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A	Low	Cost	Gun	Launched	Seeker	Concept	Design		
for	Naval	Fire	Support	

Donald E. Maurer, Eric W. Rogala, Isaac N. Bankman, Bradley G. Boone,  
Kathryn K. Vogel, Christopher Parris

he	Low	Cost	Gun	Launched	Seeker	Program	is	a	component	of	the	Navy’s	effort	to	
develop	effective	weapons	for	surface	fire	support	missions.	The	objective	is	to	improve	
the	performance	of	precision-guided	munitions	against	hardened	targets	by	developing	a	
low-cost	terminal	seeker,	including	detection	and	target	selection	algorithms,	to	autono-
mously	acquire	a	target	and	provide	commands	to	guide	the	projectile.	This	technology	
will	have	widespread	application	to	the	time-critical	engagement	of	both	ground-	and	sea-
based	threats	by	providing	a	smart-weapons	capability	under	the	control	of	the	field	com-
mander.	This	article	provides	an	overview	of	the	required	system	capabilities,	discusses	the	
design	requirements	imposed	on	such	a	system	by	these	capabilities,	and	summarizes	APL’s	
effort	to	develop	a	system	that	meets	mission	objectives.	

INTRODUCTION
This	 article	 describes	 a	 proposed	 target	 detection	

system,	 consisting	 of	 an	 infrared	 (IR)	 seeker	 with	
target	detection,	classification,	and	selection	algorithms,	
designed	 to	 meet	 the	 mission	 objectives	 of	 the	 Low	
Cost	 Gun	 Launched	 Seeker	 (LCGLS)	 Program.	 This	
system	is	intended	to	improve	the	performance	of	pro-
jectiles	 like	 the	 Extended	 Range	 Guided	 Munitions	
(ERGM)	against	hardened	targets	by	developing	a	low-
cost,	uncooled	 IR	 staring	 focal	plane	array	 (FPA)	 ter-
minal	 seeker.	The	 seeker	will	 autonomously	 acquire	 a	
target	 and	 provide	 commands	 to	 guide	 the	 projectile.	
A	ground-based	forward	observer,	air	controller,	or	air-
borne	 asset	 locates	 and	 classifies	 a	 target	 and	 issues	 a	
“call	for	fire.”	Target	location	and	target	templates	are	
loaded	into	the	LCGLS	and	the	projectile	is	launched.	

The	 seeker	 must	 survive	 the	 initial	 15,000-g	 launch	
acceleration.	It	navigates	to	the	target	using	the	Global	
Positioning	System-Aided	Inertial	Navigation	System.	
At	 approximately	 5	 km	 from	 the	 threat,	 the	 seeker	
enters	 search	 mode.	 It	 acquires	 the	 target	 at	 approx-
imately	 2–3	 km,	 begins	 tracking,	 and	 provides	 com-
mands	to	guide	the	projectile.	Biased	proportional	nav-
igation	 begins	 to	 create	 a	 lofted	 trajectory	 and	 steep	
approach	 at	 a	 terminal	 velocity	 of	 approximately	 150	
m/s.	At	the	optimum	point,	an	inexpensive	standoff	fuze	
initiates	the	warhead.

The	 seeker	 has	 been	 proposed	 to	 track	 fixed,	 relo-
catable,	and	mobile	land	and	sea	targets	with	sufficient	
accuracy	 to	 achieve	 a	 small	 circular	 error	 probability	
(CEP).	If	the	seeker	is	activated	below	the	cloud	level,	
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nominally	at	300	to	900	m	based	on	cloud-free	line-of-
sight	statistics,	it	has	about	2–6	s	to	find	the	target	and,	
if	necessary,	complete	a	single	divert.	If	the	cloud	ceil-
ing	is	higher,	the	seeker	could	be	activated	earlier	and	
more	time	would	be	available	to	find	the	target.	Thus,	
some	 of	 the	 major	 constraints	 include	 the	 ability	 to	
survive	 a	 high-g	 launch,	 limited	 space	 and	 weight	 for	
the	seeker,	environmental	 factors	affecting	seeker	per-
formance,	 and	 terminal	 engagement	 geometry,	 which	
determines	the	seeker	field	of	view	(FOV)	and	the	time	
available	 for	 target	 detection.	 These	 constraints	 limit	
the	feasible	optical	designs	and	the	complexity	and	com-
putational	requirements	of	the	detection	algorithms.	An	
additional	 programmatic	 constraint	 is	 cost	 (preferably	
less	than	$10,000	per	round	for	the	seeker).	

The	technology	will	have	widespread	application	to	
the	time-critical	engagement	of	both	ground-	and	sea-
based	 threats	by	providing	a	 smart-weapons	capability	
under	 the	 control	 of	 the	 field	 commander.	 Many	 of	
these	scenarios	share	the	same	compressed	time	line	in	
the	 terminal	 engagement	 process,	 which	 requires	 sub-
stantial	 real-time	 image	 processing	 functionality	 sup-
porting	 highly	 responsive	 terminal	 guidance,	 target		
separation	 from	 clutter,	 and	 aimpoint	 selection.	 The	
ability	to	accurately	deliver	munitions	in	support	of	pre-
cision	attack	using	tactical	targeting	sources	will	give	the		
commander	greater	flexibility	and	autonomy,	thus	reduc-
ing	 the	 time	 required	 to	 respond	 in	 a	 dynamic	 threat	
situation.	

Although	originally	designed	as	an	enhancement	of	
ERGM,	the	LCGLS	technology	is	applicable	to	a	wide	
range	 of	 weapons	 programs	 where	 a	 sensor	 or	 seeker	
system	 is	 needed.	 Examples	 include	 the	 Rapid	 Ord-
nance	Defense	System,	Joint	Direct	Attack	Munitions,	
Forward	Air	Support-Marine-Gun	Launched	Loitering	
Munition,	 as	 well	 as	 Affordable	 Weapon,	 Precision	
Guided	Mortar,	and	other	smart	submunitions	concepts.	
Unmanned	 aerial	 vehicles,	 precision	 targeting,	 battle	
damage	assessment,	and	identification	friend	or	foe	(IFF)	
are	also	potential	application	areas.	

The	 focus	of	 this	article	 is	on	the	algorithms	being	
developed	for	the	system.	However,	to	provide	context,	
the	 desired	 functional	 capabilities	 of	 the	 LCGLS	 are	
summarized	as	well	 as	 the	project’s	 requirements.	Ear-
lier	 work	 focused	 on	 conceptual	 designs	 and	 prelimi-
nary	 analyses	 to	 determine	 if	 they	 met	 requirements.	
In	view	of	 the	promising	outcome	of	 these	efforts,	we	
began	to	develop	a	set	of	algorithms	that	will	autono-
mously	detect	and	track	the	desired	targets.	Ground	tar-
gets	pose	especially	challenging	automatic	target	recog-
nition	 problems	 and	 continue	 to	 be	 the	 focus	 of	 our	
work.	A	preliminary	 study	of	 the	algorithm	execution	
time	 is	 discussed	 here,	 followed	 by	 a	 demonstration	
of	 the	algorithm’s	 typical	performance	 for	a	variety	of	
ground	target	images,	including	buildings,	bunkers,	and	
airfields.

FUNCTIONAL CAPABILITIES
In	the	conceptual	design	we	considered	a	broad	mis-

sion	encompassing	increasingly	challenging	target	sce-
narios.	Subsequently	we	focused	on	the	two	most	critical	
functional	capabilities:	target	segmentation	and	termi-
nal	aimpoint	selection,	i.e.,	the	acquisition	of	hard	tar-
gets	 against	 complex	 natural	 backgrounds.	 Additional	
capability	against	moving	targets,	although	not	neces-
sarily	more	challenging,	will	likely	involve	in-flight	tar-
geting	updates,	which	 require	 a	 data	 link.	More	 chal-
lenging	scenarios	include	selecting	high-priority	targets	
in	a	clutter	background,	especially	near	the	forward	edge	
of	 the	battle;	 controlling	 salvo	distributions	 for	maxi-
mizing	lethality	over	large	areas;	and	avoiding	counter-
measures	and	jamming.

The	 FOV	 needed	 to	 support	 these	 capabilities	 is	
determined	by	the	terminal	engagement	geometry	illus-
trated	 in	 Fig.	 1.	 The	 diameter	 of	 the	 footprint	 that	
must	 be	 contained	 in	 the	 FOV	 at	 initial	 acquisition	
by	 the	 seeker	 consists	 of	 a	 combination	 of	 10	 m	 for	
the	 ERGM	 baseline	 terminal	 guidance	 accuracy	 for	
hand-over	and	10	m	 for	 targeting	(root	 sum	squared).	
Ordinarily	 this	 diameter	 corresponds	 to	 a	 50%	 target		
containment	requirement.	However,	we	use	a	90%	con-
tainment	probability	corresponding	to	26	m	in	order	to	
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Figure 1. Terminal engagement scenario (aM = acceleration per-
pendicular to the projectile boresight, vM = terminal velocity, xFP = 
diameter of the FOV footprint, xCEP = circular error probability, and 
 = seeker angle). 
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establish	 a	 conservative	 FOV.	 For	 simplicity,	 assume	
the	seeker	is	pointed	straight	down	(	=	0).	Then	it	can	
be	 shown	 that	 the	 FOV	 must	 be	 greater	 than	 10°	 for	
acquisition	ranges	as	low	as	300	m.	Of	course,	if	target	
acquisition	and	track	occurs	at	a	shorter	range,	the	FOV	
must	 be	 correspondingly	 larger.	 Therefore,	 we	 nomi-
nally	 assume	 a	 minimal	 14°	 FOV.	 This	 should	 allow	
target	containment	in	the	90%	CEP	down	to	a	range	of	
approximately	275	m.

A	major	consideration	is	the	airframe	on	which	the	
seeker	 must	 operate.	 ERGM,	 like	 most	 guided	 projec-
tiles,	 has	 a	 relatively	 low	 divert	 capability.	 The	 air-
frame	has	been	designed	to	remove	small	heading	errors	
throughout	 flight	 as	 it	 is	 guided	 to	 a	 predetermined	
point.	 The	 ERGM	 divert	 capability	 is	 a	 function	 of	
vehicle	 speed	but	 is	 typically	about	±2	g.	A	study	was	
conducted	early	 in	 the	program	to	determine	whether	
ERGM	 or	 a	 similar	 platform	 could	 provide	 enough	
divert	 capability	during	 the	 terminal	phase	 to	 remove	
the	 IR-measured	 guidance	 errors	 given	 a	 few	 seconds	
of	homing	time.	The	results	of	 the	study	were	used	to	
assess	terminal	guidance	policy	options	(terminal	veloc-
ity,	 acquisition	 range,	 approach	 angle,	 and	 hit-to-kill	
versus	shoot-to-kill).	

A	two-degree-of-freedom	(2-DOF)	simulation,	con-
taining	a	representation	of	the	ERGM	kinematics,	was	
developed	to	parametrically	study	the	terminal	homing	
phase.	This	simulation	was	used	to	conduct	a	trade	study	
of	intercept	geometry	and	seeker	look	angle	as	a	func-
tion	of	 projectile	 divert	 capability,	 projectile	 velocity,	
and	position	and	attitude	errors	at	acquisition.	A	sample	
output	 in	 Fig.	 2	 shows	 miss	 distance	 as	 a	 function	 of	

the	g	capability	of	the	airframe.	In	this	case	the	initial	
position	error	(delivery	plus	targeting)	was	30	m,	initial	
heading	error	was	zero,	and	the	projectile	velocity	was	
150	 m/s.	 The	 2-DOF	 results	 showed	 that	 a	 ±2	 g	 air-
frame	is	marginal	for	a	hit-to-kill	scenario	if	the	target	
is	acquired	at	approximately	300	m	(such	as	if	the	cloud	
ceiling	is	low).	Better	performance	is	achieved	for	ear-
lier	 acquisition	and	hence	 longer	homing	 times;	 thus,	
the	target	must	be	detected	and	classified	as	soon	after	
seeker	 activation	 as	 possible	 in	 order	 to	 optimize	 the	
limited	divert	capability.	This,	in	turn,	limits	the	avail-
able	processing	time.

SEEKER DESIGN
Initial	assumptions	made	to	minimize	cost,	complex-

ity,	and	form-factor	include	body	mounting	the	seeker	
and	 optics;	 using	 lightweight	 optical	 designs;	 z-plane	
chip	packaging;	and	uncooled	FPA	technology	to	reduce	
seeker	form-factor	and	obviate	cryogenic	cooling.	The	
use	of	body-mounted	optics	 (compared	with	gimbaled	
optics)	 simplifies	 the	 design,	 reduces	 cost	 and	 weight,	
and	increases	survivability	during	launch.	Z-plane	chip	
packaging	 is	 a	 state-of-the-art	 technique	 that	 reduces	
FPA	 and	 post-processor	 form-factors.	 It	 consists	 of	
stacked	 thinned-silicon	 integrated	 circuits	 coupled	 to	
the	 IR	 FPA.	 Northrop	 Grumman	 has	 fabricated	 such	
a	 chip	 under	 the	 DARPA-sponsored	 Flexible	 Manu-
facturing	Program.1	An	uncooled	bolometric	FPA	does	
not	 require	cryo-cooling,	which	 is	costly	and	 takes	up	
space	(although	the	uncooled	FPA	may	require	a	ther-
moelectric	 cooler	 for	 temperature	 stabilization).	 Non-
uniformity	compensation	may	be	required,	however,	to	
improve	target	selection	and	clutter	rejection.

The Detector
Although	the	experience	of	processing	measured	IR	

image	 data	 may	 ultimately	 help	 determine	 the	 exact	
spectral	 band,	 long-wave	 IR	 (LWIR)	 is	 preferred	 for	
a	number	of	 reasons.	 For	 instance,	LWIR	attenuation	
is	 generally	 less	 than	 mid-wave	 IR	 (MWIR)	 at	 short	
ranges	 (about	 2.5	 km),	 although,	 for	 ranges	 less	 than		
1	km,	the	sensor	should	not	be	significantly	sensitivity-
limited	 in	either	band	under	most	atmospheric	condi-
tions.	Although	most	energy	 is	 in	the	LWIR	band	for	
expected	 targets	 near	 equilibrium,	 differential	 clutter	
contrast	is	generally	greater	in	the	MWIR	band.	Further-
more,	even	though	MWIR	has	better	diffraction-limited	
spatial	 resolution,	 a	 well-designed	 seeker	 modulation	
transfer	function	should	not	be	dominated	by	the	optics,	
but	 by	 detector	 size.	 Finally,	 and	 most	 importantly,	
uncooled	 array	 technology	 is	 currently	 available	 only		
for	LWIR.	

Target-background	 contrast,	 T,	 in	 the	 LWIR	 at		
the	 FPA	 yields	 an	 output	 signal-to-noise	 ratio	 (SNR)	
given	by
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NETD

,atm≅ 0 T
	

where	 0	 is	 the	 mean	 optics	 transmissivity	 over	 the	
prescribed	spectral	band,	atm	is	the	mean	atmospheric	
transmissivity	 over	 the	 same	 band,	 and	 NETD	 is	 the	
noise	equivalent	temperature	difference.

The	 mean	 T,	 based	 on	 the	 contrast	 temperature	
range	for	a	typical	military	vehicle	(T-72	tank)	against		
a	 grassy	 background,	 over	 various	 azimuths,	 is	 about		
1.0	 K	 for	 measured	 data	 and	 1.5	 K	 for	 modeled	 data	
(personal	communication,	S.	E.	Motz,	U.S.	Army	Mis-
sile	 Command,	 24	 Apr	 1998).	 Significant	 factors	 for	
determining	 the	actual	 scene	contrast	 (and	hence	 the	
local	scene	contrast	SNR),	however,	are	diurnal	varia-
tions	in	T,	which	can	sometimes	be	zero,	principally	
as	 a	 result	 of	 the	 combined	 effect	 of	 differential	 solar	
loading	and	the	constituent	materials,	their	orientation,	
and	their	associated	emissivity.	This	effect,	called	ther-
mal	 crossover,	 is	 particularly	 noticeable	 in	 “pillbox”-
type	building	structures.	

The	 extinction	 coefficients,	 ,	 for	 LWIR	 versus	
MWIR	 for	 various	 atmospheric	 obscurants	 (including	
gases,	 haze,	 fog,	 rain,	 snow,	 and	 dust)	 are	 not	 signifi-
cantly	 different	 overall.	 At	 an	 altitude	 of	 900	 m	 (the	
cloud-free	 line	of	 sight	about	90%	of	 the	time,	world-
wide)	 with	 	=	0.7	 km1,	 corresponding	 to	 weather	
that	is	“poor”	or	better	80%	of	the	time,	and	NETD	=	
0.1	K,	 a	 typical	uncooled	bolometer	FPA2	has	a	SNR	
variation	 between	 8	 and	 12.	 The	 larger	 the	 entrance	
aperture	of	the	seeker,	the	better	the	SNR.	The	entrance	
aperture	size,	however,	will	be	limited	by	the	airframe	to	
approximately	10	cm.

Now,	to	ensure	optimal	resolution	for	identification	
of	a	vehicle-sized	target	at	the	greatest	expected	acqui-
sition	range,	we	assume	that	8	pixels	are	required	 for	
target	 identification,3	 and	 that	 the	 minimum	 target	
dimension	is	5.18	m	(≈10%	CEP).	Then	the	number	
of	pixels	required	in	the	FOV	ranges	between	85	for	a	
vertical	descent	to	176	for	a	relatively	extreme	devia-
tion	from	vertical.	Therefore,	a	256		256	array	should	
be	sufficient.

Optics
The	 most	 stringent	 design	 requirements	 include	 the	

ability	to	survive	a	high-g	shock	at	launch;	minimal	size,	
weight,	and	volume;	and	low	cost.	The	favored	design,	a	
f/1.54	system	with	a	FOV	of	22°,	a	clear	aperture	of	20	
mm,	and	79.9%	ensquared	energy	on	the	center	50-m	
pixel,	has	the	largest	FOV	and	the	most	compact	size	of	
the	candidate	designs	studied.	The	length	of	the	system	is	
49.8	mm	and	it	can	fit	in	a	cylinder	of	volume	35.2	cm3.

Requiring	 both	 LWIR	 operation	 and	 shock	 surviv-
ability	severely	limits	the	choice	of	viable	lens	materi-
als.	 First,	 the	material	must	be	 adequately	 transparent	

throughout	the	entire	LWIR	spectral	band.	Of	the	few	
materials	 that	 are	 chemically	 stable	 enough	 to	 with-
stand	the	intended	storage	and	use	environment,	only	
those	that	can	survive	the	mechanical	stress	of	launch	
shock	are	acceptable.	A	preliminary	structural	analysis	
using	 various	 materials,	 including	 polyethylene,	 zinc	
sulfide,	zinc	selenide,	and	germanium,	determined	that	
all	 these	 should	survive.	 It	 is	 important	 to	note,	how-
ever,	that	the	lenses	were	not	designed	to	image	during	
the	shock,	and	that,	in	the	analyses,	the mechanical stress 
was not applied as an impulse.	Neither	did	 the	analyses	
account	 for	 material	 or	 surface	 characteristics;	 these	
could	substantially	lower	the	allowable	stress.

All	 the	 materials	 being	 investigated	 would	 require	
a	 thin-film	 antireflective	 coating	 on	 both	 surfaces	 to	
increase	transmission	to	an	acceptable	level	and	to	pro-
vide	for	a	specific	wavelength	passband	optimized	to	the	
required	 LWIR	 camera	 response.	 For	 the	 front	 optical	
element,	this	coating	must	survive	the	stresses	of	being	
exposed	 to	 a	variety	of	 atmospheric	 conditions	 at	 rela-
tively	high	speeds.	Also,	if	there	is	excessive	aerodynamic	
heating	of	the	front	optic,	the	impact	on	both	the	optical	
and	mechanical	integrity	of	the	lens	has	to	be	taken	into	
account.	For	instance,	as	germanium	is	heated	to	greater	
than	50°C,	 the	 transmission	 through	 the	bulk	material	
drops,	and	the	LWIR	emissivity	increases.	When	germa-
nium	reaches	250°C,	it	is	essentially	opaque	in	the	LWIR	
and	 thus	no	 longer	 a	viable	 lens	material.	We	believe,	
however,	that	if	optics	are	not	exposed	until	the	terminal		
phase	of	trajectory,	they	will	not	be	subjected	to	atmo-
spheric	flow	at	subsonic	speeds	for	more	than	a	few	sec-
onds,	and	hence	these	considerations	were	not	a	major	
concern.

DETECTION ALGORITHMS
The	analyses	 summarized	 in	 the	preceding	 sections	

provide	a	positive	initial	assessment	of	the	feasibility	of	
fielding	 a	 gun-launched	 imaging	 IR	 system.	 The	 next	
critical	step	is	to	demonstrate	algorithms	that	accurately	
detect	desired	targets	with	a	high	probability	of	success.	
Limited	processing	time	is,	perhaps,	the	most	significant	
constraint.	The	projectile	approaches	impact	at	a	high	
rate	of	 speed;	 the	 time	between	 seeker	activation	and	
impact	is	only	a	few	seconds.	In	order	to	have	sufficient	
divert	capability,	the	target	must	be	selected	as	soon	as	
possible.	 Moreover,	 the	 frame	 rate	 is	 on	 the	 order	 of		
60	Hz	to	avoid	scale	change	during	tracking;	therefore,	
if	the	frames	are	processed	much	slower	than	real	time,	
it	will	be	difficult	 to	correlate	an	object	 found	 in	one	
image	with	the	same	object	several	frames	later.	Since	
there	 is	 no	 uplink,	 the	 algorithms	 must	 be	 capable	
of	 autonomous	 operation.	 Such	 a	 system	 cannot	 rely	
on	 detailed	 targeting	 information	 to	 guide	 its	 search;	
thus,	standard	techniques	requiring	terrain	mapping	or	
detailed	target	libraries	are	not	feasible.	
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The	fundamental	philosophy	guiding	our	algorithm	
design	is	to	use	different	processing	modalities	operat-
ing	in	parallel	to	provide	detection	capability	under	a	
greater	 range	 of	 image	 conditions	 than	 would	 other-
wise	be	possible.	Figure	3	shows	the	baseline	detection	
architecture	 implementing	 this	 approach.	 The	 pro-
posed	system	includes	two	complementary	parallel	pro-
cesses	consisting	of	region-based	and	edge-based	detec-
tion	and	segmentation.	By	fusing	the	outputs	of	these	
detection	algorithms,	we	hope	to	enhance	robustness	
and	 attain	 greater	 discriminatory	 power.	 The	 fused	
output	will	reduce	false	alarms	and	provide	regions	of	
interest	 (ROIs)	 for	 further	 analysis.	A	 set	 of	 features	
for	analyzing	these	ROIs	will	evolve	as	the	algorithms	
develop.	Ideally,	the	only	ROIs	passed	to	the	classifier	
would	 be	 those	 containing	 target	 objects.	 Since	 the	
seeker	 has	 a	 restricted	 FOV—it	 is	 boresighted	 and	
the	projectile	has	limited	maneuverability—it	cannot	
search	an	extended	footprint.	If	 it	does	not	detect	its	
intended	target,	 the	 seeker	must	default	 to	any	man-
made	object	it	can	find.	Our	first	objective,	therefore,	
is	 to	demonstrate	the	capability	of	this	system	to	dif-
ferentiate	between	man-made	objects	and	natural	fea-
tures.	 If	 this	 is	 successful,	 more	 refined	 classification	
algorithms	 and	 techniques	 for	 detecting	 moving	 tar-
gets	will	be	developed.	

Region-Based Processing

Histogram Enhancement
The	region-based	detector	uses	intensity	to	segment	

the	image.	Ideally	the	histogram	of	an	image	consists	of	
two	modes,	one	corresponding	to	 the	background	and	
the	other	to	the	target.	Thus	a	threshold,	chosen	to	be	
the	gray	 level	between	 the	modes	at	which	 the	histo-
gram	 is	 minimal,	 can	 be	 used	 to	 partition	 the	 images	
into	 target	 and	background	classes.	However,	 the	his-
togram	 may	 not	 exhibit	 this	 simple	 form;	 therefore		
histogram	 enhancement	 techniques	 have	 been	 devel-
oped	 to	 accentuate	 the	 desirable	 features	 and	 thus	
extend	 the	 range	 of	 images	 to	 which	 this	 technique	
can	be	applied.	Rounds	and	Sutty4	describe	a	histogram	
enhancement	technique	based	on	co-occurrence	matri-
ces.	 In	 general,	 a	 co-occurrence	 matrix	 measures	 the	
frequency	 with	 which	 pairs	 of	 nearby	 pixels	 have	
similar	 intensity.	 An	 example	 is	 the	 matrix	 whose		
(m, n)th	 entry	 is	 the	 number	 of	 pixel	 pairs	 (i, j)	 and	
(i  1, j + 1)	for	which	the	first	pixel	has	gray	level	m	and		
the	 second	 has	 gray	 level	 n.	 Similar	 directional	 co-
occurrence	 matrices	 are	 obtained	 for	 pairs	 consisting	
of	 a	 pixel	 and	 any	 one	 of	 its	 neighbors.	 Since	 pixel	
pairs	within	a	target	region	tend	to	have	similar	inten-
sity,	these	regions	contribute	to	larger	entries	near	the	
main	diagonal,	and	the	co-occurrence	matrix	has	a	more	
prominent	 modal	 structure	 along	 the	 main	 diagonal	
than	the	ordinary	histogram.	This	is	illustrated	in	Figs.	
4a	and	4b.

The	algorithm	then	calculates	an	enhanced	histogram	
by	 averaging	 the	 co-occurrence	 matrix	 entries	 within	
a	narrow	band	containing	 the	main	diagonal.	To	find	
the	threshold	between	target	and	background,	the	two	
modes	are	first	detected	and	then	the	threshold	can	be	
chosen	to	be	the	intensity	value	between	the	two	peaks	
at	which	the	histogram	assumes	its	minimal	value.

The	simplest	peak	detector	compares	the	histogram	
value	H(u)	 at	 a	 test	 cell	u	with	 its	values	 at	 adjacent	
cells	 and	 declares	 a	 peak	 if	 H(u		1)		<		H(u)	 and		
H(u	+	1)		<		H(u).	 If	 the	 histogram	 is	 rough,	 however,	
this	method	can	produce	many	false	alarms.	Therefore,	
normally,	a	window	is	centered	at	the	test	cell	u,	and	
H(u)	is	compared	with	the	average	value	of	the	histo-
gram	over	this	window.	The	length	of	the	window	can	
be	 adapted	 to	 the	 data	 at	 hand.	 For	 peak	 detection	
in	the	LCGLS	application,	this	technique	is	extended	
by	 centering	 a	 window	 of	 length	 2N	+	1	 at	 the	 test	
cell	 and	 computing	 two	 histogram	 averages	 m	 and	 M	
(assume	 m		≤		M),	 one	 for	 each	 half-window	 on	 either	
side	 of	 the	 test	 cell.	 The	 peak	 detection	 threshold	 is	
T	=	RM	+	(1		R)m,	where	R	is	a	non-negative	parame-
ter	that	determines	how	much	larger	H(u)	must	be	than	
the	adjacent	histogram	values	 in	order	 to	be	classified	
as	a	peak.	This	 reduces	to	simple	window	averaging	 if	
R	=	0.5.	When	 the	 test	 cell	 is	 located	at	 the	center	of	
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Figure 3. Baseline target detection architecture.
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a	 relatively	 symmetric	 peak,	 M		≈		m,	 and	 the	 response	
is,	again,	essentially	equivalent	to	window	averaging.	A	
further	 smoothing	 process	 removes	 smaller	 peaks	 that	
may	 otherwise	 cause	 false	 alarms.	 The	 improvement	
provided	by	this	technique	is	evident	when	comparing	
the	enhanced	histogram	(red	curve)	with	the	standard	
intensity	histogram	(blue	curve)	shown	in	Fig.	4c.

Quantization
Analyses	of	histograms	obtained	from	ground	target	

imagery	 collected	 at	 the	 Naval	 Air	 Warfare	 Center	
show	that,	in	general,	useful	information	is	contained	in	
all	significant	peaks.	Therefore,	the	technique	described	
above	has	been	generalized	to	a	multithreshold	approach	
by	defining	a	set	of	intensity	levels	T0,	T1,	…	,	Tn	corre-
sponding	to	the	location	of	peaks	exceeding	the	detector	
threshold.	The	raw	image	is	quantized	by	replacing	the	
value	of	each	pixel	whose	intensity	lies	in	the	half-open	
interval	[Ti,	Ti	+	1)	by	i.	The	quantized	image	retains	the	

salient	target	features,	but	there	are	only	about	a	dozen	
intensity	levels.	This	represents	a	significant	data	reduc-
tion	and,	hence,	faster	processing.	Figure	5	is	a	typical	
example.	Figure	5a	shows	a	raw	image	(color-enhanced)	
of	 aircraft	 of	 various	 sizes,	 buildings,	 and	 roads	 in	 the	
desert.	 Figure	 5b	 is	 a	 plot	 of	 the	 enhanced	 histogram	
(blue	 curve)	 showing	 several	 significant	 peaks.	 The	
magenta	curve	is	the	threshold,	determined	as	described	
above.	 There	 are	 at	 least	 four	 peaks	 exceeding	 the	
threshold	 (the	 scale	of	 the	figure	 is	 too	 gross	 to	 show	
details	of	the	structure	on	the	far	left	of	the	histogram).	
The	quantized	image	is	shown	in	Fig.	5c.

Filtering
Although	quantization	reduces	the	dynamic	range,	

objects	may	still	be	composed	of	several	intensity	layers.	
An	 attribute	 signature	 comprising	 the	 geometric	 and	
intensity	characteristics	of	these	layers	provides	a	pow-
erful	 feature	 that	 can	 be	 used	 to	 filter	 the	 quantized	

Figure 4. Calculating the enhanced histogram: (a) the original image, (b) matrix obtained by averaging the directional co-occurrence 
matrices, and (c) the enhanced histogram compared with the standard intensity histogram.
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image	to	remove	nontarget	regions	such	as	vegetation	
and	terrain.	The	attribute	signature,	for	example,	may	
specify	acceptable	ranges	in	size,	shape,	and	intensity;	
and	it	could	also	include	important	information	linking	
these	features.	A	compact	data	structure	called	a	com-
ponent	tree5	has	been	developed	to	implement	filtering	
based	on	attribute	signatures	(see	the	boxed	insert).	

Filtering	an	 image	 reduces	 to	a	decision	process	on	
the	 associated	 component	 tree	 that	 determines	which	
nodes	 are	 removed.	 This	 process	 provides	 a	 degree	 of	
robustness	since	the	test	criteria	can	be	fuzzy	or	expressed	
in	 linguistic	 rather	 than	 quantitative	 terms.	 The	 only	
restriction	 is	 imposed	by	computational	 limitations.	 If	
the	processing	is	applied	to	a	raw	image	with	256	gray	
levels,	 for	 example,	 the	component	 tree	 is	quite	com-
plex.	If,	however,	the	image	is	first	quantized	with	the	

multithreshold	 algorithm,	 the	 number	 of	 gray	 levels	
is	 reduced	 to	 a	 dozen	 or	 so,	 greatly	 simplifying	 the	
component	 tree;	 consequently,	 more	 complex	 filter		
criteria	can	be	implemented	without	degrading	the	fil-
tering	speed.	Research	is	continuing	to	determine	opti-
mal	features	for	defining	filter	criteria	and	how	best	to	
perform	the	filtering	and	segmentation	step	to	produce	
as	 robust	 an	 algorithm	 as	 possible	 within	 the	 LCGLS	
constraints.

Edge-Based Processing
To	provide	greater	segmentation	capability,	an	algo-

rithm	 that	 extracts	 edge	 information	 has	 been	 imple-
mented	to	work	in	parallel	with,	and	complement,	the	
region-processing	algorithm.	This	edge-based	technique	

FILTERING COMPONENT TREES
A	connected	component	of	an	image	is	a	connected	region,	

all	of	whose	pixels	are	greater	than	or	equal	to	a	given	inten-
sity	 level.	 Two	 components	 of	 different	 levels	 are	 linked	 if	
they	are	connected	to	each	other	and	there	is	no	component	
of	an	intermediate	level	connected	to	both.	The	component	
tree	 derived	 from	 an	 image	 consists	 of	 nodes	 corresponding	
to	each	connected	component,	and	two	nodes	are	connected	
by	an	edge	if	the	corresponding	components	are	linked.	The	
leaves	correspond	to	regional	maxima,	i.e.,	connected	regions,	
all	of	whose	pixels	have	the	same	intensity	and	such	that	all	
surrounding	pixels	have	lower	intensity.	The	root	node	corre-
sponds	to	the	entire	image.	These	definitions	are	illustrated	in	
the	figure.	The	height	of	the	component	tree	depends	on	the	
number	of	gray	levels,	and	the	branching	structure	depends	on	
the	definition	of	connectivity.	

Standard	 definitions	 include	 four-	 or	 eight-connectivity,	
although	the	concept	has	been	generalized	in	the	image	pro-
cessing	literature.6	Two	pixels	are	four-connected	if	and	only	
if	they	have	a	common	edge,	and	are	eight-connected	if	they	
have	 a	 common	 edge	 or	 vertex.	 Since	 four-connectivity	 is	
the	more	stringent	condition,	the	four-connected	component	
tree	of	a	given	image	is	usually	more	complex	than	the	eight-
connected	component	tree	of	the	same	image.	Each	node	has	
an	associated	gray	level	of	its	corresponding	component,	the	
location	of	a	representative	pixel,	and	a	set	of	attributes	char-
acterizing	 the	 component.	 The	 representative	 pixel	 locates	
the	 component	 in	 the	 image,	 and	 the	 gray	 level	 value	 is	 a	
simple	feature	describing	the	component.	In	general,	the	node	
description	may	consist	of	a	vector	f	=	(f1,	…,	fn)	of	attributes,	
or	features,	that	capture	salient	information	about	the	associ-
ated	component.	Besides	area,	typical	features	such	as	perim-
eter,	compactness,	aspect	ratio,	and	convexity	may	be	useful.	

The	component	 tree	 supports	a	class	of	nonlinear	filters,	
called	connected	filters,	that	preserve	only	those	components	
satisfying	 a	 given	 criterion	 based	 on	 the	 component’s	 attri-
butes.	The	criterion	may,	for	example,	require	these	attributes	
to	lie	within	specified	limits.	A	connected	filter	never	intro-
duces	new	components	to	the	image,	and	if	an	image	compo-
nent	is	preserved	by	one	application	of	the	filter	it	is	preserved	
by	any	number	of	repeated	applications.	In	mathematical	mor-
phology,	a	filter	satisfying	these	properties	is	called	a	thinning.	

If,	in	addition,	the	filter	is	increasing	(i.e.,	whenever	a	compo-
nent	C	satisfies	the	criterion,	so	does	any	superset),	the	filter	
is	an	opening.	Connected	component	filters	either	preserve	a	
component	without	alteration	or	remove	it	entirely,	so	there	
is	 no	 distortion	 as	 occurs	 with	 openings	 and	 closings	 using	
structure	elements7—a	desirable	property	for	segmentation.

Component	tree	filtering	is	a	decision	process	that	classi-
fies	nodes	as	active	or	inactive.	A	node	is	active	if	and	only	
if	the	filter	preserves	its	associated	component.	A	connected	
filter	 that	 ignores	 the	 links	 is	 called	 flat	 and	 can	 be	 imple-
mented	by	classifying	each	node	as	active	or	inactive.	If	the	
filter	criterion	is	increasing,	every	node	above	an	active	node	
is	also	active;	in	this	case,	therefore,	the	filter	can	be	imple-
mented	by	starting	at	the	root	and	moving	up	the	tree,	branch	
by	branch.	Once	an	inactive	node	has	been	found,	it	is	unnec-
essary	to	check	higher	nodes.	This	increasing	property	facili-
tates	rapid	implementation	of	this	type	of	filter.	An	example	
of	a	flat	filter	criterion	 is	 the	 following:	The area of the node 
is greater than 12.	 A	 second	 type	 of	 connected	 filter,	 called	
a	 signature	filter,	 applies	 to	 an	 entire	branch.	The	attribute	
signature	of	a	branch	is	a	sequence	of	node	attributes.	If	the	
attribute	signature	satisfies	a	specified	criterion,	the	branch	is	
declared	active.	For	example,	the	following	is	a	signature	filter	
criterion:	 In order to be active, a branch must contain a node 
whose corresponding connected component has area between 10 
and 40 pixels and eccentricity between 0.4 and 0.6.

Segmenting	an	image	consists	of	subtracting	the	filtered	
image	 from	 the	 original.	 Thus,	 the	 filter	 criterion	 must	 be	
chosen	so	as	to	inactivate	nodes	associated	with	target	image	
components.	One	way	 to	 implement	 this	process	 is	 to	first	
apply	 a	 signature	 filter	 to	 activate	 all	 branches	 containing	
no	 target-like	 components.	 For	 instance,	 a	 branch	 would	
be	activated	if	it	contains	no	nodes	whose	connected	com-
ponent	 is	 convex	 and	 has	 an	 area	 within	 expected	 target	
bounds.	If	the	objective	is	to	locate	the	moving	tank	shown	
in	the	figure,	any	branch	whose	gray-level	structure	does	not	
indicate	 a	 hot	 engine	 would	 also	 be	 activated.	 This	 may,	
of	 course,	 require	 some	general	a priori	 knowledge,	 such	as	
target	type	and	an	estimate	of	the	range	to	go.

Next,	 a	 flat	 filter	 can	 be	 applied	 to	 determine	 which	
nodes	in	the	remaining	branches	to	activate.	In	the	figure,	
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can	detect	a	variety	of	potential	targets	in	diverse	back-
grounds.	 The	 algorithm	 requires	 no	 user	 intervention	
or	 input	during	 its	execution	and	does	not	depend	on	
a	library	of	predefined	targets.	It	is	designed	to	identify	
man-made	 objects,	 structures,	 and	 vehicles	 in	 a	 fully	
automated	 manner	 using	 a	 single	 frame	 of	 passive	 IR	
imagery.	

To	 achieve	 this	 objective,	 the	 algorithm	 is	 com-
posed	of	nine	steps	or	subalgorithms,	where	the	output	
of	one	serves	as	 input	to	the	next.	The	process	starts	
with	a	noise-reduction	filter	(Step	1)	and	then	Step	2	
enhances	the	edges	for	the	detection	process	(Step	3).	
The	 adaptive	 edge	 segmentation	 procedure	 (Step	 4)	
binarizes	the	edge	detector	result,	while	also	perform-
ing	a	size	discrimination	process	(Step	5)	where	objects	
that	 are	 too	 small	 or	 too	 large	 to	 be	 the	 target	 are		

filtered	 out.	 In	 Step	 6,	 the	 remaining	 objects	 are	
thinned	to	produce	a	contour	of	1	pixel	width.	A	chain	
code	 algorithm	 (Step	 7)	 then	 strings	 contour	 pixels	
together	for	analysis.	In	Step	8,	the	shape	discrimina-
tion	algorithm	identifies	objects	by	desired	shape	attri-
butes.	Finally,	Step	9	applies	a	target	likelihood	index	
to	rank	the	potential	targets	according	to	their	shape	
attributes.	 A	 more	 detailed	 discussion	 of	 the	 edge-
based	processing	steps	follows.

The	noise	reduction	algorithm	(Step	1)	is	a	simple	
median	filter	that	reduces	random	noise	and	eliminates	
dead	 pixels.	 The	 advantage	 of	 the	 median	 filter	 over	
many	other	noise	removal	filters	is	that	it	preserves	the	
edge	contrast	while	eliminating	noise	considerably.	The	
edge	enhancement	algorithm	(Step	2)	utilizes	gradient	
and	variance	information.	At	each	pixel	the	enhanced	

Part (a) is a schematic quantized image of a tank with a hot engine. The image in (b) shows the connected components. Each 
color corresponds to an intensity level from cold (deep blue) to hot (red). The leaves in the component tree (c) correspond to the 
regional maxima; each leaf determines a branch terminating at the root node (the image plane shown in dark blue). Part (d) shows 
the result of filtering the image as discussed in the text.

for	example,	 the	tank	is	on	a	road	that	 is	clearly	not	part	
of	 the	 tank.	 All	 nodes	 up	 to	 and	 including	 the	 one	 cor-
responding	 to	 the	 road	 can	 be	 activated	 by	 filtering	 with		
the	 criterion	 that	 activates	 nodes	 whose	 area	 is	 greater		

than	 the	 expected	 area	 of	 the	 tank.	 In	 the	 figure,	 the	
gun	barrel	is	composed	of	several	regional	maxima,	which,	
although	part	of	the	tank,	would	be	inactivated	by	this	fil-
tering	scheme.	
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value	is	computed	using	the	local	intensity	gradient	and	
local	variance	in	horizontal	and	vertical	directions,	pro-
ducing	two	images	that	highlight	edges	in	two	orthogo-
nal	directions.	

Step	3,	edge	detection,	processes	the	edge-enhanced	
image	and	yields	a	binary	image	where	only	significant	
edge	pixels	are	 retained.	This	 step	first	 removes	pixels	
where	 the	 intensity	 variations	 are	 negligible,	 such	 as	
those	associated	with	background	noise.	Then	the	edge	
detection	algorithm	identifies	local	maximum	pixels	on	
the	edges	of	each	image	by	comparing	each	pixel	to	its	
immediate	neighborhood	and	saving	only	 those	pixels	
whose	values	are	larger	than	their	neighbors.	The	final	
result	is	a	binary	image,	B,	obtained	as	the	logical	OR	of	
the	horizontal	and	vertical	direction	results,	where	edge	
pixels	are	set	to	the	value	1.

While	the	first	three	steps	identify	most	edge	pixels,	
they	 do	 not	 guarantee	 a	 closed	 contour	 around	 each	
object.	 Therefore,	 Step	 4	 is	 an	 adaptive	 edge-filling	
algorithm	 that	 uses	 both	 the	 binary	 image	 of	 edge	
detection	and	the	original	noise-filtered	image	from	the	
first	step.	The	edge	discontinuities	in	the	binary	edge	
image	are	filled	by	inspecting	each	pixel	with	a	value	
of	0	and	converting	it	to	a	1	if	it	fulfills	desired	neigh-
borhood	criteria.	The	final	result	is	an	edge-thickened	
version	of	B	 in	which	the	contours	are	connected.	A	
labeling	algorithm	assigns	a	unique	value	to	all	pixels	
that	form	the	contour	of	an	object.	This	step	provides	
a	 means	 to	 distinguish	 distinct	 objects	 that	 will	 sub-
sequently	be	analyzed	 separately	 to	determine	 if	 they	
are	 likely	to	be	targets.	Step	5,	 size	discrimination,	 is	
implemented	using	the	number	of	pixels	in	each	con-
tour.	At	this	step	we	assume	some	a priori	knowledge	
of	 the	 target	 type	 and	 that	 an	 estimate	 of	 the	 range	
to	go	is	available	(e.g.,	from	GPS	or	passive	ranging).	
Small	objects	that	have	fewer	pixels	than	a	first	thresh-
old	 and	 very	 large	 objects	 that	 have	 more	 pixels		
than	a	second	threshold	are	removed.	In	this	manner	
many	background	objects	are	discarded	before	feature	
extraction.	

The	remaining	objects	are	thinned	in	Step	6	using	a	
standard	thinning	algorithm	that	retains	the	medial	axis	
of	 the	contours	by	setting	most	pixels	 to	zero	depend-
ing	on	neighborhood	criteria.	The	final	result	is	a	set	of	
contours,	1	pixel	in	width.	To	analyze	the	shape	of	the	
resulting	contours,	each	one	is	represented	with	a	one-
dimensional	array	using	the	chain	code	algorithm	(Step	
7).	This	encodes	the	transition	between	adjacent	pixels	
of	the	contour	with	a	unique	code	for	each	of	the	eight	
possible	directions.	

The	shape	discrimination	algorithm	(Step	8)	removes	
any	remaining	nontarget	objects	using	 the	chain	code	
information.	The	principal	discriminator	 in	our	initial	
study	 was	 straight	 edges.	 Man-made	 objects	 such	 as	
tanks,	 bunkers,	 bridges,	 and	 planes	 are	 characterized	
by	straight	edges,	whereas	most	natural	objects	tend	to	

have	 a	 more	 arbitrary	 appearance.	 Furthermore,	 man-
made	objects	tend	to	have	adjacent	straight	edges.	The	
chain	 codes	 were	 analyzed	 to	 find	 sequences	 where		
the	directional	value	remained	constant	over	a	prede-
termined	 number	 of	 pixels.	 This	 analysis	 eliminated	
background	 objects	 that	 may	 have	 contained	 a	 few	
pixels	in	a	line.	Moreover,	since	we	cannot	expect	per-
fectly	straight	edges,	we	allow	for	some	variation	from	
a	 straight	 line.	 Typically,	 a	 sequence	 of	 pixels	 having	
the	 same	 direction,	 except	 for	 one	 or	 two	 values,	 is	
assumed	to	be	a	straight	edge.	The	algorithm	also	iden-
tifies	linear	sequences	that	adjoin	one	another	to	form	
straight	edges.	This	information	is	used	to	calculate	the	
target	 likelihood	 index	 (Step	 9).	 The	 index	 is	 higher	
when	the	candidate	contour	contains	more	adjoining	or	
connected	 straight	 edges.	 Potential	 targets	 are	 ranked	
with	respect	to	this	index.

ALGORITHM TIMING STUDIES
The	 ability	 to	 implement	 these	 algorithms	 is	 as	

important	 as	 developing	 them.	 To	 accomplish	 this	
goal,	two	different—yet	complementary—technologies	
are	 being	 investigated:	 microprocessors	 and	 field-	
programmable	 gate	 arrays	 (FPGA).	 These	 are	 fun-
damentally	 different	 devices	 that	 require	 different		
programming	paradigms	to	get	good	results.	The	micro-
processor	 has	 a	 fixed	 architecture	 (or	 configuration)	
that	performs	a	set	of	operations	as	determined	by	the	
manufacturer	(e.g.,	Intel,	Motorola)	during	the	design	
process.	Modern	designs	use	super-scalar	architectures	
and	 instruction	 pipelines	 to	 increase	 performance	 by	
taking	 advantage	 of	 fine-grain	 parallelism	 in	 a	 short	
sequence	of	operations.	The	FPGA	has	an	architecture	
that	 is	 determined	 at	 programming	 time	 by	 the	 end	
user.	This	process	allows	pipeline	lengths	and	compu-
tation	units	to	be	determined	by	the	algorithms	being	
implemented.	

To	 determine	 which	 technology	 is	 truly	 best	 for	
a	 particular	 algorithm,	 the	 algorithm	 must	 be	 imple-
mented	and	its	execution	times	compared.	This	is	not	
always	 practical,	 however.	 A	 rule	 of	 thumb	 is	 that	
operations	 that	 do	 not	 lend	 themselves	 to	 pipeline	
operations	 or	 that	 are	 not	 data-independent	 tend	 to	
work	better	in	a	microprocessor.	The	reason	is	the	dispa-
rate	clock	speeds	between	FPGA	and	microprocessors.	
FPGA	manufacturers	are	now	boasting	clock	speeds	as	
high	as	300	MHz.	However,	in	practice	the	best	speeds	
achieved	are	about	half	the	maximum	of	manufacturer	
claims.	The	FPGA	functions	well	with	algorithms	that	
can	be	decomposed	into	many	small	independent	com-
putations	because	of	the	configurable	architecture.	

The	two	main	challenges	in	implementing	the	algo-
rithms	 so	 far	 have	 been	 avoiding	 repeated	 memory	
scans	 and	 adapting	 some	 nonlinear	 operations	 to		
vector-style	 processing.	 Because	 of	 the	 size	 of	 the	
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images	being	processed,	the	raw	image	data	and	tem-
porary	memory	areas	do	not	stay	in	the	L1	or	L2	cache	
of	a	microprocessor.	Consequently,	repeated	data	scans	
can	 require	 relatively	 long	 times	because	of	 the	 time	
required	 to	 access	 main	 memory.	 Also,	 pieces	 of	 the	
algorithms	 with	 strong	 data	 interdependence	 cannot	
be	made	to	take	advantage	of	special	properties	of	an	
FPGA	or	modern	microprocessors.	

The	microprocessor	currently	being	used	is	a	Motor-
ola	PowerPC	7400	with	the	AltiVec™	processing	unit	
(a	special	vector	processor	added	by	Motorola	to	accel-
erate	digital	signal	processor	[DSP]	and	image	process-
ing	 applications).	 The	 PowerPC	 7400	 is	 on	 a	 Power	
Macintosh	G4	 AGP	 motherboard	with	 a	 1-Mb	 half-
speed	 L2	 cache	 and	 runs	 at	 400	 MHz.	 Early	 bench-
marks	showed	that	the	PowerPC	7400	had	more	prom-
ise	of	being	adequate	than	other	microprocessors	and	
DSPs.	In	fact,	it	was	4	to	5	times	faster	without	using	
the	 AltiVec	 unit	 than	 the	 DSP	 initially	 being	 used.	
The	AltiVec	unit	has	increased	the	processing	speeds	
of	 several	 algorithms	by	a	 factor	of	2	or	more—even	
before	optimization.

As	can	be	 seen	 in	Fig.	6,	 the	algorithms	 that	have	
been	benchmarked	execute	in	very	short	periods	of	time,	
with	the	exception	of	the	multiblob.	The	most	impor-
tant	 part	 of	 reducing	 execution	 time	 has	 been	 smart	
implementation.	 Algorithms	 need	 to	 be	 structured	 so	
that	 repeated	 memory	 accesses	 are	 not	 necessary	 and	
so	that	computations	can	be	easily	pipelined.	To	date,	
however,	 the	 timing	 studies	 are	 incomplete	 and	 a		
great	deal	of	work	still	needs	to	be	done.	Although	the	
findings	presented	here	are	preliminary,	they	do	repre-
sent	the	result	of	optimal	implementations	on	the	Pow-
erPC	7400.

RADAR SITE SCENARIO
An	initial	demonstration	of	the	detection	algorithms	

was	 carried	 out	 using	 a	 sequence	 of	 120	 frames	 simu-
lating	 action	 against	 an	 air	 defense	 unit,	 as	 shown	 in	
Fig.	7a.	The	radar	antenna	was	the	primary	target.	After	
acquisition,	 a	 correlation	 tracker	 was	 initiated	 to	 see	
if	 the	 antenna	 could	 be	 tracked	 until	 the	 end	 of	 the	
sequence.	The	 seeker	began	 functioning	at	a	nominal	
range-to-target	of	600	m.	Figure	7	shows	the	stages	 in	
applying	 region-based	and	edge-based	processing.	The	
multithreshold	 applied	 to	 the	 enhanced	 image	 histo-
gram	produces	 the	quantized	 image	 shown	 in	Fig.	 7b,	
having	seven	gray	levels.	

The	following	criterion	was	used	to	filter	the	associ-
ated	component	tree:	a	node	is	active	if	and	only	if	its	
area	is	less	than	20	pixels,	greater	than	1,000	pixels,	or	
its	gray	level	is	less	than	4.	Components	remaining	after	
this	filtering	step	were	considered	target-like.	This	cri-
terion	was	sufficient	to	eliminate	all	natural	background	
features	 in	 the	 image.	 The	 remaining	 objects	 include	
the	 radar	 antenna	 (ROI	 1)	 and	 some	 very	 hot	 reflec-
tions	 from	 buildings	 (ROIs	 2	 and	 3).	 The	 buildings	
themselves	were	not	detected	by	the	region-based	pro-
cessing	 because	 they	 were	 connected	 to	 a	 large	 com-
ponent	that	also	contained	background	and	was	elimi-
nated	by	the	filter’s	size	criterion.	

Figures	7d	through	7f	 show	steps	 in	the	edge-based	
processing.	 Many	 of	 the	 edges	 and	 contours	 that	 can	
be	seen	in	Fig.	7e	are	eliminated	when	the	background	
threshold	 is	 applied.	 Figure	 7g	 shows	 the	 final	 result	
of	 combining	 the	 region-	 and	 edge-based	 techniques.	
Additional	 filtering	 of	 the	 segmented	 ROI	 in	 Fig.	
7c	using	 criteria	 involving	 common	geometric	 image-	
processing	features,	such	as	convexity	and	eccentricity,	
eliminated	the	hot	reflections	from	the	buildings.	

Table	1	compares	the	values	of	several	of	these	fea-
tures	for	each	of	the	three	ROIs	(1,	2,	and	3,	from	left	
to	right).	In	all	cases	the	values	for	the	antenna	(object	
1)	are	markedly	different	than	those	for	the	remaining	
two	objects.	Thus,	if	the	radar	antenna	is	the	intended	
target	 in	 this	 image,	 a	 criterion	based	on	 its	 intensity	
and	geometric	structure	would	be	able	to	discriminate	
between	it	and	the	background.	For	the	edge-based	pro-
cessing,	thinning	and	size	and	shape	discrimination	are	
able	to	remove	all	objects	except	the	two	dark	buildings.	
The	 clutter	 background	 has	 been	 eliminated,	 and	 we	
are	left	with	the	desired	targets.	This	was	accomplished	
with	no	direct	user	input	and	no	dependence	on	target	
structure	apart	from	some	mild	assumptions	concerning	
target	size	and	intensity,	and	that	the	target	is	composed	
of	straight	edges	and	corners.

The	importance	of	the	fusion	step	can	be	seen	in	Fig.	
7g.	The	edge-processing	algorithm	detected	the	major	
buildings,	 but	 not	 the	 radar	 antenna.	 By	 combining	
the	complementary	 information	from	both	region	and	

Co-histogram

Median filter

Line gradient

Line threshold

Local area
threshold

Multiblob
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Figure 6. Preliminary algorithm execution times.
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(a) (b) (c)

(d) (e) (f)

(g)

Region-based processing

Edge-based processing

Combined

Figure 7. Detection processing steps: (a) original image, (b) quantized image, (c) seg-
mented image (enlarged), (d) median filtered image, (e) edge-enhanced image, (f) edge-
segmented image, (g) fused object set.

The	radar	antenna	was	detected	in	a	single	 frame,	
and	 two	 additional	 frames	 were	 used	 to	 verify	 the	
detection.	Once	 this	 validation	was	 complete,	 track-
ing	 began.	 As	 shown	 in	 Figs.	 8a	 and	 8b,	 the	 image	
frame	 in	which	 the	 target	has	been	detected	 is	bina-
rized,	 and	 a	 small	 region	 centered	 at	 the	 estimated	
target	centroid	is	used	as	a	template.	Each	subsequent	
image	frame	is	binarized	and	correlated,	with	the	tem-
plate	constructed	from	the	previous	image	in	order	to	
update	the	target	location	(Fig.	8c	is	a	typical	correla-
tion	surface).	Then	the	template	is	updated	to	account	
for	changes	in	the	image	due	to	the	seeker’s	motion.	In	
this	way	the	antenna	was	tracked	until	the	last	frame	
in	the	sequence	(Fig.	8d).

Although	 the	 algorithms	 have	 not	 been	 tested	 on	
an	 extensive	 set	 of	 images,	 this	 example	 is	 typical	 of	
the	performance	obtained	on	the	real	imagery	we	have	
examined	so	far.	The	ground	clutter,	while	not	extreme,	

Table 1. Feature characteristics for ROIs in the segmented 
image.

	 Object
Feature	 1	 2	 3

Area	(pixels)	 26		 49		 40	
Perimeter	(pixels)	 15		 29		 25
Compactness	 8.65	 20.02	 15.63
Aspect	ratio	 0.69	 1.78	 1.82
Convexity	 1.93	 0.76	 0.86

edge	processing,	a	more	complete	 set	of	 target	objects	
is	obtained.	Thus,	by	fusing	the	outputs	of	these	com-
plementary	 processors,	 the	 discrimination	 power	 of	
more	sophisticated	image	processing	techniques	can	be	
attained	by	simple	high-throughput	processors	working	
in	parallel.	
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is	typical	of	a	desert	environment	and	consists	primarily	of	creosote	bushes	
that	can	have	intense	IR	signatures.	

CONCLUSIONS
This	article	provides	an	overview	of	the	desired	system	capabilities	of	the	

LCGLS	and	summarizes	work	done	at	the	Laboratory	to	address	design	con-
straints	and	assess	system	feasibility.	The	preliminary	design	includes

•	 Body-mounted	optics	and	lens	materials	that	can	survive	the	high	g	force	
at	launch

•	 An	uncooled	bolometric	FPA	and	lightweight	optics	to	reduce	space	and	
weight	requirements

•	 Using	the	LWIR	spectral	band	to	minimize	atmospheric	degradation

In	a	demonstration	using	a	sequence	of	real	imagery	to	simulate	closing	on	
a	radar	site,	the	target	detection	system	was	able	to	acquire	and	track	the	
designated	 target.	Moreover,	 algorithms	 that	have	been	benchmarked	are	
generally	fast.

Template
(15  20 pixels)

Antenna Building

(a) (b)

(c) (d)

Figure 8. Correlation and tracking: (a) template of a region of the binarized raw image 
centered on the estimated target centroid, (b) subsequent binarized and correlated image 
frame, (c) typical correlation surface, (d) updated template and image resulting from the 
seeker’s motion.

While	these	results	are	promising,	
more	in-depth	analyses	are	required.	
The	algorithms	need	further	develop-
ment	to	optimize	detection,	segmen-
tation,	 and	 classification	 for	 speed	
and	computational	efficiency.	A	set	
of	 features	 that	 are	 robust	 against	 a	
wide	variety	of	target	and	image	con-
ditions	and	backgrounds	must	still	be	
defined.	Moreover,	an	automatic	pro-
cedure	 must	 be	 developed	 for	 com-
bining	 the	 region-	 and	 edge-based	
algorithms,	 or	 fusing	 their	 outputs.	
Finally,	the	performance	of	the	system	
needs	 to	be	validated	 in	end-to-end	
flight	simulation	studies.	If	successful,	
such	a	technology	could	be	 inserted	
into	a	wide	range	of	weapons.	
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