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n a cold morning in January 2015, Kendall McNeill, an APL Service Ecosystem Software 
Developer, arrives at her office and her hand-sized, personal/business computer/phone is auto-
matically connected into the desktop peripheral support station with high-speed, secure network 
connections, additional storage, several large touch screen displays, etc. A verbal command vali-
dates her identity and connects her to the peripherals.

One of Kendall’s large displays is dedicated to the online team interaction management space 
where team members working at home and located physically throughout APL and its field offices 
interact via managed collaboration processes in which development artifacts are tracked and shared. 
On a second screen, she brings up the graphical palette through which she does all “programming” 
and begins work on an interface ontology that will permit the semantic middleware to expose an 
aging system as a collection of user-specified services within the user’s next-generation service 
ecosystem. She drags a “web service adapter” component onto the workspace and sets the under-
lying communications as SOAP 3.1. The semantic agent in the adapter displays its best guess at 
an interface ontology to map the aging system’s interface to the user’s service interface specifica-
tions; Kendall starts correcting and fine-tuning the agent’s initial guesswork and takes note of the 
semantic gaps that will have to be filled by external sources. Meanwhile, a Requirements Change 
process workspace appears on her team display, and the voice of the systems engineer on the proj-
ect, Liam Franks, speaks: “I just reviewed the latest User Process Execution Language software 
submitted by our client and it introduces a new service abstraction to their ecosystem—I think we 
can implement this new service via the system you are currently abstracting. As you can see from 
the user’s simulation results, the nonfunctional constraints for this new service are. . . .” Kendall 
views the new service specification in real time and tells Liam she needs to pull in Jacob. She drags 
Jacob’s picture into the Requirements Change process workspace, where they discuss the viability 
of the change as well as potential impacts and rework. Their discussion session is recorded within 
the context of the Requirements Change process instance and will be stored in the project archive 
for future reference. The group estimates that the change is realizable within project constraints, 
and Liam accepts the change. The Requirements Change process concludes by merging the new 
service specification and Liam’s design decisions into the project requirements and design artifacts, 
respectively, as well as deploying the user’s software to the development environment. 
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INTRODUCTION
This scenario is not that farfetched. Traditional 

approaches to the development of traditional mono-
lithic software systems have emphasized requirements 
discovery, design, coding, testing, and deployment itera-
tions in various time cycles, with each stage having dis-
tinct methods, tools, and terminology. Unfortunately, 
such traditional approaches are geared toward the devel-
opment of software systems that address only isolated 
parts of the mission of an organization and, with deliv-
ery cycles that can be measured in years, are typically 
obsolete with respect to the organization’s evolving mis-
sion by the time they are deployed. Thus, the discipline 
is moving away from the development of monolithic 
software systems toward the development of integrated 
systems of systems and on to globally distributed eco-
systems of services where a “system” may indeed exist 
only ethereally, assembled on the fly in response to user 
input. As such, the role of “programmer” is permeating 
all the way out to the user. We are beginning to see the 
seeds of new software development paradigms where the 
activities of requirements discovery, design, coding, and 
testing are continuous processes carried out at multiple 
levels of abstraction, where the software developed by 
domain experts at higher levels of abstraction forms the 
requirements specifications for the next level down, and 
where the software developed at lower levels of abstrac-
tion implements the nontechnical, domain-specific 
“programming primitives” for the next level up. Add to 
this the ongoing advancements in computer support for 
knowledge work and team collaboration, and a vision 
for the software development of tomorrow begins to 
coalesce—a vision that supports the full breadth of an 
organization’s mission and at the same time is responsive 
to the (sometimes rapid) evolution of that mission. 

This article peers into the fog and attempts to locate 
factors that will lead us toward a next generation of 
software development that can fulfill this vision. We 
limit ourselves to four broadly defined areas in which 
we expect to see the largest divergence from current 
software development practices: the art and science of 
software development, programming languages, ecosys-
tems of services, and computer support for knowledge 
work and team interaction. The goal of this article is to 
forecast a list of nontraditional competencies that APL 
will need in order to continue to contribute in both a 
science and technology domain and as a trusted partner 
with our sponsors.

Art and Science
We can define “development” in the abstract as the 

systematic application of art (e.g., project management) 
and science (e.g., predictive models) to otherwise unpre-
dictable creative and constructive endeavors with the 
goal of making them more predictable. Many of the 

more mature development disciplines enjoy relatively 
high degrees of predictability as a result of a highly 
stable substrate (e.g., physics) upon which to anchor  
their science. 

Unfortunately, the discipline of software develop-
ment today does not have a mature science (and quite 
possibly no stable substrate upon which to anchor that 
science). At the lowest levels, computer science provides 
a set of theoretic models—information theory, automata 
theory, computability theory, etc.—that yield good pre-
dictions for what can and cannot be computed (either 
in the absolute or within a tractable amount of time). 
However, at the levels where the science meets develop-
ment (e.g., automata theory, a mathematical model of 
computation and the basis of many imperative program-
ming languages), things are less well defined. Automata 
theory provides a good model for monolithic computa-
tional structures, but it is not as well suited as a model 
of today’s integrated systems of systems nor tomorrow’s 
distributed ecosystems of services. Alternative theoreti-
cal constructs (e.g., the pi calculus, a calculus of com-
municating processes) are emerging to fill the void. 
Whether any of these alternatives will simply comple-
ment or actually replace automata theory in a Kuhnian 
paradigm shift remains to be seen. And as far as the 
stability of the substrate goes, new advancements in 
computing (e.g., quantum computing) threaten to upset 
the pillar of mainstream computer science down to its  
very foundations.

Without a mature science upon which to base the 
predictability of the endeavor, software development 
today is instead heavily focused on the art component 
of development. In fact, the art of development has been 
so extended by software development in its short his-
tory that it is informing the other development disci-
plines with ways and means to enhance predictability in 
those endeavors as well. Some of the biggest advance-
ments in the art relate to dealing with extreme com-
plexity; today’s software systems are some of the most 
complex systems ever devised by humankind. There 
have been monumental failures, such as the Federal 
Aviation Administration’s Advanced Automation 
System, and monumental successes, such as the World 
Wide Web. These two exemplars demonstrate the range 
of organization of software systems themselves (highly 
structured versus self-organized) as well as the range of 
organization of the groups that build them (bureaucratic  
versus social). 

The art of software development is currently focused 
on highly structured software systems built by bureau-
cratic organizations through the application of system-
atic approaches such as industry standards (e.g., the 
unified modeling language [UML], web services), model-
based approaches to development (e.g., model-driven 
architecture [MDA]), and knowledge-based approaches 
to development (e.g., design patterns). However,  
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in the future (and with the current momentum steer-
ing toward loosely coupled ecosystems of services that 
are evolved in a social context), the software develop-
ment discipline may in time become a driving force in 
the ongoing development of the nascent sciences of 
complexity (nonlinear dynamics, chaos theory, etc.) as 
a means toward understanding (at least qualitatively at 
first) the evolution and behavior of these self-organizing 
systems.

APL has the opportunity to contribute on numer-
ous fronts here—from the advancement of computing 
(e.g., quantum computing) and the associated models of 
computing (computer science) via pure research through 
advancing the art and science of software development 
(e.g., project oversight and the sciences of complexity) 
—via applied research and development. And with the 
experience gained through such endeavors, APL will be 
able to assist and guide our sponsors in the application 
of these advancements.

Programming Languages
Programming languages are the way we express pre-

cisely (in the most literal sense) what it is we want our 
computers to do. The first programming languages were 
those spoken by computers natively: machine codes. 
These programming languages forced the programmer 
to think like the machine all the way down to the bit 
level. Not only was this incredibly tedious work (humans 
do not naturally think in machine codes), but it required 
huge amounts of manual translation to get from an 
end-user’s requirements down to the working software. 
As requirements were typically expressed in imprecise 
human language, interpretational errors frequently arose, 
and the frequency increased with the size of the project 
as there were more humans (e.g., designers) interjected 
between the end user and the programmer (allowing for 
multiple layers of interpretational error). And when the 
cost of computing hardware began a dramatic nosedive, 
the expense of developing software in this labor-inten-
sive and error-prone way began to stand out like a sore 
thumb. (See the box, “Five Generations.”)

Assembly languages were the first improvement over 
programming in machine codes. Essentially, assembly 
languages represented bit-level machine codes with 
mnemonic symbols, thus allowing the programmer to 
think in terms of machine instructions. This device 
improved the speed at which a human could program 
a computer by reducing the amount of memory the 
human had to devote to rote memorization (mnemonic 
symbols instead of bit strings) as well as by reducing the 
number of keystrokes involved. However, assembly lan-
guages were just the computer’s native language coated 
in a symbolic sugar. Thus, assembly language did noth-
ing to reduce human interpretational error.

The next evolutionary step in programming lan-
guages was the first of the so-called third-generation lan-
guages (3GL). Many of the 3GLs are heavily influenced 
by automata theory and in addition provide structural 
elements (e.g., “for” loops) that represent more natural 
ways for humans to think (when compared to machine 
instructions). 3GLs mark the first step up the ladder 
toward executable end-user requirements; 3GLs allow 
the function-level structural elements of software to 
be expressed as abstract requirements, which can then 

A Little Software Development  
Jargon
Design patterns:  Design patterns are standard repre-
sentations of innovative solutions to common problems 
that have evolved over time. As such, they capture and 
disseminate industry knowledge and expertise and form 
a common solutions vocabulary that greatly enhances 
communication among software developers.

Engineering:  Some people define “engineering” as the 
science end of the development spectrum (the art com-
ponent of development is then referred to as “engineering 
management”), whereas other people consider “engineer-
ing” to be synonymous with development. There is an 
ongoing debate on this subject, and the former definition 
is often cited to question whether there is such a thing as 
“software engineering.” Here we avoid this political fog 
by refraining from the use of the word.

Industry standards:  Industry standards pave the way to-
ward seamless integration at all levels of software develop-
ment, be it the communication of modeling artifacts via 
the unified modeling language (UML) to the run-time 
interoperation of software components via the web ser-
vices standards. Widespread acceptance of industry stan-
dards is a necessary step in the maturation of an industry, 
as evidenced, for example, by the electronics component 
industry. The software development industry is finally be-
ginning to appreciate and embrace this reality.

Model-driven architecture:  The goal of the MDA ini-
tiative is to use standards-based modeling languages as 
formal development languages. Fully expressed MDA 
models can be directly executed and “compiled” into 3GL 
languages and other lower-level development artifacts.

Ontology:  Ontology refers to the full spectrum of 
knowledge representation. Examples range from simple 
taxonomies to thesauri to conceptual models and all the 
way to logical theories. The more interesting ontologies, 
such as conceptual models and logical theories, enable 
automated reasoning. Automated reasoning facilitates 
the automation of decision support and knowledge man-
agement, and thus ontology forms a cornerstone of the  
semantic web.

Semantic web:  The semantic web is a vision of the 
Internet populated with machine-processable data. This 
vision is not an academic stretch for a new artificial intel-
ligence, but rather an application of the pragmatic fallout 
of existing artificial intelligence research. The business 
case for the semantic web is the facilitation of automated 
decision support and knowledge management. 
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Five Generations of Programming Languages

Generation Term  Began in Description
First Machine 

code
The begin-
ning

The actual 0s and 1s that computers still actually load and execute. Early 
programmers developed programs using this numeric representation of in-
structions and data. 0100010111100011 might represent the “Move value 
to registry” function.

Second Assembly 1950s A symbolic representation of machine code, where 0100010111100011 
would be written as “MOVR” or “move value to registry.” Assemblers would 
translate this symbolic representation to machine code. Both machine code 
and assembly are highly dependent on the underlying processor. When the 
processor changes, the code must be rewritten.

Third High-level 
language

1960s These human-readable languages support constructs such as “IF-THEN-
ELSE” and named variables. Adding three variables together may take eight 
lines of code in assembly language but could be represented as a single state-
ment “A=B+C+D” in a 3GL. 3GLs are the last in the evolutionary line of 
programming languages to be completely general-purpose.

Fourth Very-
high-level 
language

1980s These languages include support for the end use of the software without be-
coming domain-specific. Examples of 4GLs include form generators, report 
generators, and database query languages. Often, a 4GL will have pragmatic 
(as opposed to theoretic) origins. 4GLs are “niche languages” in that they 
cannot be used to implement entire software systems; rather, 4GLs are ap-
plied as a time-saving device within specific areas of the system. 

Fifth 1990s These languages allow the expression of nonalgorithmic rules, constraints, 
etc., which the computer then uses to solve a problem. They are sometimes 
called “declarative” to distinguish them from the imperative languages and 
frequently originate in artificial intelligence. An example of a 5GL is the 
OPS5 expert systems language. The use of 5GLs is increasing with the rise of 
the business rule engine market.

be mechanically translated (“compiled”) into machine 
codes that implement requirements so expressed. 3GLs 
allow humans to think more naturally. But the 3GLs 
accomplish something else of even greater import: they 
eliminate an entire level of human interpretational error; 
an algorithm can be specified in the abstract in a 3GL, 
a button pushed, and the whole of the algorithm can 
be translated automatically into machine codes without 
further human intervention.

3GLs continue to evolve today, the driving factors of 
which hinge on reducing the costs associated with this 
still labor-intensive activity: 

Modularity and the separation of concerns. 3GLs con-
tinue to improve support for modularity and the separa-
tion of concerns. Modularity results from the decompo-
sition of a larger system function into smaller and smaller 
functional components, each separately designed, devel-
oped, and tested the way electrical engineers test indi-
vidual components of a circuit board before adding them 
together. Separation of concerns enhances modularity 
by requiring that each module “do one thing and do it 
well” (a phrase that is relative to the level of decomposi-
tion). Perhaps the more important feature of modularity 
and the separation of concerns from a software devel-
opment standpoint is that it permits multiple people 
to work relatively independently but simultaneously on 
multiple portions of the larger system. In modern 3GLs, 

modularity is supported through object orientation, 
and the most extreme form of separation of concerns is 
aspect-oriented programming.

Labor reduction. 3GLs continue to offer improved 
opportunity for reducing the amount of code that has 
to be developed (designed, written, and tested). Assem-
bly languages began this trend by offering macros as 
a means of repeating the same set of instructions on 
a different set of data. The first 3GLs offered related 
constructs such as subroutines and functions. Modern 
3GLs offer object- and aspect-oriented features, includ-
ing classes and inheritance, which permit developers to 
reduce the amount of code that needs to be developed 
while providing improved support to enhance the mod-
ular quality of the code by reducing coupling, increasing 
cohesion, and supporting generative programming. 

Reuse. Long considered the holy grail of software 
development, the ability to reuse previously written 
software is facilitated with modern 3GLs and industry 
standards. In the computing hardware industry, reuse 
is facilitated by industry-standard hardware interfaces 
between hardware components and software drivers 
that resolve any remaining incompatibilities. Unfortu-
nately, the software industry is only recently seeing the 
value in industry-standard interfaces between software 
components, and there is no analogous technology that 
does for software what software drivers do for hardware 
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(thus, software itself has to deal with any remaining 
incompatibilities that exist beyond what is covered by 
industry standards). Widespread reuse, therefore, is still 
limited to a few key areas: COTS utility libraries, includ-
ing such features as user interface services, communica-
tions services, and operating system services; class- and 
component-based frameworks; and large-scale software 
components for which industry-standard interfaces exist 
(e.g., relational databases). 

Support tools. From interactive line editors in the late 
1970s replacing punch cards, to source code analyzers 
in the 1980s, to the integrated development environ-
ments (IDEs) of the 1990s, the emergence of support-
ing tools to facilitate the authorship of 3GL software has 
helped improve the productivity and quality of develop-
ers who are being asked to develop increasingly complex 
systems, systems of systems, and ecosystems of services. 
IDEs today improve developer productivity (decreas-
ing costs) by facilitating reuse of COTS components 
through drag-and-drop interfaces, supporting debugging 
through online code-generated documentation and call 
trees, and integration with configuration management 
and project management tools. 

Today’s IDEs offer an early window into some of the 
key capabilities that will be used by future APL software 
developers in the development of end-to-end software 
systems. And although 4GLs and 5GLs can only be 
applied to selected facets of a software system, 3GLs are 
not the end of the software systems development story.

The use of models, or simplified representations of 
complex systems, is a proven tool for aiding a person or 
a team to effectively understand and discuss, and pre-
serve for posterity, a description of a system. In the early 
years, modeling became necessary for the domain expert 
to communicate with the software developer or for mul-
tiple software developers to communicate with each 
other. Early on, the value of graphical modeling, and in 
particular, data flow diagrams, were (and continue to be) 
clearly demonstrated as effective tools in understanding 
a system.

Tools to support the design process began with the 
addition of plastic templates with flowchart symbols to 
expensive, integrated design tools that could actually 
generate some semi-usable 3GL statements (hold on to 
that thought). A key milestone in the modeling process 
was the acceptance of the UML in the 1990s as the 
lingua franca for software modeling. 

As with any other tool, models could be (and were) 
misused. Design documents containing hundreds of 
pages of graphical models became maintenance night-
mares as the 3GL software changed and the associated 
design documents were not kept in sync. Reverse engi-
neering (ingesting the 3GL software, producing design 
documentation) was seen as one solution, but many soft-
ware developers viewed the large library of models as a 
management cost, not providing much value added over 

actually understanding the 3GL software using an IDE’s 
capabilities.

Historical problems with modeling have included 
inconsistencies resulting from the two representations 
of the software—the 3GL software itself and the models 
of the 3GL software are inconsistent, and the modeling 
languages and tools used by the systems developers who 
define the requirements of the system and the software 
developers who build the system are divergent. If only 
software models could be compiled into 3GL software the 
way that 3GL software is compiled into machine codes! 

Steps are being taken to rectify the situation, and not 
just at the level where software models meet 3GLs. The 
UML is being fleshed out into a systems-level program-
ming language in its own right (executable UML), and 
the MDA initiative proposes the compilation of such 
platform-independent UML models onto real-world 
3GL platforms such as the Java 2 Enterprise Edition and 
the .NET Framework. And moving ever closer to the 
end-user, industry-standard “service orchestration” lan-
guages oriented toward the end user are emerging and 
being compiled downward toward the level of 3GLs. 
(For example, the business process modeling notation is 
a graphical language for expressing the logic that con-
nects ecosystems of services into systems that automate 
a user’s strategic, tactical, and operational processes. 
Tooling already exists that will compile the business 
process modeling notation down to the lower-level busi-
ness process execution language.) Viewing the levels of 
magnification that separate the end user from machine 
codes as a sort of fractal geometry, where the qualitative 
aspects at one level of magnification are the same as at 
all others, it would appear that we are standing at the 
cusp of realizing executable end-user requirements.

Certainly, the software written by an end user in a ser-
vice-orchestration language is not the whole story. Rule 
languages are another format for end users to express 
their requirements, and with the rise of the business rule 
engine market these requirements, too, are now directly 
executable. Ontology languages for describing the end-
user’s domain will form another component of execut-
able requirements. So do executable requirements leave 
the software developer out in the cold? In a word, no—it 
just changes the nature of the job. Instead of developing 
monolithic systems and/or integrated systems of systems, 
the software developer of the future will be charged 
with developing ecosystems of services that form the  
programming primitives that the end user will orches-
trate into automated processes. This has huge implica-
tions for how the business of software development is 
conducted: no longer will the end-user’s requirements 
flow down through multiple translations and interpreta-
tions until they reach a 3GL programmer in a form that 
is unrecognizable to the end user and virtually untrace-
able back to end-user requirements; rather, the end-user’s 
process-level software will be compiled down to the 
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ecosystem developer’s systems-level language, where-
upon the ecosystem developer will flesh out and allocate 
the logic by applying annotations and/or aspects to the 
end-user’s logic and then the ecosystem developer’s sys-
tems-level software will be compiled down to the service 
developer’s service-level language, whereupon … and so 
on. In this broad brushstroke of a vision of the future, 
human interpretational error as well as the amount of 
intellectual capital that is typically expended on these 
manual translations and interpretations, could be radi-
cally reduced.

If any of the above initiatives and prognostications 
should come to fruition, APL has the opportunity to 
contribute on numerous fronts, a major one being the 
development of simulation modeling and analysis meth-
odologies and tools at each level of software as a means 
to discover nonfunctional requirements for lower-level 
services. At any rate, APL will need to radically alter 
its software development practices to embrace the new 
paradigm and could provide leadership and oversight in 
this respect to our sponsors.

Ecosystems of Services
“Ecosystems of services” is a phrase intended to reflect 

the realities of global services networks such as the web 
and the Global Information Grid. These systems are of 
unprecedented size—only the Internet is bigger, and the 
lesson learned there is that even a simple packet-switch-
ing network operating under a few simple local rules can 
come crashing to its knees when the unforeseen and 
emergent global consequences of those rules suddenly 
come into play. The Internet’s transmission control pro-
tocol (TCP) was years in the tuning, finally achieving 
a sense of stability that was based largely on empirical 
findings rather than theoretical predictions; it was only 
within the last 10 years that mathematical models that 
define “TCP-friendly” protocols were discovered and 
documented to quantify whether new rate-controlled 
protocols under development would starve, coexist with, 
or be starved by the Internet’s TCP. 

On the top-down side of the coin were the first ser-
vice-oriented architectures (SOAs) such as the distrib-
uted computing environment (DCE) and the object man-
agement architecture (OMA, under which the common 
object request broker architecture or CORBA standard 
was developed). These first-generation SOAs focused on 
fine-grained networked infrastructure services such as 
directory, security, and transaction services that help to 
greatly simplify the construction of complex distributed 
systems of systems. One of the findings here was that 
these fine-grained services overuse the network, and pay 
a heavy performance penalty. A common end result was 
the bundling of such services within component frame-
works (commonly known as “application servers”) such 
as the CORBA Component Model, J2EE, and .NET, 

such that these horizontal services could be collocated 
with the applications that use them. 

In a vertical leap, second-generation SOAs are newly 
focused on coarse-grained domain-specific services that 
provide access to the various systems that underpin an 
organization’s strategic, tactical, and operational pro-
cesses. Second-generation SOAs are also rallying around 
the technology standards that underpin the Internet, 
the web, and the next-generation web—the semantic 
web—to gain universal acceptance (something neither 
DCE nor CORBA ever achieved). Second-generation 
SOAs promise vastly improved transformational and 
adaptive capabilities for an organization’s strategic, tac-
tical, and operational processes via the managed orches-
tration of ecosystems of domain-specific services. These 
transformational and adaptive capabilities will only 
improve as the emerging techniques and technologies 
of the semantic web (e.g., ontology) are brought to bear, 
where the negotiation and mediation of the interfacing 
between software entities and their users can become 
more dynamic and automated.

How will this affect software development at APL? 
It will do so by changing the environments into which 
APL will be expected to deploy software as well as the 
artifacts that compose that software. Rather than simply 
developing monolithic 3GL applications that meet end-
user requirements and deploy on specified hardware, 
APL will in addition need to study the end-user’s exist-
ing ecosystem of services in order to shorten the devel-
opment cycle through the reuse of existing services and 
to ensure graceful integration within the service eco-
system (e.g., design new services not only for functional 
completeness but also for minimized detrimental per-
turbation of the existing ecosystem dynamics). And the 
software that APL deploys will not only consist of 3GL 
statements but will also include domain descriptions 
(ontology) and service descriptions (e.g., the semantic 
web service language) to facilitate the automation of 
interface negotiation and mediation in an ecosystem of 
services.

Computer Support for  
Knowledge Work and Team 
Interaction

Today’s computer support for knowledge work and 
team interaction is often akin to massive toolboxes—
the tools are on display for the expert craftsman to grasp 
and use with ingrained skill. Unfortunately, there is a 
steep learning curve to becoming such an expert, and 
this presents an intellectual challenge that robs from the 
very resource that needs to be applied in such work. For 
computers to provide true support for knowledge work 
and team interaction, they must do so “invisibly,” that 
is, with the minimum amount of intellectual challenge 
in their use.
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Process management technology is a step in the right 
direction, as the description of a process encodes a level 
of expertise in the use of these massive toolboxes. Ben-
efits of process management technology include the 
ability for end users to encode process descriptions in 
a language that is familiar to them as well as the auto-
mation, tracking, and collection of performance metrics 
of process instances. Unfortunately, the current direc-
tion in process description is derived from predecessor 
programming languages, which were designed to encode 
precisely (in the most literal sense) what we want our 
computers to do.

Instead of process description languages that encode 
precisely what we want our knowledge workers and 
team members to do on the one hand and massive tool-
boxes that require extreme expertise on the other, what 
is needed is a balance between the two; i.e., process 
description languages that are prescriptive of what needs 
to be done and when, yet only suggestive of how to go 
about doing it. Such languages allow knowledge workers 
and team members to backtrack, loop, and even modify 
the suggestive elements of a process instance so long as 
the prescriptive constraints are not violated. In this way 
management controls are in place (the prescriptive ele-
ments), hard-won expertise is brought to bear (the sug-
gestive elements), and the management of the process 
can be automated (via the formal process description), 
yet there is still enough flexibility for the knowledge 
workers and team members to “own” the work. The 
technology based on this concept of process descrip-
tion languages that support human and social processes 
has been termed the Human Interaction Management 
System (HIMS).1

Note that the HIMS, in presenting suggestive direc-
tion to knowledge workers and team members, is a deci-
sion support system. As such, it might be enhanced as 
needed with more powerful decision aids such as fuzzy 
expert systems and Bayesian belief networks. But equally 
important to the human-centric element of the HIMS 
concept is that these processes and decisions are being 
automatically managed by the HIMS, that is, processes 
and decisions will form the basis for new metrics of the soft-
ware development of the future. No longer will the metrics 
that are used to characterize the software development 
activity be solely “black box” (i.e., measure the outputs 
of the activity such as the number of 3GL statements); 
instead, the metrics will be more reflective of the intel-
lectual and social inner workings of the activity itself. 

Today, the intellectual and social inner workings 
of the software development activity include stan-
dard project management practices such as expecta-
tion (requirements) management, scheduling, quality 
reviews, as well as practices that, although not unique 
to software development, often provide the only visible 
insight into the status of a development effort: met-
rics definition/collection/analysis, problem tracking,  

configuration management, and demonstrable mile-
stone definition.

The Capability Maturity Model (CMM) for Software 
and later-generation, related CMMs offer a means for 
understanding and communicating standard policies, 
processes, and practices related to the software develop-
ment effort. The CMMs also offer methods for numeri-
cally assessing the maturity of the software development 
organization. The premise is that mature organizations 
more effectively manage the risk associated with soft-
ware development and produce more consistent results. 
Currently, the CMM emphasis on process over product 
results in unwieldy, inflexible, and costly practices, but 
application of the HIMS to automate and manage the 
CMM processes could change all of that. The CMM 
assessment process has been most useful to the DoD as 
a method to reduce the risk associated with the DoD’s 
unique, one-of-a-kind software development—HIMS-
managed CMM processes could vastly reduce the costs 
associated with this risk reduction activity as well as 
facilitate a greater uptake of these processes by a cost-
conscious commercial industry. 

Under the sponsorship of the APL Science and 
Technology Council, APL undertook a Laboratory-
wide effort to improve the management practices asso-
ciated with the unique risks associated with software-
intensive projects. These practices and procedures 
have now been integrated into the APL Quality Coun-
cil initiative and are based on components of Carnegie 
Mellon University’s Software Engineering Institute’s 
CMM as they are most appropriate for the breadth 
and depth of APL-developed software and its intended 
use. However, our forecasts for qualitative change in 
how software is developed (executable requirements, 
ecosystems of services, etc.) imply related qualitative 
changes in how software development is managed, and 
thus from a quality perspective, “continuous adapta-
tion” may be just as important as “continuous improve-
ment” when it comes to APL’s software development 
practices. In this respect, it could be beneficial to use 
modern data mining techniques to continuously mine 
the data collected by software development HIMSs in 
order to discover the practices that are the best facilita-
tors of success in step with the inevitable changes in 
how software is developed.

In Summary
This article paints its vision of the future with 

extremely broad brushstrokes and narrowly focuses on 
those areas where change is expected to be most immi-
nent. Thus, the visions for the future discussed here are 
not necessarily applicable to all of the software develop-
ment that occurs at APL. As but one example, consider 
embedded software. In this case, the end user (a systems 
developer) is orders of magnitude closer to the 3GL  
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programmer than would be the case 
with enterprise software, and in fact 
the systems developer may directly 
express the software requirements 
to the programmer. In such cases, 
there is considerably less return in 
investing in a multilayered “execut-
able requirements” approach, and 
the more traditional approaches 
to the development of embedded 
software may be more appropri-
ate. Therefore, the future of soft-
ware development at APL can be 
expected to consist of a mixture of 
the contemporary and the futuris-
tic, the implication being that the 
software development roles at APL 
will also consist of a mixture of the 
contemporary and the futuristic.

In the 2003 APL Science and 
Technology Survey of staff skills 
and capabilities, 28% of APL staff 
indicated that they are informa-
tion processing and management 
professionals. This high percentage 
includes systems developers, soft-
ware developers, software program-
mers, and individual researchers 
who develop software to conduct 
analysis in support of their research. 
These roles will remain part of APL’s 
software future. However, additional 
roles will appear in response to the 
new realities of enterprise software 
development. We can expect to see 
new roles such as service ecosystem 
developer, composite services devel-
oper, and so on. 

The mixture of roles for any 
given development project will be 
a function of the type of software 

costs of verification and validation can potentially be 
reduced radically; verification and validation of new 
functionality would amount to executing new software 
services and components within the context of the end 
user’s executable requirements and then comparing the 
results against the end user’s simulation results (and so 
on down the line).

As for more traditional development projects, the 
benefits will be fewer, but still significant. Even though 
advancements such as executable requirements may not 
see use in more traditional development projects, other 
advancements will (e.g., the use of the HIMS to auto-
mate the management of development projects). And 
certainly, the new practices of enterprise software devel-
opment will inform the older practices with new insights 

Software Development Roles at APL

Embedded software component
The development of embedded software presumes the existence of an encapsu-
lating hardware system. The following roles can be expected to play a part:
Systems developer: Synthesizes a design for the overall system and allocates el-
ements of the system design to people, hardware, and embedded software  
components.
Software programmer: Interprets the requirements that have been allocated to an 
embedded software component and implements that interpretation.

Monolithic software system
Even in the age of SOA, monolithic software systems will still be necessary. The 
following roles can be expected to play a part:
Systems developer: Elicits and models the as-is system (if such exists) from the end 
user, synthesizes a design for the to-be system, and allocates elements of the to-be 
system design to people and software.
Software developer: Interprets the system-level requirements and synthesizes a de-
sign for the software. Allocates software design elements to available software 
modules (COTS, etc.) and identifies new software components that need to be 
implemented.
Software programmer: Interprets the requirements that have been allocated to a 
new software component, synthesizes a design for the component, and imple-
ments that design.

Enterprise services software
The elements of an ecosystem of services will be developed independently. The 
following roles can be expected to play a part:
End user: Programs strategic, tactical, and operational processes, the simulations 
of which may identify gaps in the service ecosystem as well as the performance 
requirements for services to fill those gaps.
Service ecosystem developer: Compiles the end-user processes and fleshes them out 
with logic that aligns them with existing services in the ecosystem as well as the 
technology that underpins the service ecosystem. Allocates service processing to 
existing services and identifies new functionality that needs to be implemented. 
Service orchestration simulations provide performance requirements for the new 
functionality.
Software developer: Compiles the ecosystem-level service orchestration software 
and fleshes it out with logic that aligns it with existing software modules (COTS, 
etc.) as well as the technology that underpins the organization’s 3GL develop-
ment. Allocates service processing to available software modules and identifies 
new functionality that needs to be implemented. Module interconnection simu-
lations provide performance requirements for the new functionality.
Software programmer: Compiles the service-level module interconnection soft-
ware and fleshes it out with the specified functionality.

that is being developed (see the box, “Software Devel-
opment Roles”). Thus, the visions for the future that 
have been painted here will not benefit all APL soft-
ware projects uniformly. Enterprise software develop-
ment will benefit the most in the rapidity with which it 
can be modified by the end user in response to strate-
gic, tactical, and operational process change. And it is 
anticipated that process changes resulting in the iden-
tification of new service development will be the excep-
tion rather than the rule. Therefore, it will only be in 
the exceptional case that a software development activ-
ity will cascade down below the programming environ-
ment of the end user. In addition, as the end user will 
be authoring requirements in a precise, executable form 
(as opposed to imprecise human language), the human 
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and improved management techniques, just as the older 
practices have similarly informed other development  
disciplines.

Our sponsors will continue to rely on the Laboratory 
for software development, whether embedded within 
compact guidance systems in the heads of missiles or for 

prototypes of global information management ecosys-
tems for the intelligence community. However, to main-
tain this role, APL will need to embrace the emerging 
paradigms of software development anticipated in this 
article (with a level of accuracy that is debatable with 
one exception: change is inevitable).

At the end of the day, the development task process workspace in which Kend-
all has been working prompts her with options for what to do with this day’s work. 
She selects the “deploy to local test environment,” and her work is deployed to a 
local virtual computer to be automatically tested within a simulated environment 
in the context of the user’s most recent software submission. In the morning, 
she can review the status of her efforts, as can the project leads via the Monitor 
Project process workspace. As she packs up for the day, Kendall muses about the 
stories her father told her about actually developing entire software systems from 
scratch using nothing but a keyboard, e-mail, and a horribly large and impre-
cise thing called a “Requirements Document”—and she’s amazed that any of it  
actually worked.
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