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ALERTING ALGORITHMS FOR BIOSURVEILLANCE

T

Development, Adaptation, and Assessment of Alerting 
Algorithms for Biosurveillance

Howard S. Burkom

he goal of APL’s biosurveillance effort is to assist the public health community in the 
early recognition of disease outbreaks. ESSENCE II, the Electronic Surveillance System 
for the Early Notifi cation of Community-based Epidemics, applies alerting algorithms to 
“anonymized” consumer data to give epidemiologists early cues to potential health threats 
in the National Capital Area. Raw data include traditional indicators such as hospital 
emergency room visits as well as nontraditional indicators such as physician offi ce visits 
and less-specifi c, but potentially timelier, indicators such as sales of over-the-counter rem-
edies. To improve the timeliness of alerting for disease outbreaks, we have adapted tem-
poral and spatiotemporal algorithms from various disciplines, including signal processing, 
data mining, statistical process control, and epidemiology.

INTRODUCTION

The Biosurveillance Problem
The current global geopolitical climate and increased 

availability of affordable technology have combined to 
create concerns over the possibility of terrorist attacks 
using weapons of mass destruction. Various government 
agencies are funding defensive technology programs per-
taining to nuclear, chemical, and biological threats. The 
biological threat is unique in that the covert release of a 
weaponized pathogen may precede casualties and other 
evidence of disease by days, allowing time for perpetrators 
to escape and leaving uncertainty as to when, where, and 
even whether an attack has occurred. Victims of a biolog-
ical attack may be localized or widely scattered, and the 
population at risk may be diffi cult to identify, fostering 
the fear and panic that are the objectives of terrorism. 

The weaponization of many diseases by well-funded 
offensive programs has been documented.1 The symp-
tomatology of these diseases has been studied, with a 
key fi nding2 that their early presentation is usually char-
acterized by infl uenza-like symptoms. An outbreak may 
include a prodromal period of mild symptoms before 
patients seek emergency care and before laboratory tests 
can identify a specifi c pathogen. If these mild symptoms 
were widespread, alerting algorithms using nontradi-
tional data sources could give the public health system 
an early cue to respond to the outbreak.

This article focuses on algorithms developed to 
enable more rapid detection and characterization of 
biological attacks. Cost-benefi t analyses, such as those 
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reported by Kaufmann et al.,3 have 
shown potentially substantial sav-
ings in both human and economic 
terms if improved alerting meth-
ods can expedite a public health 
response to an outbreak by even a 
couple of days. The intended users 
of these algorithms and the systems 
that run them are epidemiologists 
of the public health infrastructure 
in government agencies. There-
fore, an important requirement of 
the algorithms is that the expected 
number of alerts per time period be 
manageable by these public health 
users, given their resources for 
investigation. 

Multiple algorithms are required 
to assess the probability of multiple 
types of threat, depending on the 
mode of dispersal of the pathogen, 
route of infection, and distribution 
of incubation periods of the result-
ing disease. Until very recently, 
only limited, highly specifi c data 

lags in data sources. Some events causing false alerts are 
unpredictable. In absenteeism data, school vacations and 
district-wide examinations can be modeled, but bomb 
scares and weather events cannot. Issues of behav-
ior following an outbreak need to be modeled, such 
as how much and how soon an outbreak will affect a 
data source—the analog of propagation loss in detec-
tion theory. If there are 100 cases in a community 
outbreak, how many additional offi ce visits and OTC 
purchases should we expect? Can knowledge of local 
demographics help us model these behaviors? Finally, 
if data history is available to model known reporting 
lags in counts of physician offi ce visits and insurance 
claims, survival analysis methods may help to estimate 
actual data counts given reported levels.4 The article by 
Magruder in this issue presents some of the data analy-
sis efforts under way to examine these issues.

ALERTING ALGORITHM 
METHODOLOGY

Case Defi nition: Choosing the Appropriate 
Outcome Variable

Crucial to the utility of alerting algorithms is the 
selection of the outcome variable, i.e., the quantity to 
be measured among the growing volume of surveillance 
data. For medical data, ESSENCE II uses syndromic 
surveillance by monitoring counts of patient data from 
all military treatment facilities in the National Capi-
tal Area. Specifi cally, outpatient visits are monitored, 
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Figure 1. Variability of background and signal across data streams, including plausible 
effects of a disease outbreak (dashed curves represent the sum of cases without an out-
break plus cases attributable to an outbreak).

such as counts of emergency department visits for 
infectious diseases were used for surveillance. The rais-
ing of the stakes has stimulated intensive searches for 
improved alerting methods and for alternative data 
sources that might afford earlier warnings at tolerable 
false alarm rates.

ESSENCE II Data Sources and Indicators
The article by Lombardo elsewhere in this issue 

describes the Electronic Surveillance System for the 
Early Notifi cation of Community-based Epidemics 
(ESSENCE II) test bed that is integrating a growing set 
of civilian and military data sources within the National 
Capital Area. ESSENCE II includes traditional indi-
cators such as hospital emergency room visits as well 
as nontraditional indicators such as physican offi ce 
visits and less-specifi c but potentially timelier indica-
tors including  sales of over-the-counter (OTC) rem-
edies and records of school and workplace absenteeism. 
All data used are anonymous, i.e., without identifying 
information, and include, for example, numbers and 
types of remedies purchased, number of patients with a 
particular diagnosis, or numbers of workers or students 
absent. Figure 1 illustrates the variation in time series 
behavior among the daily counts from these sources. 
Note the differences in scale, variability, and temporal 
behavior. 

Additional issues include the potential for false 
alerts resulting from unrelated events, data-related 
behaviors following an outbreak, and known reporting 
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with diagnoses falling in any of seven syndrome groups 
chosen by physicians at the DoD Global Emerging 
Infections System (DoD-GEIS): Respiratory, Gastroin-
testinal, Fever, Dermatologic Infectious, Dermatologic 
Hemorrhagic, Neurologic, and Coma. A list of diag-
nostic codes from the International Classifi cation of 
Diseases, Ninth Revision (ICD-9),5 is defi ned for each 
of these syndrome groups, which have been gaining 
acceptance in the surveillance community.6 ESSENCE 
increments the count for a syndrome group each time a 
diagnosis code falls in the corresponding list. 

We have extended this practice to the monitoring 
of civilian claims and emergency room visits. We have 
also defi ned more specifi c outcome variables with lists of 
codes corresponding to the major symptoms associated 
with specifi c diseases such as anthrax. The case defi ni-
tion process is important for distinguishing the signal—
the disease of interest—from the background, and we 
exclude some codes for that reason. 

There is also a case defi nition process for nonmedi-
cal data. For example, counts of OTC sales are typically 
restricted to remedies for infl uenza or diarrhea, and 
studies are under way to further focus on products that 
would be popular purchases in the event of a given type 
of outbreak. Also, surveillance using school absenteeism 
data is typically restricted to younger students for whom 
absence is more indicative of illness.

General Concepts for Alerting Algorithms
In recent years, algorithms for biosurveillance have 

been drawn from a variety of fi elds including epidemi-
ology,7 signal processing,8 data mining,9 and statisti-
cal process control.10 Developers of these algorithms 
have sought to fl ag anomalies based on purely temporal 
behavior, space–time interaction, and unusual distribu-
tions of covariates such as an unexpected number of 
respiratory problems in a particular age stratum. These 
diverse methods share common underlying challenges. 
For example, are the data in the current test interval 
suffi ciently different from expected counts to cause an 
alert? The data tested may be the latest elements in a 
single time series or a set of recent observations from 
disparate sources spread over the surveillance region. 
The expectation may be as simple as a scalar mean, but 
for adaptive detection performance, it is usually calcu-
lated from a recent baseline interval chosen to repre-
sent expected behavior. There are important factors in 
choosing this baseline: 

• The choice of baseline length is a trade-off between 
modeling relationships among covariates and captur-
ing recent trends.

• The end of the baseline may be chosen to leave a gap, 
or “guardband,” before the test interval to exclude 
the early part of a true outbreak from the data used 
for expectation. 

• Data in the baseline may be smoothed, weighted, or 
even selectively censored if outliers irrelevant to the 
alerting process can be identifi ed. 

Once the test and baseline data are chosen, we com-
pute a test statistic and compare it to an alerting thresh-
old, which may also be adaptively computed. Because 
of the complexity of the test statistic for a number of 
algorithms of recent interest,7,9 the data in the baseline 
are repeatedly randomized in a Monte Carlo process to 
determine the alerting threshold empirically. 

Purely Temporal Methods
Purely temporal alerting algorithms seek anoma-

lies in single or multiple time series without location 
or distance information. We use two basic temporal 
approaches: regression-based behavior modeling and 
adaptive process control charts.

The modeling approach currently implemented in 
ESSENCE II includes trend; categorical variables for 
weekends, holidays, and post-holidays; and adaptive 
autoregressive terms to account for serial correlation. 
A sliding 28-day baseline is used to compute regression 
coeffi cients and an updated standard error for the residu-
als, i.e., the differences between observed and predicted 
values. Coeffi cients are used to make predictions, and 
the test statistic is the current-day standardized residual. 
Figure 2 illustrates the modeling of counts of infl uenza-
like illness claims from military data sources in a Mary-
land county. Note the weekly pattern in the red curve 
indicating counts of claims. The green curve shows the 
modeled counts, and asterisks indicate alerts at the 3� 
level based on the assumption that residuals are nor-
mally distributed. Regression methods using additional 
covariates are under development.

Sometimes the data counts of interest are not read-
ily modeled, as when data history is short or counts are 
sparse. Emergency room admissions data provide a good 
example, especially when the counts are taken from a 
small geographic region. In such cases we use adapted 
process control methods, which generally operate on 
some measure of how counts in the test interval vary 
from the baseline mean. For example, the Early Aberra-
tion Reporting System (EARS) algorithms developed by 
the Centers for Disease Control and Prevention (CDC) 
are used by many local health departments across the 
United States. Although these algorithms use only a 
7-day baseline, they have performed well in comparisons 
with far more complex methods that use models based 
on long data history.11 ESSENCE II includes the EARS 
algorithms among other process control techniques. 

For a simple illustration, we present a method 
adapted from the exponential weighted moving average 
(EWMA) chart given by Ryan.12 Let Xt be a time series 
of values, t = 1,. . .,n, and for some smoothing constant w,  
0 < � < 1, form the smoothed value Yt by
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Y1 = X1,

and

Yt = � * Xt + (1 � �) * Yt � 1 .

Note that Yt is a function of the current count Xt here; in 
some implementations Xt is replaced by Xt � 1 to obtain 
predicted values. The Yt give a weighted moving average 
of the observations with increased emphasis on more 
recent observations; a larger � increases this emphasis, 
while a small � spreads the weighting more among past 
observations. 

known suffi ciently to model the signal as a mathemati-
cal replica. 

The matched fi lter is designed to fi nd signals that 
match the expected replica signal and reject signals or 
noise that is unlike the replica. The usual procedure 
effectively takes the normalized inner product of succes-
sive segments of an input data stream with the replica. 
Thresholds are then applied to these successive products 
to make detection decisions.

There were two reasons for adopting the adaptive 
matched-fi lter approach. First, the ramping and peak-
ing of public health data at the onset of an outbreak 
indicate a time-varying signal, and this signal may be 
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Figure 2. Autoregressive modeling of syndromic data for infl uenza-like illness from a 
large county in Maryland. Data are shown in red, predictions in green; indicated confi -
dence limits refl ect probabilities assuming Gaussian-distributed residual values.

data streams with outbreak “signals” 
injected. (More statistical methods 
for assessing algorithm performance 
are discussed in “Assessment Using 
Monte Carlo Trials” later in this 
article.)

Time-Domain Matched-Filter 
Approach

For data from multiple sources, 
we have implemented an adaptive, 
time-domain matched fi lter. The 
adaptive matched fi lter was devel-
oped in the radar community as an 
optimal detector in the presence of 
Gaussian noise and has been used 
widely in a variety of noise envi-
ronments as discussed in Cook 
and Bernfeld.13 This technique is 
appropriate for problems in which 
time variation of the signal is 

Figure 3. Parametric algorithm analysis: (left) smoothing algorithm applied to visit counts 
for the entire period, and (right) test statistic showing when the value has exceeded the 
threshold of 3. 

Now let �t be the mean and �t 
the standard deviation of the data in 
the current baseline. If the test sta-
tistic (Yt � �t)/{�t[�/(2 � �)]1/2} ex- 
ceeds the threshold value, often 
set at 3 in process control applica-
tions, an alert is fl agged. A 2-day 
guardband is used for the baseline 
computations to avoid missing a 
gradual buildup over several days, 
and the smoothed value Yt is reset 
to the next data value after an alert 
to avoid residual alerting after very 
large values. 

Figure 3 illustrates a spreadsheet 
method used for the parametric 
testing of algorithms. The charac-
teristic parameters and the baseline 
length, guardband, and threshold 
may be adjusted and algorithm per-
formance examined using arbitrary 
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modeled as an epidemic curve as noted later in the 
“Modeling the Signal” section. Second, an adaptive 
matched fi lter can handle disparate characteristics of 
noise from different data sources. An optimal detec-
tor must consider the noise background as well as the 
signal model. Data channels that have signifi cant noise 
fl uctuations imitating the desired signal and causing 
false alarms should be suppressed, while channels with 
low noise should be emphasized for increased sensitiv-
ity. The adaptive matched fi lter estimates the noise 
in each channel with covariance matrices computed 
using neighboring channels.

For the implementation of the matched fi lter, suppose 
that the fi lter extends over N days of data and that Xi is 
the vector of residual data at day i. Typically, the fi rst J 
elements of Xi are residuals derived from school absentee 
rates 1,. . .,J for that day, the next K elements are from 
OTC sales at stores 1,. . .,K, etc. Let Ci be the estimated 
covariance matrix of Xi, and let r be a replica vector of 
modeled effects of the outbreak on the data. The nor-
malized replica is then Mj = r/(rCir�)

1/2. The adaptive 
matched fi lter is given by 

 y
N

= −

=
∑ M C Xi

T
i

i

1

1
.

The adaptive matched-fi lter statistic, also found in 
McDonough and Whalen,14 is r�Mj

�1Xi. More detail on 
this approach is given in Burkom et al.15 

Spatiotemporal Methods Based on Scan Statistics
In the general context of surveillance of a large 

region, we monitor the separate subregional time series 
corresponding to each data source. The series of counts 
for OTC sales may be binned by store location; for 
claims, by facility or patient zip code; for absenteeism, by 
school or work site. Use of the spatial dimension offers 
two advantages: greater sensitivity to small increases in 
counts and potential inferences from spatial relation-
ships among subregions. The granularity of these sub-
regions and the outcome variable chosen dictate the 
applicable algorithms; fi ner subdivisions and smaller 
counts mean greater sensitivity but less structure in the 
data for modeling approaches. 

Several spatial approaches have been tried, includ-
ing the application of standard contingency tables. For 
this approach we have replaced dichotomies of exposed-
versus-unexposed and cases-versus-controls by current-
versus-background and inside-versus-outside the region 
of interest. Statistical signifi cance indicates an asso-
ciation of the region of interest with the measurement 
time window rather than an association of disease with 
exposure. The estimation of “normal” background counts 
is an important step in this process and indeed in any 
detection scheme. Depending on the specifi c data and 
spatial scale, we have used regional population, number 

eligible for services per region, and recent baseline 
values.

A spatial approach that has proven effective in the 
biosurveillance context is the scan statistic. The ver-
sion presented by Kulldorff,16 referred to later as the 
Kulldorff statistic, has been widely used, particularly 
in cancer epidemiology. Our early efforts employed the 
SaTScan implementation, which is downloadable from 
the National Cancer Institute’s Web site.17

Adapting the Kulldorff Scan Statistic
We briefl y cast the SaTScan approach in the context 

of the general surveillance problem. (A rigorous presen-
tation and fuller discussion are given elsewhere.7,16)

1. Subdivide the surveillance region into subregions 
j = 1,. . ., J of which centroids or other representative 
points are used for cluster analysis.

2. For a given data source, tabulate observed counts Oj 
for each subregion—typically the number of outpa-
tient visits with a diagnosis in a specifi ed syndrome, 
the count of sales of anti-fl u remedies, etc.

3. Given the sum N of all subregional counts, 
calculate the expected counts Ei for each sub-
region. In the conventional use of SaTScan, 
these counts are assumed to be proportional to 
subregion populations. Accuracy and stability 
of the expected spatial count distribution are 
essential to avoid computing spurious clusters 
that can mask the case groups of interest. Since 
our data streams are typically not population-
based, we use modeling or data history with a 
2- to 4-week baseline to estimate this distribution.

4. The hypothesis is that for some subset J1 of the J 
subregions, the probability that an outbreak has 
occurred is p, while the probability for subregions 
outside of J1 is some q < p. The null hypothesis, then, 
is that p = q for all subsets J1 of J.

5. Candidate clusters are formed by taking families of 
circles centered at each of a set of grid points—often 
taken as the full set of subregion centroids. A candi-
date cluster is defi ned as those subregions j whose cen-
troids lie in the associated circle. For each grid point, 
candidate cluster sizes range from a single subregion 
up to a preset maximum fraction of the total count.

6. For each candidate cluster J1, under the assumption 
that cases are Poisson-distributed in space, the likeli-
hood ratio for the clustering hypothesis is then

 LR(J1) � (O1/E1)O1*[(N � O1)/(N � E1)](N � O1),

 where O1 and E1 are the observed and expected 
counts summed from subregions in J1, respectively, 
and N is the sum of counts in all subregions.

7. The maximal cluster is then taken to be the set J1* 
of subregions corresponding to the circle with the 
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maximum likelihood ratio over all grid centers and 
all circles.

8. A p-value estimate for the statistical signifi cance 
of this cluster is determined empirically by ranking 
the value of LR(J1*) among other maximum likeli-
hood ratios, each calculated similarly from a random 
sample of the N cases based on the expected spatial 
distribution.

9. Once a set of subregions is associated with a maximal 
cluster, secondary clusters are chosen and assigned 
signifi cance levels from the successively remaining 
subregions.

The Kulldorff statistic has several advantages over 
other spatial methods.18 It yields both cluster locations 
and signifi cance levels and avoids preselection bias and 
multiple testing effects; can catch outbreaks scattered 
among neighboring regions that more sophisticated 
modeling methods may miss; automatically adjusts for 
temporal regionwide patterns, i.e., a seasonal increase 
proportionately affecting all subregions will not affect 
the statistic; and can complement temporal model-
ing methods by providing candidate clusters for more 
detailed computations.

An early application to ESSENCE data was a retro-
spective test to detect a known scarlet fever outbreak 
east of Baltimore, Maryland, in the winter of 2001 using 
electronic military and civilian patient data. The only 
data characteristics used for this study were the date of 
patient visit, assigned ICD-9 codes, and patient home 
zip code. For the outcome variable, we used daily counts 
in each zip code of claims whose diagnoses included 
codes 034 (Scarlet Fever) or 034.1 (Strep Throat Due to 
Scarlet Fever). 

Figure 4 indicates clusters of cases found on 18 Janu-
ary 2001 along with their empirically determined sig-
nifi cance levels. Such plots allow the medical analyst 

to follow the spread of an outbreak. More recently, we 
have used groups of diagnosis codes included in the 
ESSENCE II syndrome groups and selected subgroups 
to seek and track clusters of endemic disease and to 
look for unexpected outbreaks. We have found tran-
sient clusters of infl uenza-like illness during cold season 
and occasional small outbreaks of other nonreportable 
illnesses.

Recent efforts have focused on fi nding clusters of 
space–time interaction using multiple data sources with-
out counts from high-variance sources that mask mod-
erate signals in sources of smaller scale and variance. 
The fusion of such disparate sources is diffi cult because 
counts cannot be scaled by their variance in the con-
ventional SaTScan approach. A stratifi ed scan statistic19 
has shown promise for fi nding signals in both low- and 
high-variance sources without losing power to detect 
faint signals distributed throughout all sources.

ALGORITHM PERFORMANCE 
ASSESSMENT

Modeling the Signal
Any assessment of the performance of a detection 

method requires knowledge of the signal of interest. We 
consider the signal to be the number of additional data 
counts (syndromic cases, OTC sales, absentees, etc.) 
attributable to a point-source outbreak—the feared result 
of a terrorist release of a pathogen in a public place—on 
each day after exposure. Lacking this specifi c knowl-
edge, we assume that the “data epicurve” for each source 
is proportional to the number of new symptomatic cases 
each day, excluding weekends, with obvious adjustments 
such as cumulative attributable school absences. The 
signal problem is then to estimate the number of new 
symptomatic cases by day after exposure. 

It is diffi cult to use authentic outbreaks to make such 
estimates for two reasons: (1) outbreaks are not readily 
identifi able in datasets of interest, and (2) our objective 
is to assess early reporting capability, so we need to know 
when an outbreak begins, ideally to within a day. We 
therefore get our epicurve estimates by simulation. 

For an epicurve model, we use the lognormal distribu-
tion fi rst discussed by Sartwell20 in 1949 and widely used 
since then, as noted in the review sections of Philippe21 
and Armenian and Lilienfeld.22 From an analysis of the 
incubation periods of 17 infectious diseases, Sartwell 
observed that incubation period distribution tends to 
be lognormal, with distribution parameters dependent 
on the disease agent and route of infection. To model a 
specifi c disease, we infer the values of lognormal param-
eters from histograms of incubation period data as in 
Meselson et al.23 or from less-specifi c medical literature 
such as the U.S. Army Medical Research Institute’s 
“blue book.”24 Given these parameters and a hypotheti-
cal number of cases, we may produce a model epicurve 

11 cases, 7 days
p < 0.001

20 cases, 11 days
p < 0.001

Figure 4. Clusters (shown in pink) found using spatial scan sta-
tistics (SaTScan software) on 18 January 2001 in the National 
Capital Area for a scarlet fever outbreak study.
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of primary symptomatic cases—all 
cases if the disease is not commu-
nicable. The solid curves in Fig. 5 
show such an epicurve for parame-
ters derived from the smallpox out-
break data used in Hill.25 

Assessment Using Monte Carlo 
Trials

To test the performance of an 
algorithm on a given set of data, 
we construct many realizations of 
a chosen epicurve model for a fi xed 
number N of symptomatic cases. 
To make the trials challenging for 
the algorithms, we choose the peak 
value of the epicurve to be a mul-
tiple (usually 2 or 3) of the standard 
deviation of the data, and then N 
is this peak value divided by the 
maximum of the lognormal density 
function. Having set the epicurve 
shape and the number of cases N, 
we generate the set of incubation 
periods with a set of N random log-
normal draws and round each to the 
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Figure 5. Four randomly chosen incubation period distributions used for signal represen-
tation from the Sartwell model20 (solid curves) with parameters � = 2.4, � = 0.3, and cases 
at peak = 20. The x axis gives incubation time in days.

SUMMARY 
This article has presented an overview of the meth-

odology of algorithms used for biosurveillance. Such 
surveillance presents new technical challenges. Current 
research is dealing with a variety of data sources offering 

nearest day, just as each actual incubation period could 
be seen as a random draw from distributions of dosage 
and susceptibility. The number of cases to add for each 
day is then the number of draws rounded to that day. 
Figure 5 shows four sample stochastic epicurves gener-
ated with this method. 

We conduct each trial by adding a stochastic epi-
curve to a randomly chosen start day in the test data. 
The start day is usually chosen beyond some warm-up 
interval required by the algorithm. We then apply the 
algorithm to the modifi ed data and note whether it fl ags 
an anomaly during the outbreak day(s) of interest for a 
given threshold. The empirical detection probability PD 
for this threshold is the fraction of all trials for which 
the outbreak is detected in this sense. The false alert 
probability PFA is the fraction of days with no added 
counts on which the algorithm fl ags an anomaly for the 
threshold. We obtain a receiver operating characteristic 
(ROC) curve for the chosen data, outbreak shape, and 
outbreak severity by plotting PD versus PFA for a set of 
values of the threshold. Figure 6 shows a set of these 
curves comparing the CDC Ultra algorithm, an EWMA 
method, and a regression-based code using counts of 
diagnoses in the Gastrointestinal syndrome group. The 
preferred algorithm in these comparisons often depends 
on the allowable false alert level. We use this ROC 
assessment method to compare algorithms, to choose 
optimal algorithm parameters, and to estimate minimal 
detectable signals.

Figure 6. Algorithm performance analysis with receiver operati-
ing characteristic (ROC) curves based on simulated outbreaks. 
Background data were Gastrointestinal syndrome counts, simu-
lated outbreak peaks were 3 times the data standard deviation, 
and detection probabilities were tabulated 2 days before the signal 
peak. Best performance is for the highest probability of detection 
along with lowest (or allowable) probability of false alert. 
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many different noise backgrounds. The signal of inter-
est is the effect of a hypothetical outbreak of disease 
on these data sources; however, among the many pos-
sible threat scenarios, this effect is poorly understood. 
Modeling methods and statistical tests from several dis-
ciplines are being adapted and tested as public health 
anomaly detectors. We are working with single and 
multiple data streams, purely temporal and spatiotem-
poral methods, and a variety of data fusion approaches 
to determine effi cient combinations of data sources and 
indicators and algorithms for monitoring them. This 
is part of the APL effort to help mitigate the damage 
caused by a possible bioterrorist attack. Continuing 
research on these algorithms is proceeding side by side 
with the data analysis effort in an overall approach 
that is highly data-driven. 
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