systems and on to globally distributed eco-
systems of services where a “system” may indeed exist
only ethereally, assembled on the fly in response to user
input. As such, the role of “programmer” is permeating
all the way out to the user. We are beginning to see the
seeds of new software development paradigms where the
activities of requirements discovery, design, coding, and
testing are continuous processes carried out at multiple
levels of abstraction, where the software developed by
domain experts at higher levels of abstraction forms the
requirements specifications for the next level down, and
where the software developed at lower levels of abstrac-
tion implements the nontechnical, domain-specific
“programming primitives” for the next level up. Add to
this the ongoing advancements in computer support for
knowledge work and team collaboration, and a vision
for the software development of tomorrow begins to
coalesce—a vision that supports the full breadth of an
organization’s mission and at the same time is responsive
to the (sometimes rapid) evolution of that mission.

This article peers into the fog and attempts to locate
factors that will lead us toward a next generation of
software development that can fulfill this vision. We
limit ourselves to four broadly defined areas in which
we expect to see the largest divergence from current
software development practices: the art and science of
software development, programming languages, ecosys-
tems of services, and computer support for knowledge
work and team interaction. The goal of this article is to
forecast a list of nontraditional competencies that APL
will need in order to continue to contribute in both a
science and technology domain and as a trusted partner
with our sponsors.

Art and Science
We can define “development” in the abstract as the

systematic application of art (e.g., project management)
and science (e.g., predictive models) to otherwise unpre-
dictable creative and constructive endeavors with the
goal of making them more predictable. Many of the

more mature development disciplines enjoy relatively
high degrees of predictability as a result of a highly
stable substrate (e.g., physics) upon which to anchor
their science.

Unfortunately, the discipline of software develop-
ment today does not have a mature science (and quite
possibly no stable substrate upon which to anchor that
science). At the lowest levels, computer science provides
a set of theoretic models—information theory, automata
theory, computability theory, etc.—that yield good pre-
dictions for what can and cannot be computed (either
in the absolute or within a tractable amount of time).
However, at the levels where the science meets develop-
ment (e.g., automata theory, a mathematical model of
computation and the basis of many imperative program-
ming languages), things are less well defined. Automata
theory provides a good model for monolithic computa-
tional structures, but it is not as well suited as a model
of today’s integrated systems of systems nor tomorrow’s
distributed ecosystems of services. Alternative theoreti-
cal constructs (e.g., the pi calculus, a calculus of com-
municating processes) are emerging to fill the void.
Whether any of these alternatives will simply comple-
ment or actually replace automata theory in a Kuhnian
paradigm shift remains to be seen. And as far as the
stability of the substrate goes, new advancements in
computing (e.g., quantum computing) threaten to upset
the pillar of mainstream computer science down to its
very foundations.

Without a mature science upon which to base the
predictability of the endeavor, software development
today is instead heavily focused on the art component
of development. In fact, the art of development has been
so extended by software development in its short his-
tory that it is informing the other development disci-
plines with ways and means to enhance predictability in
those endeavors as well. Some of the biggest advance-
ments in the art relate to dealing with extreme com-
plexity; today’s software systems are some of the most
complex systems ever devised by humankind. There
have been monumental failures, such as the Federal
Aviation Administration’s Advanced Automation
System, and monumental successes, such as the World
Wide Web. These two exemplars demonstrate the range
of organization of software systems themselves (highly
structured versus self-organized) as well as the range of
organization of the groups that build them (bureaucratic
versus social).

The art of software development is currently focused
on highly structured software systems built by bureau-
cratic organizations through the application of system-
atic approaches such as industry standards (e.g., the
unified modeling language [UML], web services), model-
based approaches to development (e.g., model-driven
architecture [MDA]), and knowledge-based approaches
to development (e.g., design patterns). However,

Johns Hopkins APL Technical Digest, Volume 26, Number 4 (2005)	 423

THE FUTURE OF SOFTWARE DEVELOPMENT AND ITS IMPACT ON APL

in the future (and with the current momentum steer-
ing toward loosely coupled ecosystems of services that
are evolved in a social context), the software develop-
ment discipline may in time become a driving force in
the ongoing development of the nascent sciences of
complexity (nonlinear dynamics, chaos theory, etc.) as
a means toward understanding (at least qualitatively at
first) the evolution and behavior of these self-organizing
systems.

APL has the opportunity to contribute on numer-
ous fronts here—from the advancement of computing
(e.g., quantum computing) and the associated models of
computing (computer science) via pure research through
advancing the art and science of software development
(e.g., project oversight and the sciences of complexity)
—via applied research and development. And with the
experience gained through such endeavors, APL will be
able to assist and guide our sponsors in the application
of these advancements.

Programming Languages
Programming languages are the way we express pre-

cisely (in the most literal sense) what it is we want our
computers to do. The first programming languages were
those spoken by computers natively: machine codes.
These programming languages forced the programmer
to think like the machine all the way down to the bit
level. Not only was this incredibly tedious work (humans
do not naturally think in machine codes), but it required
huge amounts of manual translation to get from an
end-user’s requirements down to the working software.
As requirements were typically expressed in imprecise
human language, interpretational errors frequently arose,
and the frequency increased with the size of the project
as there were more humans (e.g., designers) interjected
between the end user and the programmer (allowing for
multiple layers of interpretational error). And when the
cost of computing hardware began a dramatic nosedive,
the expense of developing software in this labor-inten-
sive and error-prone way began to stand out like a sore
thumb. (See the box, “Five Generations.”)

Assembly languages were the first improvement over
programming in machine codes. Essentially, assembly
languages represented bit-level machine codes with
mnemonic symbols, thus allowing the programmer to
think in terms of machine instructions. This device
improved the speed at which a human could program
a computer by reducing the amount of memory the
human had to devote to rote memorization (mnemonic
symbols instead of bit strings) as well as by reducing the
number of keystrokes involved. However, assembly lan-
guages were just the computer’s native language coated
in a symbolic sugar. Thus, assembly language did noth-
ing to reduce human interpretational error.

The next evolutionary step in programming lan-
guages was the first of the so-called third-generation lan-
guages (3GL). Many of the 3GLs are heavily influenced
by automata theory and in addition provide structural
elements (e.g., “for” loops) that represent more natural
ways for humans to think (when compared to machine
instructions). 3GLs mark the first step up the ladder
toward executable end-user requirements; 3GLs allow
the function-level structural elements of software to
be expressed as abstract requirements, which can then

A Little Software Development
Jargon
Design patterns:  Design patterns are standard repre-
sentations of innovative solutions to common problems
that have evolved over time. As such, they capture and
disseminate industry knowledge and expertise and form
a common solutions vocabulary that greatly enhances
communication among software developers.

Engineering:  Some people define “engineering” as the
science end of the development spectrum (the art com-
ponent of development is then referred to as “engineering
management”), whereas other people consider “engineer-
ing” to be synonymous with development. There is an
ongoing debate on this subject, and the former definition
is often cited to question whether there is such a thing as
“software engineering.” Here we avoid this political fog
by refraining from the use of the word.

Industry standards:  Industry standards pave the way to-
ward seamless integration at all levels of software develop-
ment, be it the communication of modeling artifacts via
the unified modeling language (UML) to the run-time
interoperation of software components via the web ser-
vices standards. Widespread acceptance of industry stan-
dards is a necessary step in the maturation of an industry,
as evidenced, for example, by the electronics component
industry. The software development industry is finally be-
ginning to appreciate and embrace this reality.

Model-driven architecture:  The goal of the MDA ini-
tiative is to use standards-based modeling languages as
formal development languages. Fully expressed MDA
models can be directly executed and “compiled” into 3GL
languages and other lower-level development artifacts.

Ontology:  Ontology refers to the full spectrum of
knowledge representation. Examples range from simple
taxonomies to thesauri to conceptual models and all the
way to logical theories. The more interesting ontologies,
such as conceptual models and logical theories, enable
automated reasoning. Automated reasoning facilitates
the automation of decision support and knowledge man-
agement, and thus ontology forms a cornerstone of the
semantic web.

Semantic web:  The semantic web is a vision of the
Internet populated with machine-processable data. This
vision is not an academic stretch for a new artificial intel-
ligence, but rather an application of the pragmatic fallout
of existing artificial intelligence research. The business
case for the semantic web is the facilitation of automated
decision support and knowledge management.

424	 Johns Hopkins APL Technical Digest, Volume 26, Number 4 (2005)

P.  A. H ANKE, H .  L. HERSHE Y  and P .  A. SMI TH 

Five Generations of Programming Languages

Generation Term  Began in Description
First Machine

code
The begin-
ning

The actual 0s and 1s that computers still actually load and execute. Early
programmers developed programs using this numeric representation of in-
structions and data. 0100010111100011 might represent the “Move value
to registry” function.

Second Assembly 1950s A symbolic representation of machine code, where 0100010111100011
would be written as “MOVR” or “move value to registry.” Assemblers would
translate this symbolic representation to machine code. Both machine code
and assembly are highly dependent on the underlying processor. When the
processor changes, the code must be rewritten.

Third High-level
language

1960s These human-readable languages support constructs such as “IF-THEN-
ELSE” and named variables. Adding three variables together may take eight
lines of code in assembly language but could be represented as a single state-
ment “A=B+C+D” in a 3GL. 3GLs are the last in the evolutionary line of
programming languages to be completely general-purpose.

Fourth Very-
high-level
language

1980s These languages include support for the end use of the software without be-
coming domain-specific. Examples of 4GLs include form generators, report
generators, and database query languages. Often, a 4GL will have pragmatic
(as opposed to theoretic) origins. 4GLs are “niche languages” in that they
cannot be used to implement entire software systems; rather, 4GLs are ap-
plied as a time-saving device within specific areas of the system.

Fifth 1990s These languages allow the expression of nonalgorithmic rules, constraints,
etc., which the computer then uses to solve a problem. They are sometimes
called “declarative” to distinguish them from the imperative languages and
frequently originate in artificial intelligence. An example of a 5GL is the
OPS5 expert systems language. The use of 5GLs is increasing with the rise of
the business rule engine market.

be mechanically translated (“compiled”) into machine
codes that implement requirements so expressed. 3GLs
allow humans to think more naturally. But the 3GLs
accomplish something else of even greater import: they
eliminate an entire level of human interpretational error;
an algorithm can be specified in the abstract in a 3GL,
a button pushed, and the whole of the algorithm can
be translated automatically into machine codes without
further human intervention.

3GLs continue to evolve today, the driving factors of
which hinge on reducing the costs associated with this
still labor-intensive activity:

Modularity and the separation of concerns. 3GLs con-
tinue to improve support for modularity and the separa-
tion of concerns. Modularity results from the decompo-
sition of a larger system function into smaller and smaller
functional components, each separately designed, devel-
oped, and tested the way electrical engineers test indi-
vidual components of a circuit board before adding them
together. Separation of concerns enhances modularity
by requiring that each module “do one thing and do it
well” (a phrase that is relative to the level of decomposi-
tion). Perhaps the more important feature of modularity
and the separation of concerns from a software devel-
opment standpoint is that it permits multiple people
to work relatively independently but simultaneously on
multiple portions of the larger system. In modern 3GLs,

modularity is supported through object orientation,
and the most extreme form of separation of concerns is
aspect-oriented programming.

Labor reduction. 3GLs continue to offer improved
opportunity for reducing the amount of code that has
to be developed (designed, written, and tested). Assem-
bly languages began this trend by offering macros as
a means of repeating the same set of instructions on
a different set of data. The first 3GLs offered related
constructs such as subroutines and functions. Modern
3GLs offer object- and aspect-oriented features, includ-
ing classes and inheritance, which permit developers to
reduce the amount of code that needs to be developed
while providing improved support to enhance the mod-
ular quality of the code by reducing coupling, increasing
cohesion, and supporting generative programming.

Reuse. Long considered the holy grail of software
development, the ability to reuse previously written
software is facilitated with modern 3GLs and industry
standards. In the computing hardware industry, reuse
is facilitated by industry-standard hardware interfaces
between hardware components and software drivers
that resolve any remaining incompatibilities. Unfortu-
nately, the software industry is only recently seeing the
value in industry-standard interfaces between software
components, and there is no analogous technology that
does for software what software drivers do for hardware

Johns Hopkins APL Technical Digest, Volume 26, Number 4 (2005)	 425

THE FUTURE OF SOFTWARE DEVELOPMENT AND ITS IMPACT ON APL

(thus, software itself has to deal with any remaining
incompatibilities that exist beyond what is covered by
industry standards). Widespread reuse, therefore, is still
limited to a few key areas: COTS utility libraries, includ-
ing such features as user interface services, communica-
tions services, and operating system services; class- and
component-based frameworks; and large-scale software
components for which industry-standard interfaces exist
(e.g., relational databases).

Support tools. From interactive line editors in the late
1970s replacing punch cards, to source code analyzers
in the 1980s, to the integrated development environ-
ments (IDEs) of the 1990s, the emergence of support-
ing tools to facilitate the authorship of 3GL software has
helped improve the productivity and quality of develop-
ers who are being asked to develop increasingly complex
systems, systems of systems, and ecosystems of services.
IDEs today improve developer productivity (decreas-
ing costs) by facilitating reuse of COTS components
through drag-and-drop interfaces, supporting debugging
through online code-generated documentation and call
trees, and integration with configuration management
and project management tools.

Today’s IDEs offer an early window into some of the
key capabilities that will be used by future APL software
developers in the development of end-to-end software
systems. And although 4GLs and 5GLs can only be
applied to selected facets of a software system, 3GLs are
not the end of the software systems development story.

The use of models, or simplified representations of
complex systems, is a proven tool for aiding a person or
a team to effectively understand and discuss, and pre-
serve for posterity, a description of a system. In the early
years, modeling became necessary for the domain expert
to communicate with the software developer or for mul-
tiple software developers to communicate with each
other. Early on, the value of graphical modeling, and in
particular, data flow diagrams, were (and continue to be)
clearly demonstrated as effective tools in understanding
a system.

Tools to support the design process began with the
addition of plastic templates with flowchart symbols to
expensive, integrated design tools that could actually
generate some semi-usable 3GL statements (hold on to
that thought). A key milestone in the modeling process
was the acceptance of the UML in the 1990s as the
lingua franca for software modeling.

As with any other tool, models could be (and were)
misused. Design documents containing hundreds of
pages of graphical models became maintenance night-
mares as the 3GL software changed and the associated
design documents were not kept in sync. Reverse engi-
neering (ingesting the 3GL software, producing design
documentation) was seen as one solution, but many soft-
ware developers viewed the large library of models as a
management cost, not providing much value added over

actually understanding the 3GL software using an IDE’s
capabilities.

Historical problems with modeling have included
inconsistencies resulting from the two representations
of the software—the 3GL software itself and the models
of the 3GL software are inconsistent, and the modeling
languages and tools used by the systems developers who
define the requirements of the system and the software
developers who build the system are divergent. If only
software models could be compiled into 3GL software the
way that 3GL software is compiled into machine codes!

Steps are being taken to rectify the situation, and not
just at the level where software models meet 3GLs. The
UML is being fleshed out into a systems-level program-
ming language in its own right (executable UML), and
the MDA initiative proposes the compilation of such
platform-independent UML models onto real-world
3GL platforms such as the Java 2 Enterprise Edition and
the .NET Framework. And moving ever closer to the
end-user, industry-standard “service orchestration” lan-
guages oriented toward the end user are emerging and
being compiled downward toward the level of 3GLs.
(For example, the business process modeling notation is
a graphical language for expressing the logic that con-
nects ecosystems of services into systems that automate
a user’s strategic, tactical, and operational processes.
Tooling already exists that will compile the business
process modeling notation down to the lower-level busi-
ness process execution language.) Viewing the levels of
magnification that separate the end user from machine
codes as a sort of fractal geometry, where the qualitative
aspects at one level of magnification are the same as at
all others, it would appear that we are standing at the
cusp of realizing executable end-user requirements.

Certainly, the software written by an end user in a ser-
vice-orchestration language is not the whole story. Rule
languages are another format for end users to express
their requirements, and with the rise of the business rule
engine market these requirements, too, are now directly
executable. Ontology languages for describing the end-
user’s domain will form another component of execut-
able requirements. So do executable requirements leave
the software developer out in the cold? In a word, no—it
just changes the nature of the job. Instead of developing
monolithic systems and/or integrated systems of systems,
the software developer of the future will be charged
with developing ecosystems of services that form the
programming primitives that the end user will orches-
trate into automated processes. This has huge implica-
tions for how the business of software development is
conducted: no longer will the end-user’s requirements
flow down through multiple translations and interpreta-
tions until they reach a 3GL programmer in a form that
is unrecognizable to the end user and virtually untrace-
able back to end-user requirements; rather, the end-user’s
process-level software will be compiled down to the

426	 Johns Hopkins APL Technical Digest, Volume 26, Number 4 (2005)

P.  A. H ANKE, H .  L. HERSHE Y  and P .  A. SMI TH 

ecosystem developer’s systems-level language, where-
upon the ecosystem developer will flesh out and allocate
the logic by applying annotations and/or aspects to the
end-user’s logic and then the ecosystem developer’s sys-
tems-level software will be compiled down to the service
developer’s service-level language, whereupon … and so
on. In this broad brushstroke of a vision of the future,
human interpretational error as well as the amount of
intellectual capital that is typically expended on these
manual translations and interpretations, could be radi-
cally reduced.

If any of the above initiatives and prognostications
should come to fruition, APL has the opportunity to
contribute on numerous fronts, a major one being the
development of simulation modeling and analysis meth-
odologies and tools at each level of software as a means
to discover nonfunctional requirements for lower-level
services. At any rate, APL will need to radically alter
its software development practices to embrace the new
paradigm and could provide leadership and oversight in
this respect to our sponsors.

Ecosystems of Services
“Ecosystems of services” is a phrase intended to reflect

the realities of global services networks such as the web
and the Global Information Grid. These systems are of
unprecedented size—only the Internet is bigger, and the
lesson learned there is that even a simple packet-switch-
ing network operating under a few simple local rules can
come crashing to its knees when the unforeseen and
emergent global consequences of those rules suddenly
come into play. The Internet’s transmission control pro-
tocol (TCP) was years in the tuning, finally achieving
a sense of stability that was based largely on empirical
findings rather than theoretical predictions; it was only
within the last 10 years that mathematical models that
define “TCP-friendly” protocols were discovered and
documented to quantify whether new rate-controlled
protocols under development would starve, coexist with,
or be starved by the Internet’s TCP.

On the top-down side of the coin were the first ser-
vice-oriented architectures (SOAs) such as the distrib-
uted computing environment (DCE) and the object man-
agement architecture (OMA, under which the common
object request broker architecture or CORBA standard
was developed). These first-generation SOAs focused on
fine-grained networked infrastructure services such as
directory, security, and transaction services that help to
greatly simplify the construction of complex distributed
systems of systems. One of the findings here was that
these fine-grained services overuse the network, and pay
a heavy performance penalty. A common end result was
the bundling of such services within component frame-
works (commonly known as “application servers”) such
as the CORBA Component Model, J2EE, and .NET,

such that these horizontal services could be collocated
with the applications that use them.

In a vertical leap, second-generation SOAs are newly
focused on coarse-grained domain-specific services that
provide access to the various systems that underpin an
organization’s strategic, tactical, and operational pro-
cesses. Second-generation SOAs are also rallying around
the technology standards that underpin the Internet,
the web, and the next-generation web—the semantic
web—to gain universal acceptance (something neither
DCE nor CORBA ever achieved). Second-generation
SOAs promise vastly improved transformational and
adaptive capabilities for an organization’s strategic, tac-
tical, and operational processes via the managed orches-
tration of ecosystems of domain-specific services. These
transformational and adaptive capabilities will only
improve as the emerging techniques and technologies
of the semantic web (e.g., ontology) are brought to bear,
where the negotiation and mediation of the interfacing
between software entities and their users can become
more dynamic and automated.

How will this affect software development at APL?
It will do so by changing the environments into which
APL will be expected to deploy software as well as the
artifacts that compose that software. Rather than simply
developing monolithic 3GL applications that meet end-
user requirements and deploy on specified hardware,
APL will in addition need to study the end-user’s exist-
ing ecosystem of services in order to shorten the devel-
opment cycle through the reuse of existing services and
to ensure graceful integration within the service eco-
system (e.g., design new services not only for functional
completeness but also for minimized detrimental per-
turbation of the existing ecosystem dynamics). And the
software that APL deploys will not only consist of 3GL
statements but will also include domain descriptions
(ontology) and service descriptions (e.g., the semantic
web service language) to facilitate the automation of
interface negotiation and mediation in an ecosystem of
services.

Computer Support for
Knowledge Work and Team
Interaction

Today’s computer support for knowledge work and
team interaction is often akin to massive toolboxes—
the tools are on display for the expert craftsman to grasp
and use with ingrained skill. Unfortunately, there is a
steep learning curve to becoming such an expert, and
this presents an intellectual challenge that robs from the
very resource that needs to be applied in such work. For
computers to provide true support for knowledge work
and team interaction, they must do so “invisibly,” that
is, with the minimum amount of intellectual challenge
in their use.

Johns Hopkins APL Technical Digest, Volume 26, Number 4 (2005)	 427

THE FUTURE OF SOFTWARE DEVELOPMENT AND ITS IMPACT ON APL

Process management technology is a step in the right
direction, as the description of a process encodes a level
of expertise in the use of these massive toolboxes. Ben-
efits of process management technology include the
ability for end users to encode process descriptions in
a language that is familiar to them as well as the auto-
mation, tracking, and collection of performance metrics
of process instances. Unfortunately, the current direc-
tion in process description is derived from predecessor
programming languages, which were designed to encode
precisely (in the most literal sense) what we want our
computers to do.

Instead of process description languages that encode
precisely what we want our knowledge workers and
team members to do on the one hand and massive tool-
boxes that require extreme expertise on the other, what
is needed is a balance between the two; i.e., process
description languages that are prescriptive of what needs
to be done and when, yet only suggestive of how to go
about doing it. Such languages allow knowledge workers
and team members to backtrack, loop, and even modify
the suggestive elements of a process instance so long as
the prescriptive constraints are not violated. In this way
management controls are in place (the prescriptive ele-
ments), hard-won expertise is brought to bear (the sug-
gestive elements), and the management of the process
can be automated (via the formal process description),
yet there is still enough flexibility for the knowledge
workers and team members to “own” the work. The
technology based on this concept of process descrip-
tion languages that support human and social processes
has been termed the Human Interaction Management
System (HIMS).1

Note that the HIMS, in presenting suggestive direc-
tion to knowledge workers and team members, is a deci-
sion support system. As such, it might be enhanced as
needed with more powerful decision aids such as fuzzy
expert systems and Bayesian belief networks. But equally
important to the human-centric element of the HIMS
concept is that these processes and decisions are being
automatically managed by the HIMS, that is, processes
and decisions will form the basis for new metrics of the soft-
ware development of the future. No longer will the metrics
that are used to characterize the software development
activity be solely “black box” (i.e., measure the outputs
of the activity such as the number of 3GL statements);
instead, the metrics will be more reflective of the intel-
lectual and social inner workings of the activity itself.

Today, the intellectual and social inner workings
of the software development activity include stan-
dard project management practices such as expecta-
tion (requirements) management, scheduling, quality
reviews, as well as practices that, although not unique
to software development, often provide the only visible
insight into the status of a development effort: met-
rics definition/collection/analysis, problem tracking,

configuration management, and demonstrable mile-
stone definition.

The Capability Maturity Model (CMM) for Software
and later-generation, related CMMs offer a means for
understanding and communicating standard policies,
processes, and practices related to the software develop-
ment effort. The CMMs also offer methods for numeri-
cally assessing the maturity of the software development
organization. The premise is that mature organizations
more effectively manage the risk associated with soft-
ware development and produce more consistent results.
Currently, the CMM emphasis on process over product
results in unwieldy, inflexible, and costly practices, but
application of the HIMS to automate and manage the
CMM processes could change all of that. The CMM
assessment process has been most useful to the DoD as
a method to reduce the risk associated with the DoD’s
unique, one-of-a-kind software development—HIMS-
managed CMM processes could vastly reduce the costs
associated with this risk reduction activity as well as
facilitate a greater uptake of these processes by a cost-
conscious commercial industry.

Under the sponsorship of the APL Science and
Technology Council, APL undertook a Laboratory-
wide effort to improve the management practices asso-
ciated with the unique risks associated with software-
intensive projects. These practices and procedures
have now been integrated into the APL Quality Coun-
cil initiative and are based on components of Carnegie
Mellon University’s Software Engineering Institute’s
CMM as they are most appropriate for the breadth
and depth of APL-developed software and its intended
use. However, our forecasts for qualitative change in
how software is developed (executable requirements,
ecosystems of services, etc.) imply related qualitative
changes in how software development is managed, and
thus from a quality perspective, “continuous adapta-
tion” may be just as important as “continuous improve-
ment” when it comes to APL’s software development
practices. In this respect, it could be beneficial to use
modern data mining techniques to continuously mine
the data collected by software development HIMSs in
order to discover the practices that are the best facilita-
tors of success in step with the inevitable changes in
how software is developed.

In Summary
This article paints its vision of the future with

extremely broad brushstrokes and narrowly focuses on
those areas where change is expected to be most immi-
nent. Thus, the visions for the future discussed here are
not necessarily applicable to all of the software develop-
ment that occurs at APL. As but one example, consider
embedded software. In this case, the end user (a systems
developer) is orders of magnitude closer to the 3GL

428	 Johns Hopkins APL Technical Digest, Volume 26, Number 4 (2005)

P.  A. H ANKE, H .  L. HERSHE Y  and P .  A. SMI TH 

programmer than would be the case
with enterprise software, and in fact
the systems developer may directly
express the software requirements
to the programmer. In such cases,
there is considerably less return in
investing in a multilayered “execut-
able requirements” approach, and
the more traditional approaches
to the development of embedded
software may be more appropri-
ate. Therefore, the future of soft-
ware development at APL can be
expected to consist of a mixture of
the contemporary and the futuris-
tic, the implication being that the
software development roles at APL
will also consist of a mixture of the
contemporary and the futuristic.

In the 2003 APL Science and
Technology Survey of staff skills
and capabilities, 28% of APL staff
indicated that they are informa-
tion processing and management
professionals. This high percentage
includes systems developers, soft-
ware developers, software program-
mers, and individual researchers
who develop software to conduct
analysis in support of their research.
These roles will remain part of APL’s
software future. However, additional
roles will appear in response to the
new realities of enterprise software
development. We can expect to see
new roles such as service ecosystem
developer, composite services devel-
oper, and so on.

The mixture of roles for any
given development project will be
a function of the type of software

costs of verification and validation can potentially be
reduced radically; verification and validation of new
functionality would amount to executing new software
services and components within the context of the end
user’s executable requirements and then comparing the
results against the end user’s simulation results (and so
on down the line).

As for more traditional development projects, the
benefits will be fewer, but still significant. Even though
advancements such as executable requirements may not
see use in more traditional development projects, other
advancements will (e.g., the use of the HIMS to auto-
mate the management of development projects). And
certainly, the new practices of enterprise software devel-
opment will inform the older practices with new insights

Software Development Roles at APL

Embedded software component
The development of embedded software presumes the existence of an encapsu-
lating hardware system. The following roles can be expected to play a part:
Systems developer: Synthesizes a design for the overall system and allocates el-
ements of the system design to people, hardware, and embedded software
components.
Software programmer: Interprets the requirements that have been allocated to an
embedded software component and implements that interpretation.

Monolithic software system
Even in the age of SOA, monolithic software systems will still be necessary. The
following roles can be expected to play a part:
Systems developer: Elicits and models the as-is system (if such exists) from the end
user, synthesizes a design for the to-be system, and allocates elements of the to-be
system design to people and software.
Software developer: Interprets the system-level requirements and synthesizes a de-
sign for the software. Allocates software design elements to available software
modules (COTS, etc.) and identifies new software components that need to be
implemented.
Software programmer: Interprets the requirements that have been allocated to a
new software component, synthesizes a design for the component, and imple-
ments that design.

Enterprise services software
The elements of an ecosystem of services will be developed independently. The
following roles can be expected to play a part:
End user: Programs strategic, tactical, and operational processes, the simulations
of which may identify gaps in the service ecosystem as well as the performance
requirements for services to fill those gaps.
Service ecosystem developer: Compiles the end-user processes and fleshes them out
with logic that aligns them with existing services in the ecosystem as well as the
technology that underpins the service ecosystem. Allocates service processing to
existing services and identifies new functionality that needs to be implemented.
Service orchestration simulations provide performance requirements for the new
functionality.
Software developer: Compiles the ecosystem-level service orchestration software
and fleshes it out with logic that aligns it with existing software modules (COTS,
etc.) as well as the technology that underpins the organization’s 3GL develop-
ment. Allocates service processing to available software modules and identifies
new functionality that needs to be implemented. Module interconnection simu-
lations provide performance requirements for the new functionality.
Software programmer: Compiles the service-level module interconnection soft-
ware and fleshes it out with the specified functionality.

that is being developed (see the box, “Software Devel-
opment Roles”). Thus, the visions for the future that
have been painted here will not benefit all APL soft-
ware projects uniformly. Enterprise software develop-
ment will benefit the most in the rapidity with which it
can be modified by the end user in response to strate-
gic, tactical, and operational process change. And it is
anticipated that process changes resulting in the iden-
tification of new service development will be the excep-
tion rather than the rule. Therefore, it will only be in
the exceptional case that a software development activ-
ity will cascade down below the programming environ-
ment of the end user. In addition, as the end user will
be authoring requirements in a precise, executable form
(as opposed to imprecise human language), the human

Johns Hopkins APL Technical Digest, Volume 26, Number 4 (2005)	 429

THE FUTURE OF SOFTWARE DEVELOPMENT AND ITS IMPACT ON APL

and improved management techniques, just as the older
practices have similarly informed other development
disciplines.

Our sponsors will continue to rely on the Laboratory
for software development, whether embedded within
compact guidance systems in the heads of missiles or for

prototypes of global information management ecosys-
tems for the intelligence community. However, to main-
tain this role, APL will need to embrace the emerging
paradigms of software development anticipated in this
article (with a level of accuracy that is debatable with
one exception: change is inevitable).

At the end of the day, the development task process workspace in which Kend-
all has been working prompts her with options for what to do with this day’s work.
She selects the “deploy to local test environment,” and her work is deployed to a
local virtual computer to be automatically tested within a simulated environment
in the context of the user’s most recent software submission. In the morning,
she can review the status of her efforts, as can the project leads via the Monitor
Project process workspace. As she packs up for the day, Kendall muses about the
stories her father told her about actually developing entire software systems from
scratch using nothing but a keyboard, e-mail, and a horribly large and impre-
cise thing called a “Requirements Document”—and she’s amazed that any of it
actually worked.

REFERENCE
  1Harrison-Broninski, K., Human Interactions: The Heart and Soul of Business Process Management:

How People Really Work and How They Can Be Helped to Work Better, Meghan Kiffer Press,
Tampa, FL (2005).

THE AUTHORS

Paul A. Hanke

Hilary L. Hershey

Paul A. Hanke graduated from the University of Delaware in 1993 with a B.S. in electrical engineering and received
an M.S. in electrical engineering from the Johns Hopkins University in 1998. Having worked at APL previously, Mr.
Hanke rejoined APL in 2001 as a senior software systems engineer for the AISD’s Network Management Information

Systems group. There, Mr. Hanke contributes to the overall definition and development of enter-
prise architecture for the DoD’s evolving Wideband SATCOM Operational Management System
and additionally researches and prototypes advanced capability concepts such as integrated deci-
sion support for operations management. Hilary L. Hershey, Group Supervisor of the Systems
Group of the National Security Technology Department. Ms. Hershey, a member of the APL
Principal Professional Staff, has twenty years of experience as a software system engineer. She was

a key member in establishing standard software engineering practices in
NSTD beginning in the mid-1990s. She has previously chaired the Soft-
ware Engineering Process Group and was the first head of the Software
Engineering Standards Subcommittee of the Quality Council. She has a
B.S. in computer science and statistics from American University and a
M.S. in computer science with a software engineering focus from Johns
Hopkins University. A member of the IEEE and ACM, she began employ-
ment at APL as a resident subcontractor with Sachs-Freeman Associates
in 1987 and converted to APL staff in 1992. Prior to joining APL, she
worked as a software engineer at Vector Research Company, Inc. and the
Armed Forces Radiobiological Research Institute. Pamela A. Smith (not
pictured), Branch Head of the Applied Security and Protection Technol-
ogy Branch in NSTD, had 20 years of experience as a software devel-
oper before transitioning to management. She led the first and only APL
group that achieved Capability Maturity Model (CMM)-Software Level
2 successful assessment. In 2002, she served as the first head of APL’s
Software Engineering Process Group. Pam has taught Software Engineer-
ing Management at the JHU Whiting School of Engineering. She has
a B.S. in Chemical Engineering from the Pennsylvania State University
and a M.S. in Computer Science from the Johns Hopkins University. She
began employment at APL in 1996. Prior to coming to APL, she worked
as a project manager and software engineer at Vector Research Company,
Inc. and prior to that she worked as an Associate Research Engineer at
the U.S. Steel Research laboratory. For further information contact Paul
Hanke at paul.hanke@jhuapl.edu.

