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dvances	in	computer	hardware,	networks,	and	support	software	have	brought	dis-
tributed	computing	to	the	forefront	of	today’s	Navy	combat	systems.	An	effort	known	as	
the	High	Performance	Distributed	Computing	(HiPer-D)	Program	was	established	in	1991	
to	pursue	advantageous	applications	of	this	technology	to	the	Navy’s	premier	Aegis	cruiser	
and	destroyer	combatants.	This	article	provides	an	overview	of	the	program	accomplish-
ments	and	presents	a	brief	discussion	of	some	of	the	intercomputer	communications	issues	
that	were	paramount	to	the	program’s	success.	Most	significant	was	the	credibility	built	
for	distributed	computing	within	the	Aegis	community.	This	was	accomplished	through	
many	demonstrations	of	combat	system	functions	that	exhibited	capacity,	timeliness,	and	
reliability	attributes	necessary	to	meet	stringent	Aegis	system	requirements.	

INTRODUCTION
In	 the	 1950s,	 the	 Navy	 embarked	 on	 its	 course	

of	 developing	 standardized	 computers	 for	 operational	
use.	The	AN/UYK-7,	AN/UYK-20,	AN/UYK-43,	and	
AN/UYK-44	are	still	the	primary	combat	system	com-
puters	 deployed	 today	 (Fig.	 1).	 They	 function	 at	 the	
heart	of	the	Navy’s	premier	surface	ships,	merging	infor-
mation	 from	 sensor	 systems,	 providing	 displays	 and	
warnings	to	the	crew,	and	controlling	the	use	of	weap-
ons.	These	computers	are	wholly	Navy	developed.	The	
processing	units,	interfaces,	operating	system,	and	sup-
port	 software	 (e.g.,	 compilers)	 were	 all	 built	 by	 the	
Navy	 and	 its	 contractors.	 The	 AN/UYK-43	 is	 the	
last	 in	 the	 line	 of	 Navy	 standard	 computers	 (oddly	
enough	going	 into	production	after	 its	 smaller	 sibling,	
the	AN/UYK-44).	Described	in	1981	as	“the	new	large	
scale	computer	.	.	.	expected	to	be	in	service	for	the	next	
25	years,”1	it	will	actually	see	a	service	life	beyond	that.	

The	Navy	Standard	Computer	Program	was	success-
ful	 at	 reducing	 logistics,	 maintenance,	 and	 a	 host	 of	
other	costs	related	to	the	proliferation	of	computer	vari-
ants;	however,	in	the	1980s,	the	Navy	faced	a	substan-
tial	increase	in	the	cost	of	developing	its	own	machines.	
Pushed	by	leaps	in	the	commercial	computing	industry,	
everything	 associated	 with	 Navy	 Standard	 Computer	
development—from	instruction	set	design	to	program-
ming	language	capabilities—was	becoming	more	com-
plex	and	more	expensive.	

By	 1990,	 it	 was	 clear	 that	 a	 fundamental	 shift	 was	
occurring.	The	shrinking	cost	and	dramatically	growing	
performance	of	computers	were	diminishing	the	signifi-
cance	of	the	computer	itself.	The	transformation	of	cen-
tralized	mainframe	computing	to	more	local	and	respon-
sive	minicomputers	was	bringing	about	the	proliferation	
of	even	lower-cost	desktop	computers.	Microprocessors	
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had	 indeed	 achieved	 the	 performance	 of	 their	 main-
frame	predecessors	just	10	years	earlier,	but	this	was	only	
half	of	the	shift!	Spurred	by	new	processing	capabilities,	
system	designers	were	freed	to	tackle	increasingly	com-
plex	problems	with	correspondingly	more	intricate	solu-
tions.	 As	 a	 new	 generation	 of	 complex	 software	 took	
shape,	the	balance	of	computer	hardware	and	software	
investments	 in	 Navy	 systems	 cascaded	 rapidly	 to	 the	
software	side.

Harnessing	the	collective	power	of	inexpensive	main-
stream	commercial	computers	for	large,	complex	systems	
was	clearly	becoming	prominent	in	Navy	combat	system	
design.	The	highly	successful	demonstration	in	1990	of	
the	Cooperative	Engagement	Capability	(CEC)	proto-
type,	 built	 with	 over	 20	 Motorola	 commercial	 micro-
processors,	 was	 a	 milestone	 in	 distributed	 computing	
for	 Navy	 combat	 system	 applications.	 Developments	
in	 both	 Aegis	 and	 non-Aegis	 combat	 systems	 focused	
thereafter	 on	 applying	 the	 capabilities	 of	 distributed	
computing	to	virtually	all	of	the	Navy’s	prototype	efforts.	
Distributed	computing	offered	the	potential	for	provid-
ing	substantially	more	powerful	and	extensible	comput-
ing,	 the	 ability	 to	 replicate	 critical	 functions	 for	 reli-
ability,	and	the	simplification	of	software	development	
and	testing	through	the	 isolation	of	 functions	 in	their	
own	computing	environments.	Indeed,	when	the	Navy’s	
Aegis	Baseline	7	and	Ship	Self-Defense	System	(SSDS)	
Mk	2	Mod	1	are	delivered	(expected	in	2002),	a	com-
mercial	distributed	computing	 infrastructure	will	have	
been	established	for	all	new	builds	and	upgrades	of	the	
Navy’s	 primary	 surface	 combatants	 (carriers,	 cruisers,	
and	destroyers).

Distributed	computing	for	combat	systems,	however,	
is	not	without	its	difficulties.	Requirements	for	systems	
such	as	Aegis	are	stringent	(response	times,	capacities,	
and	reliability)	and	voluminous	(dozens	of	independent	
sensor	systems,	weapon	systems,	operator	interfaces,	and	
networks	 to	be	managed),	and	 the	prior	 large	body	of	
design	knowledge	has	been	focused	on	Navy	Standard	

Computer	implementation.	(As	an	example,	the	Aegis	
Combat	System	had	a	small	number	of	AN/UYK-7	[later	
AN/UYK-43]	 computers.	 Each	 represented	 an	 Aegis	
“element”	such	as	the	Weapon	Control	System,	Radar	
Control	 System,	 or	 Command	 and	 Decision	 System.	
Within	 an	 element,	 interactions	 among	 subfunctions	
were	carried	out	primarily	via	shared	memory	segments.	
These	do	not	map	well	to	a	distributed	computing	envi-
ronment	because	the	distributed	nodes	do	not	share	any	
physical	memory.)	

Among	 the	 most	 fundamental	 issues	 facing	 this	
new	 generation	 of	 distributed	 computing	 design	 was	
the	 pervasive	 need	 for	 “track”	 data	 to	 be	 available	
“everywhere”—at	all	the	computing	nodes.	Tracks	com-
prise	 the	combat	 system’s	best	assessment	of	 the	 loca-
tions,	 movements,	 and	 characteristics	 of	 the	 objects		
visible	to	 its	 sensors.	They	are	the	 focal	point	of	both	
automated	 and	 manual	 decision	 processes	 as	 well	 as	
the	 subject	of	 interactions	with	other	members	of	 the	
battle	group’s	networks.	Ship	sensors	provide	new	infor-
mation	 on	 each	 track	 periodically,	 sometimes	 at	 high	
rate.	While	the	reported	information	is	relatively	small	
(e.g.,	a	new	position	and	velocity),	the	frequency	of	the	
reports	and	the	large	number	of	objects	can	combine	to	
yield	a	demanding	load.	The	number	of	track	data	con-
sumers	can	easily	amount	to	dozens	and	place	the	over-
all	 system	communication	burden	 in	 the	 region	of	 50	
to	100,000	messages	per	second.	(Figure	2	shows	a	scan	
with	many	tracks	feeding	messages	forward.)

Although	commercial	machines	and	networks	have	
advanced	 admirably	 in	 their	 ability	 to	 communicate	
data	 across	 networks,	 the	 combat	 system	 applications	
have	some	unusual	characteristics	that	make	their	needs	
substantially	different	from	the	commercial	mainstream.	
The	 track	 information	 that	 comprises	 the	bulk	of	 the	
combat	system	communications	consists	of	many	small	
(a	few	hundred	bytes)	messages.	These	messages	can	be	
independently	 significant	 to	 the	 downstream	 consum-
ers,	with	varying	requirements	to	arrive	“quickly”	at	par-
ticular	destinations.	Commercial	systems	are	not	tuned	
to	handle	large	numbers	of	small	messages;	they	focus	on	
handling	the	needs	of	the	mass	market,	which	are	typi-
cally	less	frequent	and	larger	sets	of	data.

HIGH PERFORMANCE DISTRIBUTED 
COMPUTING

The	HiPer-D	Program	originated	as	a	joint	Defense	
Advanced	Research	Projects	Agency	(DARPA)/Aegis	
(PMS-400)	endeavor,	with	three	participating	techni-
cal	organizations:	APL,	Naval	Surface	Warfare	Center	
Dahlgren	Division	(NSWCDD),	and	Lockheed	Martin	
Corporation.	It	was	inspired	by	a	future	shipboard	com-
puting	 vision2	 and	 the	 potential	 for	 synergy	 between	
it	 and	 a	wave	of	 emerging	DARPA	 research	products	
in	distributed	computing.	The	program	commenced	in	

Figure 1. Navy family computers.
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June	1991	and	has	been	an	ongoing	research	and	devel-
opment	effort	designed	to	reduce	risk	due	to	the	intro-
duction	 of	 distributed	 computing	 technologies,	 meth-
ods,	and	tools	into	the	Aegis	Weapon	System.

Many	 of	 the	 significant	 developments	 of	 HiPer-D	
have	 been	 showcased	 in	 demonstrations.	 Since	 1994,	
when	the	first	major	HiPer-D	demonstration	was	held,	
there	 have	 been	 seven	 demonstrations	 that	 provided	
exposure	of	concepts	and	techniques	to	Aegis	and	other	
interested	 communities.	 The	 first	 HiPer-D	 integrated	
demonstration	(Fig.	3)	focused	primarily	on	the	poten-
tial	 for	 applying	 massively	 parallel	 processor	 (MPP)	
technology	 to	 combat	 system	 applications.	 It	 brought	
together	 a	 collection	of	 over	 50	programs	 running	on	
34	 processors	 (including	 16	 processors	 on	 the	 Intel	
Paragon	 MPP)	 as	 a	 cooperative	 effort	 of	 APL	 and	
NSWCDD.	The	functionality	included	a	complete	sen-
sor-to-weapon	path	through	the	Aegis	Weapon	System,	
with	doctrine-controlled	automatic	and	semi-automatic	
system	 responses	 and	 an	 operator	 interface	 that	 pro-
vided	essential	tactical	displays	and	decision	interfaces.	
The	major	anomaly	relative	to	the	actual	Aegis	system	
was	 the	 use	 of	 core	 elements	 from	 CEC	 (rather	 than	
Aegis)	 to	 provide	 the	 primary	 sensor	 integration	 and	
tracking.	

By	 many	 measures,	 this	 first	 demonstration	 was	 a	
significant	 success.	 Major	 portions	 of	 weapon	 system	
functionality	 had	 been	 repartitioned	 to	 execute	 on	 a	
large	collection	of	processors,	with	many	functions	con-
structed	to	take	advantage	of	replication	for	reliability	
and	scaling.	The	Paragon	MPP,	however,	suffered	severe	
performance	problems	connecting	with	computers	out-
side	 its	MPP	communication	mesh.	Key	external	net-
work	 functions	 were	 on	 the	 order	 of	 20	 times	 slower	
than	on	Sun	workstations	of	the	same	era.	The	resulting		

impact	 on	 track	 capacity	 (less	 than	 100)	 drove	 later	
exploration	away	from	the	MPP	approach.	

The	next-generation	demonstration	had	two	signifi-
cant	differences:	(1)	it	focused	on	the	use	of	networked	
workstations	to	achieve	the	desired	computing	capacity,	
and	(2)	it	strove	for	a	stronger	grounding	in	the	existing	
Aegis	requirements	set.	The	primary	impact	of	these	dif-
ferences	was	to	switch	from	a	CEC-based	ship	tracking	
approach	to	an	Aegis-derived	tracking	approach.	Addi-
tional	fidelity	was	added	to	the	doctrine	processing,	and	

Figure 2. Information originates from sensor views of each object. Each report is small, but the quantity can be very large (because 
of high sensor report rates and potentially large numbers of objects). The reports flow throughout to be integrated and modified, and to 
enable rapid reaction to change.

Figure 3. First HiPer-D demonstration physical/block diagram.
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the	rapid	self-defense	response	capability	referred	to	as	
“auto-special”	was	added	to	provide	a	context	in	which	
to	 evaluate	 stringent	 end-to-end	 timing	 requirements.	
The	1995	HiPer-D	demonstration3–5	represented	a	sig-
nificant	milestone	in	assessing	the	feasibility	of	moving	
commercial	distributed	computing	capabilities	into	the	
Aegis	mission-critical	systems’	domain.	Track	capacity	
was	improved	an	order	of	magnitude	over	the	original	
demonstration;	a	variety	of	replication	techniques	pro-
viding	 fault	 tolerance	 and	 scalability	 were	 exhibited;	
and	critical	Aegis	end-to-end	timelines	were	met.	

Subsequent	 demonstrations	 in	 1996	 to	 1998	 built	
upon	 the	 success	 of	 the	 1995	 demonstration,	 adding	
increased	 functionality;	 extending	 system	 capacity;	
exploring	 new	 network	 technologies,	 processors,	 and	
operating	 systems;	 and	 providing	 an	 environment	 in	
which	to	examine	design	approaches	that	better	matched	
the	new	distributed	paradigm.	Indeed,	a	fairly	complete	
software	 architecture	named	 “Amalthea”4	was	 created	
to	explore	the	feasibility	of	application-transparent	scal-
able,	 fault-tolerant	distributed	 systems.	 It	was	 inspired	
by	 the	Delta-4	architecture	done	 in	 the	 late	1980s	by	
ESPRIT	(European	Strategic	Programme	 for	Research	
and	Development	in	Information	Technology)5	and	was	
used	to	construct	a	set	of	experimental,	 reliable	appli-
cations.	 In	 addition	 to	 architectural	 exploration,	 the	
application	 domain	 itself	 was	 addressed.	 Even	 though	
the	top-level	system	specification	continued	to	convey	
a	 valid	 view	 of	 system	 performance	 requirements,	 the	
decomposition	of	those	top-level	requirements	into	the	
Aegis	element	program	performance	specifications	had	
been	crafted	20	years	earlier	with	a	computing	capacity	
and	 architecture	vastly	 different	 from	 the	 current	dis-
tributed	environment.	

The	 command	 and	 decision	 element,	 from	 which	
much	of	the	HiPer-D	functionality	originated,	seemed	
like	a	particularly	fertile	area	for	significant	change.	An	
example	 of	 this	 was	 the	 tendency	 of	 requirements	 to	
be	 specified	 in	 terms	of	 a	periodic	 review.	 In	 the	case	
of	doctrine-based	review	for	automatic	actions,	the	real	
need	was	to	ensure	that	a	track	qualifying	for	action	was	
identified	within	a	certain	amount	of	time,	not	neces-
sarily	that	it	be	done	periodically.	In	the	HiPer-D	archi-
tecture,	 it	 is	 simple	 to	 establish	 a	 client	 (receiver	 of	
track	data)	that	will	examine	track	reports	for	the	doc-
trine-specified	action	upon data arrival.	From	a	respon-
siveness	 standpoint,	 this	 far	 exceeds	 the	 performance	
of	the	periodic	review	specified	in	the	element	require-
ments	 and	 yet	 is	 a	 very	 straightforward	 approach	 for	
the	high-capacity	and	independent	computing	environ-
ment	of	the	distributed	system.

The	1999	and	2000	demonstrations6,7	continued	the	
pattern,	bringing	in	new	functionality	and	a	significant	
new	 paradigm	 for	 scalable	 fault-tolerant	 servers	 that		
use	new	network	switch	technology	(see	next	section).	
This	 phase	 of	 development	 also	 addressed	 a	 need	 for	

instrumenting	 the	 distributed	 system	 which	 had	 been	
identified	early	in	the	program	but	met	with	a	less-than-
satisfactory	solution.	

Distributed	 systems	 apply	 the	 concept	 of	 “work	 in	
parallel,”	where	each	working	unit	has	its	own	indepen-
dent	resources	(processor	and	memory).	Although	this	
eases	the	contention	between	functions	running	in	par-
allel,	 it	elevates	the	complexity	of	test	and	analysis	to	
a	new	level.	Collection	and	integration	of	the	informa-
tion	 required	 to	 verify	 performance	 or	 diagnose	 prob-
lems	require	sophisticated	data	gathering	daemons	to	be	
resident	on	each	processor,	and	analysis	capabilities	that	
can	 combine	 the	 individual	 processor-extracted	 data	
streams	must	be	created.	Early	in	the	HiPer-D	effort,	a	
German	 research	 product	 called	 “JEWEL”8	 was	 found	
to	provide	such	capabilities	with	displays	that	could	be	
viewed	in	real	time.	The	real-time	monitoring/analysis	
capability	of	HiPer-D	was	not	only	one	of	its	most	prom-
inent	demonstration	features,	but	some	would	claim	also	
one	of	the	most	significant	reasons	that	the	annual	inte-
gration	of	 the	 complex	 systems	was	 consistently	 com-
pleted	on	time.	JEWEL,	however,	never	achieved	status	
as	a	supported	commercial	product	and	was	somewhat	
cumbersome	from	the	perspective	of	large	system	devel-
opment.	For	example,	it	had	an	inflexible	interface	for	
reporting	data,	allowing	only	a	limited	number	of	inte-
gers	to	be	reported	on	each	call.	Data	other	than	inte-
gers	could	be	reported,	but	only	by	convention	with	the	
ultimate	data	interpreter	(graphing	program).	

Beginning	in	1999,	a	real-time	instrumentation	tool	
kit	 called	 Java	 Enhanced	 Distributed	 System	 Instru-
mentation	 (JEDSI)	 was	 developed	 and	 employed	 as	 a	
replacement	for	JEWEL.	It	followed	the	JEWEL	model	
of	providing	very	low	overhead	extraction	of	data	from	
the	 processes	 of	 interest	 but	 eliminated	 the	 interface	
issues	 that	made	 it	 awkward	 for	 large-scale	 systems.	 It	
also	 capitalized	 on	 the	 use	 of	 commercially	 available	
Java-based	graphics	packages	and	communications	sup-
port	to	provide	an	extensive	library	of	real-time	analysis	
and	performance	visualization	tools.

Current	 and	 planned	 initiatives	 in	 HiPer-D	 are	
moving	toward	multi-unit	operations.	Functionality	for	
integrating	data	from	Navy	tactical	data	links	has	been	
added	 to	 the	 system,	 and	 the	 integration	of	 real	CEC	
components	is	planned	for	late	2001.	Such	a	capability	
will	 provide	 the	 necessary	 foundation	 to	 extend	 the	
exploration	of	distributed	capabilities	beyond	the	indi-
vidual	unit.	

EVOLUTION OF COMMUNICATIONS 
IN HiPer-D

The	 first	 phase	 of	 HiPer-D,	 culminating	 in	 the	
system	shown	in	Fig.	3,	had	a	target	computing	environ-
ment	that	consisted	of	an	MPP	as	the	primary	comput-
ing	resource,	surrounded	by	networked	computers	that		
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modeled	 the	 sensor	 inputs	 and	 workstations	 that	 pro-
vided	 graphical	 operator	 interfaces.	 The	 MPP	 was	 an	
Intel	 Paragon	 (Fig.	 4).	 It	 had	 a	 novel	 internal	 inter-
connect	and	an	operating	system	(Mach)	that	had	mes-
sage	passing	as	an	integral	function.	Mach	was	the	first	
widely	used	(and,	for	a	brief	period,	commercially	sup-
ported)	 operating	 system	 that	 was	 built	 as	 a	 “distrib-
uted	 operating	 system”—intended	 from	 the	 outset	 to	
efficiently	 support	 the	 communication	 and	 coordina-
tion	requirements	of	distributed	computing.

Despite	 these	 impressive	 capabilities,	 an	 important	
principle	had	been	established	within	the	DARPA	com-
munity	 that	 rendered	 even	 these	 capabilities	 incom-
plete	for	the	objective	of	replication	for	fault	tolerance	
and	scalability.	Consider	the	computing	arrangement	in		
Fig.	5.	A	simple	service—the	allocation	of	track	num-
bers	to	clients	who	need	to	uniquely	label	tracks—is	rep-
licated	for	reliability.	The	replica	listens	to	the	requests	
and	performs	the	same	simple	assignment	algorithm,	but	
does	 not	 reply	 to	 the	 requester	 as	 the	 primary	 server	
does.	This	simple	arrangement	can	be	problematic	if	the	
communications	do	not	behave	in	specific	ways.	If	one	
of	the	clients’	requests	is	not	seen	by	the	backup	(i.e.,	
the	message	is	not	delivered),	the	backup	copy	will	be	
offset	1	 from	the	primary.	 If	 the	order	of	multiple	cli-
ents’	requests	is	interchanged	between	the	primary	and	
backup	servers,	the	backup	server	will	have	an	errone-
ous	record	of	numbers	assigned	to	clients.	Furthermore,	

at	 such	 time	 as	 the	 primary	 copy	 is	 declared	 to	 have	
failed,	the	backup	will	not	know	which	client	requests	
have	been	serviced	and	which	have	not.	

Communication	 attributes	 required	 to	 achieve	 the	
desired	behavior	in	this	server	example	include	reliable	
delivery,	 ordered	 delivery,	 and	 atomic	 membership	
change.	Reliable	delivery	assures	that	a	message	gets	to	
all	destinations	(or	none	at	all)	and	addresses	the	prob-
lem	of	the	servers	getting	“out	of	synch.”	Ordered	deliv-
ery	means	that,	within	a	defined	group	(specifying	both	
members	and	messages),	all	messages	defined	as	part	of	
the	 group	 are	 received	 in	 the	 same	 order.	 This	 elimi-
nates	the	problem	that	can	occur	when	the	primary	and	
replica	see	messages	in	a	different	order.	Atomic	mem-
bership	change	means	that,	within	a	defined	group,	any	
member	entering	or	 leaving	 the	group	(including	 fail-
ure)	is	seen	to	do	so	at	the	same	point	of	the	message	
stream	among	all	group	members.	In	our	simple	server	
example	 above,	 this	 allows	 a	new	 replica	 to	be	 estab-
lished	with	a	proper	understanding	of	how	much	“his-
tory”	of	previous	primary	activity	must	be	supplied,	and	
how	 much	 can	 be	 picked	 up	 from	 the	 current	 client	
request	stream.

A	convenient	model	 for	providing	these	communi-
cation	attributes	is	“process	group	communications.”	In	
this	model,	the	attributes	above	are	guaranteed,	i.e.,	all	
messages	are	delivered	to	all	members	or	none,	all	mes-
sages	 are	 delivered	 to	 all	 group	 members	 in	 the	 same	
order,	 and	 any	 members	 that	 leave	 or	 join	 the	 group	
are	seen	to	do	so	at	the	same	point	within	the	group’s	
message	 stream.	 Early	 HiPer-D	 work	 used	 a	 toolkit	
called	 the	 Isis	 Distributed	 Toolkit9	 that	 served	 as	 the	
foundation	for	process	group	communications.	Initially	
developed	 at	 Cornell	 University,	 it	 was	 introduced	 as		
a	 commercial	product	by	a	 small	 company	named	 Isis		
Distributed	Systems.	Figure 4. Paragon.
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The	 cornerstone	 element	 of	 the	 HiPer-D	 commu-
nications	 chain	 was	 an	 application	 called	 the	 Radar	
Track	Server	(RTS).	Its	task	was	to	service	a	large	set	
of	(potentially	replicated)	clients,	providing	them	with	
track	data	at	their	desired	rate	and	staleness.	Fed	from	
the	 stream	 of	 track	 data	 emerging	 from	 the	 primary	
radar	 sensor	 and	 its	 subsequent	 track	 filter,	 the	 RTS	
allows	each	consumer	of	the	track	information	to	spec-
ify	desired	update	rates	for	the	tracks	and	further	spec-
ify	 latency	or	 staleness	associated	with	 the	delivery	of	
track	information.	This	was	a	significant,	new	architec-
tural	strategy.	In	prior	designs,	track	reports	were	either	
delivered	en	masse	at	 the	 rate	produced	by	 the	sensor	
or	 delivered	 on	 a	 periodic	 basis.	 (Usually,	 the	 same	
period	was	applied	to	all	tracks	and	all	users	within	the	
system,	which	meant	a	compromise	of	some	sort.)	These	
new	server	capabilities	brought	the	ability	to	selectively	
apply	varying	performance	characteristics	(update	rate	
and	latency)	based	on	each	client’s	critical	evaluation	of	
each	individual	track.	

The	RTS	matches	a	client’s	requested	rate	for	a	track	
by	 filtering	 out	 unnecessary	 reports	 that	 occur	 during	
the	target	report	intervals	(Fig.	6).	For	instance,	if	the	
sensor	 provides	 an	 update	 every	 second	 but	 a	 client	
requests	 updates	 every	 2	 s,	 the	 RTS	 will	 send	 only		

alternate	updates.	Of	 course,	 this	 is	 client-	 and	 track-
specific.	In	the	previous	example,	should	a	track	of	more	
extreme	interest	appear,	the	client	could	direct	the	RTS	
to	 report	 that	 specific	 track	at	 the	 full	1-s	 report	 rate.	
(There	 was	 also	 successful	 experimentation	 in	 use	 of	
the	RTS	to	feed	back	consumer	needs	to	the	sensor	to	
enable	optimization	of	 sensor	 resources.)	 If	 a	consum-
er’s	 desired	 report	 rate	 is	 not	 an	 integral	 multiple	 of	
the	sensor	rate,	the	RTS	maintains	an	“achieved	report	
rate”	and	decides	whether	to	send	an	update	based	on	
whether	its	delivery	will	make	the	achieved	report	rate	
closer	or	further	away	from	the	requested	report	rate.

One	lesson	learned	very	early	in	the	HiPer-D	effort	
was	that,	 in	network	communications,	the	capacity	to	
deliver	messages	benefits	immensely	from	buffering	and	
delivery	of	collections	of	messages	rather	than	individ-
ual	transmission	of	each	message.	Of	course,	this	intro-
duces	 latency	 to	 the	delivery	of	 the	messages	 that	are	
forced	to	wait	for	others	to	fill	up	the	buffer.	The	RTS	
uses	a	combination	of	buffering	and	timing	mechanisms	
that	allows	the	buffer	to	fill	for	a	period	not	to	exceed	
the	client’s	latency	specification.	Upon	reaching	a	full	
buffer	condition	or	the	specified	maximum	latency,	the	
buffer—even	 if	 it	 is	 only	 a	 single	 message—is	 then	
delivered	to	the	client.
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Figure 6. Radar track server.

The	 criticality	 of	 the	 RTS	 to	
the	system	and	the	anticipated	load	
from	the	large	number	of	clients	led	
to	its	immediate	identification	as	a	
prime	candidate	for	applying	repli-
cation	to	ensure	reliability	and	scal-
ability	 to	 high	 load	 levels.	 All	
these	 factors	made	the	RTS	a	rich	
subject	 for	 exploration	 of	 process	
group	 communications.	 Figure	 7	
depicts	the	basic	set	of	process	group	
communications–based	interactions	
among	a	 set	of	cooperating	 servers	
providing	track	data	to	a	set	of	cli-
ents.	The	process	group	communica-
tions	delivery	properties	(combined	
with	 the	 particular	 server	 design)	
allowed	 the	 server	 function	 to	 be	
replicated	for	both	improved	capac-
ity	 and	 reliability.	 It	 also	 allowed	
clients	to	be	replicated	for	either	or	
both	purposes.	

The	first	Paragon-centered	dem-
onstration	 included	 the	 use	 of	 the	
process	group	communications	par-
adigm	 and	 the	 RTS.	 Even	 though	
the	 internal	 Paragon	 communica-
tions	mesh	proved	to	be	very	capa-
ble,	 the	system	as	a	whole	suffered	
from	 a	 severe	 bottleneck	 in	 mov-
ing	 track	 data	 into	 and	 out	 of	 the		
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Paragon.	The	16-node	Paragon	mesh	was	shown	capa-
ble	of	8	pairs	of	simultaneous	communications	streams	
of	1000	messages	a	second	(with	no	buffering!).	Com-
pared	 to	 the	 roughly	 300	 messages	 per	 second	 being	
achieved	on	desktops	of	that	period,	the	combination	of	
Mach	messaging	features	and	Paragon	mesh	was	impres-
sive.	However,	as	described	earlier,	the	Paragon’s	Ether-
net-based	external	connectivity	was	flawed.	Apparently,	
in	 the	niche	of	Paragon	customers,	Ethernet	 interface	
performance	was	not	of	substantial	concern.	Serving	the	
“supercomputer	market,”	the	Paragon	was	more	attuned	
to	 high-performance	 parallel	 input	 devices	 (primarily	
disk)	 and	 high-end	 graphics	 engines	 that	 had	 HiPPi’s	
(High-Performance	Parallel	Interfaces).	

The	 migration	 from	 Paragon	 MPP	 hardware,	 with	
its	mesh-based	communications,	 to	the	network-based	
architecture	of	subsequent	demonstrations	proved	to	be	
smooth	for	process	group	communications.	The	elimina-
tion	of	poor-performance	Paragon	Ethernet	input/output	
allowed	 the	 network-based	 architecture	 to	 achieve	 a	
realistic	capacity	of	600	tracks	while	meeting	subsecond	
timelines	 for	 high-profile,	 time-critical	 functions.	 The	
RTS	scalable	design	was	able	to	accommodate	9	distinct	
clients	(with	different	track	interests	and	report	charac-
teristics),	some	of	them	replicated,	for	a	14-client	total.

Although	the	network	architecture	and	process	group	
communications	were	major	successes,	the	Isis	Distrib-
uted	Toolkit	mentioned	earlier	was	encountering	real-
world	business	practices.	When	Isis	Distributed	Systems	
was	acquired	by	Stratus	Computer,	 the	event	was	 ini-
tially	hailed	as	a	positive	maturation	of	the	technology	
into	a	solid	product	that	could	be	even	better	marketed	
and	 supported.	 However,	 in	 1997,	 Stratus	 pulled	 Isis	
from	the	market	and	terminated	support.	

This	was	unsettling.	Even	though	there	was	no	need	
to	panic	(the	existing	Isis	capabilities	and	licenses	would	
continue	 to	 serve	 the	 immediate	 needs),	 the	 demise	

of	 Isis	 signaled	 the	 indifference	 of	 the	 commercial	
world	to	the	type	of	distributed	computing	that	Isis	sup-
ported	(and	was	found	to	be	so	useful).	APL	eventually	
employed	 another	 research	 product,	 “Spread,”	 devel-
oped	 by	 Dr.	 Yair	 Amir	 of	 The	 Johns	 Hopkins	 Uni-
versity.10	 It	 provides	 much	 of	 the	 same	 process	 group	
communications	support	present	in	Isis,	is	still	used	by	
HiPer-D	today,	and	has	just	recently	been	“productized”	
by	Spread	Concepts	LLC,	Bethesda,	MD.	The	absence	
of	any	large	market	for	commercial	process	group	com-
munications,	however,	 is	 an	 important	 reminder	 that,	
although	systems	that	maximize	the	use	of	commercial	
products	 are	 pursued,	 the	 requirements	 of	 the	 Navy’s	
deployed	combat	systems	and	those	of	the	commercial	
world	will	not	always	coincide.

In	 1998,	 an	 interesting	 new	 capability	 in	 network	
switches,	 combined	 with	 some	 ingenuity,	 provided	 a	
new	approach	for	developing	fault-tolerant	and	scalable	
server	applications.	Recent	advances	in	network	switch	
technology	allowed	for	fast,	application-aware	switching	
(OSI	Level	4).	With	an	ability	to	sense	whether	a	server	
application	 was	 “alive,”	 a	 smart	 switch	 could	 intel-
ligently	 balance	 incoming	 client	 connections	 among	
multiple	servers	and	route	new	connections	away	from	
failed	ones.	

The	 RTS	 was	 chosen	 as	 a	 proving	 ground	 for	 this	
new	technology.	Because	of	its	complexity,	the	RTS	was	
the	one	remaining	HiPer-D	function	that	employed	Isis.	
It	 also	had	 the	potential	 to	benefit	 substantially	 (per-
formance-wise)	by	eliminating	the	burden	of	inter-RTS	
coordination.	The	inter-RTS	coordination	used	features	
of	 Isis	 to	 provide	 a	 mechanism	 for	 exchange	 of	 state	
information	(e.g.,	clients	and	their	requested	track	char-
acteristics)	between	 server	 replicas.	This	 coordination	
added	complexity	to	the	RTS	and	the	underlying	com-
munications	 and	 consumed	 processing	 time,	 network	
bandwidth,	and	memory	resources.	

The	 switch-based	 RTS	 continues	 to	 support	 the	
major	functionality	of	the	original	RTS	but	does	so	with	
a	 much	 simpler	 design	 and	 smaller	 source	 code	 base.	
The	guiding	principle	in	the	design	of	the	new	RTS	was	
simplicity.	Not	only	would	 this	prove	easier	 to	 imple-
ment,	 it	 would	 also	 provide	 fewer	 places	 to	 introduce	
latency,	thus	improving	performance.	Each	RTS	replica	
operates	 independently	of	all	others.	 In	 fact,	 the	serv-
ers	 do	 not	 share	 any	 state	 information	 among	 them	
and	are	oblivious	to	the	existence	of	any	other	servers.	
The	implementation	of	a	design	that	does	not	require	
knowledge	of	other	servers	was	a	dramatic	change	from	
the	original	RTS	design,	which	had	required	extensive	
coordination	among	the	servers	to	ensure	that	all	clients	
were	being	properly	served,	particularly	under	the	aber-
rant	conditions	of	a	client	or	server	failure.	

Clients	of	the	switch-based	RTS	server	set	view	it	as	
a	single	virtual	entity	(Fig.	8).	Each	time	a	new	client	
requests	 service	 from	 the	 “virtual	 RTS,”	 the	 Level	 4	
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Figure 8. Switch-based RTS block diagram.

switch	 selects	 one	 of	 the	 RTS	 servers	 to	 handle	 the	
request.	The	selection	is	currently	based	on	a	rotating	
assignment	policy	but	could	be	based	on	other	loading	
measures	 that	 are	 fed	 to	 the	 switch.	 Once	 a	 client	
is	established	with	a	particular	server,	that	server	han-
dles	all	its	needs.	In	the	event	of	server	failure,	a	client-
side	library	function	establishes	connection	with	a	new	
server	 and	 restores	 all	 the	 previously	 established	 ser-
vices.	In	addition	to	replication	of	the	server,	the	Level	
4	 switch	 itself	can	be	replicated	to	provide	redundant	
paths	to	the	servers.	This	accommodates	failure	of	the	
switch	itself	as	well	as	severance	of	a	network	cable.

Figure	 9a	 is	 a	 time	 plot	 of	 a	 typical	 end-to-end	
response	for	the	combat	system	demonstration	applica-
tion	that	uses	the	RTS.	From	sensor	origination	through	
track	filtering	and	RTS	delivery	to	the	client,	average	
latencies	are	approximately	80	ms.	The	80-ms	latency	
is	a	nominal	 level	of	performance	that	 is	 intended	for	
tracks	and	processing	purposes	where	low	latency	is	not	

(a) (b)

Figure 9. Nominal performance with recovery (a) and performance with cable pull  
diagram (b).

of	high	concern.	By	tuning	the	pro-
cessing	functions	and	clients,	laten-
cies	in	the	20-	to	30-ms	range	can	
be	 achieved	but	 at	 the	 expense	of	
capacity.	 This	 is	 a	 clear	 engineer-
ing	 trade-off	 situation,	 where	 the	
proper	balance	can	be	adjusted	for	a	
particular	 application	 (using	 com-
mand	line	parameters).	

A	 server	 software	 failure	 was	
forced	 in	 the	 center	 of	 the	 run	
shown	 in	 Fig.	 9a,	 with	 little	 per-
ceptible	 impact.	 Figure	 9b	 shows	
the	spikes	in	maximum	latency	that	
occur	 as	 a	 result	 of	 physical	 dis-
connection	 of	 the	 server	 from	 the	
switch.	 Physical	 reconfigurations,	
however,	take	2	to	4	s	to	complete.	

The	 switch-based	 RTS	 is	 a	 sig-
nificant	simplification,	reducing	the	

source	code	 from	12,000	 to	5,000	 lines;	however,	 two	
of	its	performance	attributes	are	of	potential	concern	to	
clients:

1.	 Delivery	 of	 all	 data	 to	 a	 client	 is	 not	 strictly	 guar-
anteed.	When	a	server	fails,	messages	that	transpire	
between	 the	 server	 failure	 and	 the	 client’s	 rees-
tablishment	 with	 a	 new	 server	 are	 not	 eligible	 for		
delivery	 to	 that	 client.	 However,	 when	 the	 client	
reconnects,	 it	 will	 immediately	 receive	 the	 freshly	
arriving	 track	 updates.	 In	 the	 case	 of	 periodically	
reported	radar	data,	this	is	sufficient	for	most	needs.

2.	 Failures	 of	 the	 switch	 itself,	 the	 cabling,	 or	 server	
hardware	 incur	 a	 relatively	 large	delay	 to	 recovery.	
This	 is	a	more	serious	potential	problem	for	clients	
because	 the	 reestablishment	 of	 service	 takes	 multi-
ple	seconds.	Initially,	much	of	this	time	was	used	to	
detect	the	fault.	A	“heartbeat”	message	was	added	to	
the	client-server	protocol	to	support	subsecond	fault	
detection,	but	the	mechanisms	in	the	Level	4	switch	
for	dismantling	the	failed	connection	and	establish-
ing	 a	 new	 one	 could	 not	 be	 accelerated	 without	
greater	 vendor	 assistance	 than	 has	 been	 available.	
This	seemed	to	be	a	classic	case	of	not	representing	
a	 strong	 enough	 market	 to	 capture	 the	 vendor’s	
attention.	Had	this	been	a	higher-profile	effort,	with		
more	potential	sales	on	the	line,	it	is	our	perception	
that	 this	 problem	 could	 have	 been	 addressed	 more	
satisfactorily.

The	 use	 of	 Level	 4	 network	 switch	 technology	 pro-
vides	two	major	advantages.	First,	server	implementation	
is	much	simpler.	The	new	RTS	architecture	is	similar	in	
design	 to	 a	 replicated	 commercial	 Internet	 server.	 The	
complex	server-to-server	coordination	protocols	required	
to	 manage	 server	 and	 client	 entries	 exist,	 and	 failures	
have	been	eliminated.	Second,	the	communications	layer	
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used	 between	 the	 server	 and	 its	 clients	 is	 the	 same	
“socket”	service	used	by	major	Internet	components	like	
browsers	and	Web	servers.	The	use	of	standard	commer-
cial	communications	greatly	reduces	the	dependency	of	
the	software	system	on	specific	products.	Therefore,	port-
ing	 the	 software	 to	 new	 (both	 processor	 and	 network)	
environments	will	be	straightforward,	lowering	the	life-
cycle	and	hardware	upgrade	costs.	

CONCLUSION
Foremost	among	the	accomplishments	of	the	HiPer-D	

Program	is	the	long	list	of	proof-of-concept	demonstra-
tions	to	the	Aegis	sponsor	and	design	agent,	Lockheed	
Martin:	

•	 The	 sufficiency	 of	 distributed	 computing	 for	 Aegis	
requirements

•	 The	 ability	 to	 replicate	 services	 for	 reliability	 and	
scalability

•	 The	 ability	 to	 employ	 heterogeneous	 computing	
environments	(e.g.,	Sun	and	PC)

•	 The	feasibility	and	advantages	of	a	track	data	server
•	 A	 single	 track	 numbering	 scheme	 and	 server	 for	

allocating/maintaining	track	numbers
•	 The	feasibility	of	standard	network	approaches	like	

Ethernet,	 FDDI	 (Fiber-Distributed	 Data	 Interface)	
and	ATM	(asynchronous	transfer	mode)	

•	 Strategies	 for	 control	 of	 the	 complex	 distributed	
system	and	reconfiguration	for	reliability	or	scaling

•	 The	value	of	real-time	instrumentation

The	 relationship	 between	 these	 accomplishments	
and	 the	 production	 Aegis	 baselines	 is	 primarily	 indi-
rect.	While	it	would	be	improper	to	claim	“responsibil-
ity”	for	any	of	the	advances	that	the	Lockheed	Martin	
engineering	team	has	been	able	to	infuse	into	ongoing	
Aegis	developments,	it	is	clear	that	the	HiPer-D	efforts	
have	 emboldened	 the	 program	 to	 advance	 rapidly.		
Currently,	three	major	Aegis	baselines	are	under	devel-
opment,	each	with	increasingly	higher	reliance	on	dis-
tributed	computing	and	technology.	The	most	recent,	
referred	 to	 as	 Aegis	 Open	 Architecture,	 will	 fully	
capitalize	 on	 its	 distributed	 architecture,	 involving	 a		
complete	 re-architecting	of	 the	 system	 for	 a	 commer-
cial-off-the-shelf	distributed	computing	infrastructure.	

In	the	specific	area	of	communications,	HiPer-D	has	
continued	 to	 follow	 the	 advance	 of	 technology	 in	 its	

pursuit	of	services	that	can	effectively	meet	Aegis	tac-
tical	 requirements.	 Robust	 solutions	 with	 satisfyingly	
high	 levels	 of	 performance	 have	 been	 demonstrated.	
The	problem	remains,	however,	that	the	life	of	commer-
cial	products	is	somewhat	fragile.	The	bottom-line	need	
for	profit	 in	commercial	offerings	constrains	the	set	of	
research	products	that	reach	the	commercial	market	and	
puts	their	longevity	in	question.	The	commercial	world,	
particularly	 the	 computing	 industry,	 is	 quite	dynamic.	
Significant	products	with	apparently	promising	 futures	
and	industry	support	can	arrive	and	disappear	in	a	very	
short	time.	An	interesting	example	of	this	is	FDDI	net-
work	 technology.	 Arriving	 in	 the	 early	 1990s	 as	 an	
alternative	 to	 Ethernet	 that	 elevated	 capacity	 to	 the	
“next	 level”	 (100	Mbit),	and	garnering	 the	 support	of	
virtually	all	computer	manufacturers,	it	has	all	but	dis-
appeared.	 However,	 it	 is	 this	 same	 fast-paced	 change	
that	is	enabling	new	system	concepts	and	architectural	
approaches	to	be	realized.

The	challenge,	well	recognized	by	Lockheed	Martin	
and	integrated	into	its	strategy	for	Aegis	Open	Archi-
tecture,	 is	 to	 build	 the	 complex	 application	 system	
on	a	 structured	 foundation	 that	 isolates	 the	applica-
tion	 from	 the	 dynamic	 computing	 and	 communica-
tion	environment.	
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