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he Low Cost Gun Launched Seeker Program is a component of the Navy’s effort to 
develop effective weapons for surface fire support missions. The objective is to improve 
the performance of precision-guided munitions against hardened targets by developing a 
low-cost terminal seeker, including detection and target selection algorithms, to autono-
mously acquire a target and provide commands to guide the projectile. This technology 
will have widespread application to the time-critical engagement of both ground- and sea-
based threats by providing a smart-weapons capability under the control of the field com-
mander. This article provides an overview of the required system capabilities, discusses the 
design requirements imposed on such a system by these capabilities, and summarizes APL’s 
effort to develop a system that meets mission objectives. 

INTRODUCTION
This article describes a proposed target detection 

system, consisting of an infrared (IR) seeker with 
target detection, classification, and selection algorithms, 
designed to meet the mission objectives of the Low 
Cost Gun Launched Seeker (LCGLS) Program. This 
system is intended to improve the performance of pro-
jectiles like the Extended Range Guided Munitions 
(ERGM) against hardened targets by developing a low-
cost, uncooled IR staring focal plane array (FPA) ter-
minal seeker. The seeker will autonomously acquire a 
target and provide commands to guide the projectile. 
A ground-based forward observer, air controller, or air-
borne asset locates and classifies a target and issues a 
“call for fire.” Target location and target templates are 
loaded into the LCGLS and the projectile is launched. 

The seeker must survive the initial 15,000-g launch 
acceleration. It navigates to the target using the Global 
Positioning System-Aided Inertial Navigation System. 
At approximately 5 km from the threat, the seeker 
enters search mode. It acquires the target at approx-
imately 2–3 km, begins tracking, and provides com-
mands to guide the projectile. Biased proportional nav-
igation begins to create a lofted trajectory and steep 
approach at a terminal velocity of approximately 150 
m/s. At the optimum point, an inexpensive standoff fuze 
initiates the warhead.

The seeker has been proposed to track fixed, relo-
catable, and mobile land and sea targets with sufficient 
accuracy to achieve a small circular error probability 
(CEP). If the seeker is activated below the cloud level, 
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nominally at 300 to 900 m based on cloud-free line-of-
sight statistics, it has about 2–6 s to find the target and, 
if necessary, complete a single divert. If the cloud ceil-
ing is higher, the seeker could be activated earlier and 
more time would be available to find the target. Thus, 
some of the major constraints include the ability to 
survive a high-g launch, limited space and weight for 
the seeker, environmental factors affecting seeker per-
formance, and terminal engagement geometry, which 
determines the seeker field of view (FOV) and the time 
available for target detection. These constraints limit 
the feasible optical designs and the complexity and com-
putational requirements of the detection algorithms. An 
additional programmatic constraint is cost (preferably 
less than $10,000 per round for the seeker). 

The technology will have widespread application to 
the time-critical engagement of both ground- and sea-
based threats by providing a smart-weapons capability 
under the control of the field commander. Many of 
these scenarios share the same compressed time line in 
the terminal engagement process, which requires sub-
stantial real-time image processing functionality sup-
porting highly responsive terminal guidance, target 	
separation from clutter, and aimpoint selection. The 
ability to accurately deliver munitions in support of pre-
cision attack using tactical targeting sources will give the 	
commander greater flexibility and autonomy, thus reduc-
ing the time required to respond in a dynamic threat 
situation. 

Although originally designed as an enhancement of 
ERGM, the LCGLS technology is applicable to a wide 
range of weapons programs where a sensor or seeker 
system is needed. Examples include the Rapid Ord-
nance Defense System, Joint Direct Attack Munitions, 
Forward Air Support-Marine-Gun Launched Loitering 
Munition, as well as Affordable Weapon, Precision 
Guided Mortar, and other smart submunitions concepts. 
Unmanned aerial vehicles, precision targeting, battle 
damage assessment, and identification friend or foe (IFF) 
are also potential application areas. 

The focus of this article is on the algorithms being 
developed for the system. However, to provide context, 
the desired functional capabilities of the LCGLS are 
summarized as well as the project’s requirements. Ear-
lier work focused on conceptual designs and prelimi-
nary analyses to determine if they met requirements. 
In view of the promising outcome of these efforts, we 
began to develop a set of algorithms that will autono-
mously detect and track the desired targets. Ground tar-
gets pose especially challenging automatic target recog-
nition problems and continue to be the focus of our 
work. A preliminary study of the algorithm execution 
time is discussed here, followed by a demonstration 
of the algorithm’s typical performance for a variety of 
ground target images, including buildings, bunkers, and 
airfields.

FUNCTIONAL CAPABILITIES
In the conceptual design we considered a broad mis-

sion encompassing increasingly challenging target sce-
narios. Subsequently we focused on the two most critical 
functional capabilities: target segmentation and termi-
nal aimpoint selection, i.e., the acquisition of hard tar-
gets against complex natural backgrounds. Additional 
capability against moving targets, although not neces-
sarily more challenging, will likely involve in-flight tar-
geting updates, which require a data link. More chal-
lenging scenarios include selecting high-priority targets 
in a clutter background, especially near the forward edge 
of the battle; controlling salvo distributions for maxi-
mizing lethality over large areas; and avoiding counter-
measures and jamming.

The FOV needed to support these capabilities is 
determined by the terminal engagement geometry illus-
trated in Fig. 1. The diameter of the footprint that 
must be contained in the FOV at initial acquisition 
by the seeker consists of a combination of 10 m for 
the ERGM baseline terminal guidance accuracy for 
hand-over and 10 m for targeting (root sum squared). 
Ordinarily this diameter corresponds to a 50% target 	
containment requirement. However, we use a 90% con-
tainment probability corresponding to 26 m in order to 
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Figure 1.  Terminal engagement scenario (aM = acceleration per-
pendicular to the projectile boresight, vM = terminal velocity, xFP = 
diameter of the FOV footprint, xCEP = circular error probability, and 
 = seeker angle). 
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establish a conservative FOV. For simplicity, assume 
the seeker is pointed straight down ( = 0). Then it can 
be shown that the FOV must be greater than 10° for 
acquisition ranges as low as 300 m. Of course, if target 
acquisition and track occurs at a shorter range, the FOV 
must be correspondingly larger. Therefore, we nomi-
nally assume a minimal 14° FOV. This should allow 
target containment in the 90% CEP down to a range of 
approximately 275 m.

A major consideration is the airframe on which the 
seeker must operate. ERGM, like most guided projec-
tiles, has a relatively low divert capability. The air-
frame has been designed to remove small heading errors 
throughout flight as it is guided to a predetermined 
point. The ERGM divert capability is a function of 
vehicle speed but is typically about ±2 g. A study was 
conducted early in the program to determine whether 
ERGM or a similar platform could provide enough 
divert capability during the terminal phase to remove 
the IR-measured guidance errors given a few seconds 
of homing time. The results of the study were used to 
assess terminal guidance policy options (terminal veloc-
ity, acquisition range, approach angle, and hit-to-kill 
versus shoot-to-kill). 

A two-degree-of-freedom (2-DOF) simulation, con-
taining a representation of the ERGM kinematics, was 
developed to parametrically study the terminal homing 
phase. This simulation was used to conduct a trade study 
of intercept geometry and seeker look angle as a func-
tion of projectile divert capability, projectile velocity, 
and position and attitude errors at acquisition. A sample 
output in Fig. 2 shows miss distance as a function of 

the g capability of the airframe. In this case the initial 
position error (delivery plus targeting) was 30 m, initial 
heading error was zero, and the projectile velocity was 
150 m/s. The 2-DOF results showed that a ±2 g air-
frame is marginal for a hit-to-kill scenario if the target 
is acquired at approximately 300 m (such as if the cloud 
ceiling is low). Better performance is achieved for ear-
lier acquisition and hence longer homing times; thus, 
the target must be detected and classified as soon after 
seeker activation as possible in order to optimize the 
limited divert capability. This, in turn, limits the avail-
able processing time.

SEEKER DESIGN
Initial assumptions made to minimize cost, complex-

ity, and form-factor include body mounting the seeker 
and optics; using lightweight optical designs; z-plane 
chip packaging; and uncooled FPA technology to reduce 
seeker form-factor and obviate cryogenic cooling. The 
use of body-mounted optics (compared with gimbaled 
optics) simplifies the design, reduces cost and weight, 
and increases survivability during launch. Z-plane chip 
packaging is a state-of-the-art technique that reduces 
FPA and post-processor form-factors. It consists of 
stacked thinned-silicon integrated circuits coupled to 
the IR FPA. Northrop Grumman has fabricated such 
a chip under the DARPA-sponsored Flexible Manu-
facturing Program.1 An uncooled bolometric FPA does 
not require cryo-cooling, which is costly and takes up 
space (although the uncooled FPA may require a ther-
moelectric cooler for temperature stabilization). Non-
uniformity compensation may be required, however, to 
improve target selection and clutter rejection.

The Detector
Although the experience of processing measured IR 

image data may ultimately help determine the exact 
spectral band, long-wave IR (LWIR) is preferred for 
a number of reasons. For instance, LWIR attenuation 
is generally less than mid-wave IR (MWIR) at short 
ranges (about 2.5 km), although, for ranges less than 	
1 km, the sensor should not be significantly sensitivity-
limited in either band under most atmospheric condi-
tions. Although most energy is in the LWIR band for 
expected targets near equilibrium, differential clutter 
contrast is generally greater in the MWIR band. Further-
more, even though MWIR has better diffraction-limited 
spatial resolution, a well-designed seeker modulation 
transfer function should not be dominated by the optics, 
but by detector size. Finally, and most importantly, 
uncooled array technology is currently available only 	
for LWIR. 

Target-background contrast, T, in the LWIR at 	
the FPA yields an output signal-to-noise ratio (SNR) 
given by
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Figure 2.  A 2-DOF simulation showing miss distance as a func-
tion of g capability of the airframe.
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where 0 is the mean optics transmissivity over the 
prescribed spectral band, atm is the mean atmospheric 
transmissivity over the same band, and NETD is the 
noise equivalent temperature difference.

The mean T, based on the contrast temperature 
range for a typical military vehicle (T-72 tank) against 	
a grassy background, over various azimuths, is about 	
1.0 K for measured data and 1.5 K for modeled data 
(personal communication, S. E. Motz, U.S. Army Mis-
sile Command, 24 Apr 1998). Significant factors for 
determining the actual scene contrast (and hence the 
local scene contrast SNR), however, are diurnal varia-
tions in T, which can sometimes be zero, principally 
as a result of the combined effect of differential solar 
loading and the constituent materials, their orientation, 
and their associated emissivity. This effect, called ther-
mal crossover, is particularly noticeable in “pillbox”-
type building structures. 

The extinction coefficients, , for LWIR versus 
MWIR for various atmospheric obscurants (including 
gases, haze, fog, rain, snow, and dust) are not signifi-
cantly different overall. At an altitude of 900 m (the 
cloud-free line of sight about 90% of the time, world-
wide) with  = 0.7 km1, corresponding to weather 
that is “poor” or better 80% of the time, and NETD =	
0.1 K, a typical uncooled bolometer FPA2 has a SNR 
variation between 8 and 12. The larger the entrance 
aperture of the seeker, the better the SNR. The entrance 
aperture size, however, will be limited by the airframe to 
approximately 10 cm.

Now, to ensure optimal resolution for identification 
of a vehicle-sized target at the greatest expected acqui-
sition range, we assume that 8 pixels are required for 
target identification,3 and that the minimum target 
dimension is 5.18 m (≈10% CEP). Then the number 
of pixels required in the FOV ranges between 85 for a 
vertical descent to 176 for a relatively extreme devia-
tion from vertical. Therefore, a 256  256 array should 
be sufficient.

Optics
The most stringent design requirements include the 

ability to survive a high-g shock at launch; minimal size, 
weight, and volume; and low cost. The favored design, a 
f/1.54 system with a FOV of 22°, a clear aperture of 20 
mm, and 79.9% ensquared energy on the center 50-m 
pixel, has the largest FOV and the most compact size of 
the candidate designs studied. The length of the system is 
49.8 mm and it can fit in a cylinder of volume 35.2 cm3.

Requiring both LWIR operation and shock surviv-
ability severely limits the choice of viable lens materi-
als. First, the material must be adequately transparent 

throughout the entire LWIR spectral band. Of the few 
materials that are chemically stable enough to with-
stand the intended storage and use environment, only 
those that can survive the mechanical stress of launch 
shock are acceptable. A preliminary structural analysis 
using various materials, including polyethylene, zinc 
sulfide, zinc selenide, and germanium, determined that 
all these should survive. It is important to note, how-
ever, that the lenses were not designed to image during 
the shock, and that, in the analyses, the mechanical stress 
was not applied as an impulse. Neither did the analyses 
account for material or surface characteristics; these 
could substantially lower the allowable stress.

All the materials being investigated would require 
a thin-film antireflective coating on both surfaces to 
increase transmission to an acceptable level and to pro-
vide for a specific wavelength passband optimized to the 
required LWIR camera response. For the front optical 
element, this coating must survive the stresses of being 
exposed to a variety of atmospheric conditions at rela-
tively high speeds. Also, if there is excessive aerodynamic 
heating of the front optic, the impact on both the optical 
and mechanical integrity of the lens has to be taken into 
account. For instance, as germanium is heated to greater 
than 50°C, the transmission through the bulk material 
drops, and the LWIR emissivity increases. When germa-
nium reaches 250°C, it is essentially opaque in the LWIR 
and thus no longer a viable lens material. We believe, 
however, that if optics are not exposed until the terminal 	
phase of trajectory, they will not be subjected to atmo-
spheric flow at subsonic speeds for more than a few sec-
onds, and hence these considerations were not a major 
concern.

DETECTION ALGORITHMS
The analyses summarized in the preceding sections 

provide a positive initial assessment of the feasibility of 
fielding a gun-launched imaging IR system. The next 
critical step is to demonstrate algorithms that accurately 
detect desired targets with a high probability of success. 
Limited processing time is, perhaps, the most significant 
constraint. The projectile approaches impact at a high 
rate of speed; the time between seeker activation and 
impact is only a few seconds. In order to have sufficient 
divert capability, the target must be selected as soon as 
possible. Moreover, the frame rate is on the order of 	
60 Hz to avoid scale change during tracking; therefore, 
if the frames are processed much slower than real time, 
it will be difficult to correlate an object found in one 
image with the same object several frames later. Since 
there is no uplink, the algorithms must be capable 
of autonomous operation. Such a system cannot rely 
on detailed targeting information to guide its search; 
thus, standard techniques requiring terrain mapping or 
detailed target libraries are not feasible. 
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The fundamental philosophy guiding our algorithm 
design is to use different processing modalities operat-
ing in parallel to provide detection capability under a 
greater range of image conditions than would other-
wise be possible. Figure 3 shows the baseline detection 
architecture implementing this approach. The pro-
posed system includes two complementary parallel pro-
cesses consisting of region-based and edge-based detec-
tion and segmentation. By fusing the outputs of these 
detection algorithms, we hope to enhance robustness 
and attain greater discriminatory power. The fused 
output will reduce false alarms and provide regions of 
interest (ROIs) for further analysis. A set of features 
for analyzing these ROIs will evolve as the algorithms 
develop. Ideally, the only ROIs passed to the classifier 
would be those containing target objects. Since the 
seeker has a restricted FOV—it is boresighted and 
the projectile has limited maneuverability—it cannot 
search an extended footprint. If it does not detect its 
intended target, the seeker must default to any man-
made object it can find. Our first objective, therefore, 
is to demonstrate the capability of this system to dif-
ferentiate between man-made objects and natural fea-
tures. If this is successful, more refined classification 
algorithms and techniques for detecting moving tar-
gets will be developed. 

Region-Based Processing

Histogram Enhancement
The region-based detector uses intensity to segment 

the image. Ideally the histogram of an image consists of 
two modes, one corresponding to the background and 
the other to the target. Thus a threshold, chosen to be 
the gray level between the modes at which the histo-
gram is minimal, can be used to partition the images 
into target and background classes. However, the his-
togram may not exhibit this simple form; therefore 	
histogram enhancement techniques have been devel-
oped to accentuate the desirable features and thus 
extend the range of images to which this technique 
can be applied. Rounds and Sutty4 describe a histogram 
enhancement technique based on co-occurrence matri-
ces. In general, a co-occurrence matrix measures the 
frequency with which pairs of nearby pixels have 
similar intensity. An example is the matrix whose 	
(m, n)th entry is the number of pixel pairs (i, j) and 
(i  1, j + 1) for which the first pixel has gray level m and 	
the second has gray level n. Similar directional co-
occurrence matrices are obtained for pairs consisting 
of a pixel and any one of its neighbors. Since pixel 
pairs within a target region tend to have similar inten-
sity, these regions contribute to larger entries near the 
main diagonal, and the co-occurrence matrix has a more 
prominent modal structure along the main diagonal 
than the ordinary histogram. This is illustrated in Figs. 
4a and 4b.

The algorithm then calculates an enhanced histogram 
by averaging the co-occurrence matrix entries within 
a narrow band containing the main diagonal. To find 
the threshold between target and background, the two 
modes are first detected and then the threshold can be 
chosen to be the intensity value between the two peaks 
at which the histogram assumes its minimal value.

The simplest peak detector compares the histogram 
value H(u) at a test cell u with its values at adjacent 
cells and declares a peak if H(u  1)  <  H(u) and 	
H(u + 1)  <  H(u). If the histogram is rough, however, 
this method can produce many false alarms. Therefore, 
normally, a window is centered at the test cell u, and 
H(u) is compared with the average value of the histo-
gram over this window. The length of the window can 
be adapted to the data at hand. For peak detection 
in the LCGLS application, this technique is extended 
by centering a window of length 2N + 1 at the test 
cell and computing two histogram averages m and M 
(assume m  ≤  M), one for each half-window on either 
side of the test cell. The peak detection threshold is 
T = RM + (1  R)m, where R is a non-negative parame-
ter that determines how much larger H(u) must be than 
the adjacent histogram values in order to be classified 
as a peak. This reduces to simple window averaging if 
R = 0.5. When the test cell is located at the center of 
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Figure 3.  Baseline target detection architecture.
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a relatively symmetric peak, M  ≈  m, and the response 
is, again, essentially equivalent to window averaging. A 
further smoothing process removes smaller peaks that 
may otherwise cause false alarms. The improvement 
provided by this technique is evident when comparing 
the enhanced histogram (red curve) with the standard 
intensity histogram (blue curve) shown in Fig. 4c.

Quantization
Analyses of histograms obtained from ground target 

imagery collected at the Naval Air Warfare Center 
show that, in general, useful information is contained in 
all significant peaks. Therefore, the technique described 
above has been generalized to a multithreshold approach 
by defining a set of intensity levels T0, T1, … , Tn corre-
sponding to the location of peaks exceeding the detector 
threshold. The raw image is quantized by replacing the 
value of each pixel whose intensity lies in the half-open 
interval [Ti, Ti + 1) by i. The quantized image retains the 

salient target features, but there are only about a dozen 
intensity levels. This represents a significant data reduc-
tion and, hence, faster processing. Figure 5 is a typical 
example. Figure 5a shows a raw image (color-enhanced) 
of aircraft of various sizes, buildings, and roads in the 
desert. Figure 5b is a plot of the enhanced histogram 
(blue curve) showing several significant peaks. The 
magenta curve is the threshold, determined as described 
above. There are at least four peaks exceeding the 
threshold (the scale of the figure is too gross to show 
details of the structure on the far left of the histogram). 
The quantized image is shown in Fig. 5c.

Filtering
Although quantization reduces the dynamic range, 

objects may still be composed of several intensity layers. 
An attribute signature comprising the geometric and 
intensity characteristics of these layers provides a pow-
erful feature that can be used to filter the quantized 

Figure 4.  Calculating the enhanced histogram: (a) the original image, (b) matrix obtained by averaging the directional co-occurrence 
matrices, and (c) the enhanced histogram compared with the standard intensity histogram.
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image to remove nontarget regions such as vegetation 
and terrain. The attribute signature, for example, may 
specify acceptable ranges in size, shape, and intensity; 
and it could also include important information linking 
these features. A compact data structure called a com-
ponent tree5 has been developed to implement filtering 
based on attribute signatures (see the boxed insert). 

Filtering an image reduces to a decision process on 
the associated component tree that determines which 
nodes are removed. This process provides a degree of 
robustness since the test criteria can be fuzzy or expressed 
in linguistic rather than quantitative terms. The only 
restriction is imposed by computational limitations. If 
the processing is applied to a raw image with 256 gray 
levels, for example, the component tree is quite com-
plex. If, however, the image is first quantized with the 

multithreshold algorithm, the number of gray levels 
is reduced to a dozen or so, greatly simplifying the 
component tree; consequently, more complex filter 	
criteria can be implemented without degrading the fil-
tering speed. Research is continuing to determine opti-
mal features for defining filter criteria and how best to 
perform the filtering and segmentation step to produce 
as robust an algorithm as possible within the LCGLS 
constraints.

Edge-Based Processing
To provide greater segmentation capability, an algo-

rithm that extracts edge information has been imple-
mented to work in parallel with, and complement, the 
region-processing algorithm. This edge-based technique 

FILTERING COMPONENT TREES
A connected component of an image is a connected region, 

all of whose pixels are greater than or equal to a given inten-
sity level. Two components of different levels are linked if 
they are connected to each other and there is no component 
of an intermediate level connected to both. The component 
tree derived from an image consists of nodes corresponding 
to each connected component, and two nodes are connected 
by an edge if the corresponding components are linked. The 
leaves correspond to regional maxima, i.e., connected regions, 
all of whose pixels have the same intensity and such that all 
surrounding pixels have lower intensity. The root node corre-
sponds to the entire image. These definitions are illustrated in 
the figure. The height of the component tree depends on the 
number of gray levels, and the branching structure depends on 
the definition of connectivity. 

Standard definitions include four- or eight-connectivity, 
although the concept has been generalized in the image pro-
cessing literature.6 Two pixels are four-connected if and only 
if they have a common edge, and are eight-connected if they 
have a common edge or vertex. Since four-connectivity is 
the more stringent condition, the four-connected component 
tree of a given image is usually more complex than the eight-
connected component tree of the same image. Each node has 
an associated gray level of its corresponding component, the 
location of a representative pixel, and a set of attributes char-
acterizing the component. The representative pixel locates 
the component in the image, and the gray level value is a 
simple feature describing the component. In general, the node 
description may consist of a vector f = (f1, …, fn) of attributes, 
or features, that capture salient information about the associ-
ated component. Besides area, typical features such as perim-
eter, compactness, aspect ratio, and convexity may be useful. 

The component tree supports a class of nonlinear filters, 
called connected filters, that preserve only those components 
satisfying a given criterion based on the component’s attri-
butes. The criterion may, for example, require these attributes 
to lie within specified limits. A connected filter never intro-
duces new components to the image, and if an image compo-
nent is preserved by one application of the filter it is preserved 
by any number of repeated applications. In mathematical mor-
phology, a filter satisfying these properties is called a thinning. 

If, in addition, the filter is increasing (i.e., whenever a compo-
nent C satisfies the criterion, so does any superset), the filter 
is an opening. Connected component filters either preserve a 
component without alteration or remove it entirely, so there 
is no distortion as occurs with openings and closings using 
structure elements7—a desirable property for segmentation.

Component tree filtering is a decision process that classi-
fies nodes as active or inactive. A node is active if and only 
if the filter preserves its associated component. A connected 
filter that ignores the links is called flat and can be imple-
mented by classifying each node as active or inactive. If the 
filter criterion is increasing, every node above an active node 
is also active; in this case, therefore, the filter can be imple-
mented by starting at the root and moving up the tree, branch 
by branch. Once an inactive node has been found, it is unnec-
essary to check higher nodes. This increasing property facili-
tates rapid implementation of this type of filter. An example 
of a flat filter criterion is the following: The area of the node 
is greater than 12. A second type of connected filter, called 
a signature filter, applies to an entire branch. The attribute 
signature of a branch is a sequence of node attributes. If the 
attribute signature satisfies a specified criterion, the branch is 
declared active. For example, the following is a signature filter 
criterion: In order to be active, a branch must contain a node 
whose corresponding connected component has area between 10 
and 40 pixels and eccentricity between 0.4 and 0.6.

Segmenting an image consists of subtracting the filtered 
image from the original. Thus, the filter criterion must be 
chosen so as to inactivate nodes associated with target image 
components. One way to implement this process is to first 
apply a signature filter to activate all branches containing 
no target-like components. For instance, a branch would 
be activated if it contains no nodes whose connected com-
ponent is convex and has an area within expected target 
bounds. If the objective is to locate the moving tank shown 
in the figure, any branch whose gray-level structure does not 
indicate a hot engine would also be activated. This may, 
of course, require some general a priori knowledge, such as 
target type and an estimate of the range to go.

Next, a flat filter can be applied to determine which 
nodes in the remaining branches to activate. In the figure, 
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can detect a variety of potential targets in diverse back-
grounds. The algorithm requires no user intervention 
or input during its execution and does not depend on 
a library of predefined targets. It is designed to identify 
man-made objects, structures, and vehicles in a fully 
automated manner using a single frame of passive IR 
imagery. 

To achieve this objective, the algorithm is com-
posed of nine steps or subalgorithms, where the output 
of one serves as input to the next. The process starts 
with a noise-reduction filter (Step 1) and then Step 2 
enhances the edges for the detection process (Step 3). 
The adaptive edge segmentation procedure (Step 4) 
binarizes the edge detector result, while also perform-
ing a size discrimination process (Step 5) where objects 
that are too small or too large to be the target are 	

filtered out. In Step 6, the remaining objects are 
thinned to produce a contour of 1 pixel width. A chain 
code algorithm (Step 7) then strings contour pixels 
together for analysis. In Step 8, the shape discrimina-
tion algorithm identifies objects by desired shape attri-
butes. Finally, Step 9 applies a target likelihood index 
to rank the potential targets according to their shape 
attributes. A more detailed discussion of the edge-
based processing steps follows.

The noise reduction algorithm (Step 1) is a simple 
median filter that reduces random noise and eliminates 
dead pixels. The advantage of the median filter over 
many other noise removal filters is that it preserves the 
edge contrast while eliminating noise considerably. The 
edge enhancement algorithm (Step 2) utilizes gradient 
and variance information. At each pixel the enhanced 

Part (a) is a schematic quantized image of a tank with a hot engine. The image in (b) shows the connected components. Each 
color corresponds to an intensity level from cold (deep blue) to hot (red). The leaves in the component tree (c) correspond to the 
regional maxima; each leaf determines a branch terminating at the root node (the image plane shown in dark blue). Part (d) shows 
the result of filtering the image as discussed in the text.

for example, the tank is on a road that is clearly not part 
of the tank. All nodes up to and including the one cor-
responding to the road can be activated by filtering with 	
the criterion that activates nodes whose area is greater 	

than the expected area of the tank. In the figure, the 
gun barrel is composed of several regional maxima, which, 
although part of the tank, would be inactivated by this fil-
tering scheme. 
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value is computed using the local intensity gradient and 
local variance in horizontal and vertical directions, pro-
ducing two images that highlight edges in two orthogo-
nal directions. 

Step 3, edge detection, processes the edge-enhanced 
image and yields a binary image where only significant 
edge pixels are retained. This step first removes pixels 
where the intensity variations are negligible, such as 
those associated with background noise. Then the edge 
detection algorithm identifies local maximum pixels on 
the edges of each image by comparing each pixel to its 
immediate neighborhood and saving only those pixels 
whose values are larger than their neighbors. The final 
result is a binary image, B, obtained as the logical OR of 
the horizontal and vertical direction results, where edge 
pixels are set to the value 1.

While the first three steps identify most edge pixels, 
they do not guarantee a closed contour around each 
object. Therefore, Step 4 is an adaptive edge-filling 
algorithm that uses both the binary image of edge 
detection and the original noise-filtered image from the 
first step. The edge discontinuities in the binary edge 
image are filled by inspecting each pixel with a value 
of 0 and converting it to a 1 if it fulfills desired neigh-
borhood criteria. The final result is an edge-thickened 
version of B in which the contours are connected. A 
labeling algorithm assigns a unique value to all pixels 
that form the contour of an object. This step provides 
a means to distinguish distinct objects that will sub-
sequently be analyzed separately to determine if they 
are likely to be targets. Step 5, size discrimination, is 
implemented using the number of pixels in each con-
tour. At this step we assume some a priori knowledge 
of the target type and that an estimate of the range 
to go is available (e.g., from GPS or passive ranging). 
Small objects that have fewer pixels than a first thresh-
old and very large objects that have more pixels 	
than a second threshold are removed. In this manner 
many background objects are discarded before feature 
extraction. 

The remaining objects are thinned in Step 6 using a 
standard thinning algorithm that retains the medial axis 
of the contours by setting most pixels to zero depend-
ing on neighborhood criteria. The final result is a set of 
contours, 1 pixel in width. To analyze the shape of the 
resulting contours, each one is represented with a one-
dimensional array using the chain code algorithm (Step 
7). This encodes the transition between adjacent pixels 
of the contour with a unique code for each of the eight 
possible directions. 

The shape discrimination algorithm (Step 8) removes 
any remaining nontarget objects using the chain code 
information. The principal discriminator in our initial 
study was straight edges. Man-made objects such as 
tanks, bunkers, bridges, and planes are characterized 
by straight edges, whereas most natural objects tend to 

have a more arbitrary appearance. Furthermore, man-
made objects tend to have adjacent straight edges. The 
chain codes were analyzed to find sequences where 	
the directional value remained constant over a prede-
termined number of pixels. This analysis eliminated 
background objects that may have contained a few 
pixels in a line. Moreover, since we cannot expect per-
fectly straight edges, we allow for some variation from 
a straight line. Typically, a sequence of pixels having 
the same direction, except for one or two values, is 
assumed to be a straight edge. The algorithm also iden-
tifies linear sequences that adjoin one another to form 
straight edges. This information is used to calculate the 
target likelihood index (Step 9). The index is higher 
when the candidate contour contains more adjoining or 
connected straight edges. Potential targets are ranked 
with respect to this index.

ALGORITHM TIMING STUDIES
The ability to implement these algorithms is as 

important as developing them. To accomplish this 
goal, two different—yet complementary—technologies	
are being investigated: microprocessors and field-	
programmable gate arrays (FPGA). These are fun-
damentally different devices that require different 	
programming paradigms to get good results. The micro-
processor has a fixed architecture (or configuration) 
that performs a set of operations as determined by the 
manufacturer (e.g., Intel, Motorola) during the design 
process. Modern designs use super-scalar architectures 
and instruction pipelines to increase performance by 
taking advantage of fine-grain parallelism in a short 
sequence of operations. The FPGA has an architecture 
that is determined at programming time by the end 
user. This process allows pipeline lengths and compu-
tation units to be determined by the algorithms being 
implemented. 

To determine which technology is truly best for 
a particular algorithm, the algorithm must be imple-
mented and its execution times compared. This is not 
always practical, however. A rule of thumb is that 
operations that do not lend themselves to pipeline 
operations or that are not data-independent tend to 
work better in a microprocessor. The reason is the dispa-
rate clock speeds between FPGA and microprocessors. 
FPGA manufacturers are now boasting clock speeds as 
high as 300 MHz. However, in practice the best speeds 
achieved are about half the maximum of manufacturer 
claims. The FPGA functions well with algorithms that 
can be decomposed into many small independent com-
putations because of the configurable architecture. 

The two main challenges in implementing the algo-
rithms so far have been avoiding repeated memory 
scans and adapting some nonlinear operations to 	
vector-style processing. Because of the size of the 
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images being processed, the raw image data and tem-
porary memory areas do not stay in the L1 or L2 cache 
of a microprocessor. Consequently, repeated data scans 
can require relatively long times because of the time 
required to access main memory. Also, pieces of the 
algorithms with strong data interdependence cannot 
be made to take advantage of special properties of an 
FPGA or modern microprocessors. 

The microprocessor currently being used is a Motor-
ola PowerPC 7400 with the AltiVec™ processing unit 
(a special vector processor added by Motorola to accel-
erate digital signal processor [DSP] and image process-
ing applications). The PowerPC 7400 is on a Power 
Macintosh G4 AGP motherboard with a 1-Mb half-
speed L2 cache and runs at 400 MHz. Early bench-
marks showed that the PowerPC 7400 had more prom-
ise of being adequate than other microprocessors and 
DSPs. In fact, it was 4 to 5 times faster without using 
the AltiVec unit than the DSP initially being used. 
The AltiVec unit has increased the processing speeds 
of several algorithms by a factor of 2 or more—even 
before optimization.

As can be seen in Fig. 6, the algorithms that have 
been benchmarked execute in very short periods of time, 
with the exception of the multiblob. The most impor-
tant part of reducing execution time has been smart 
implementation. Algorithms need to be structured so 
that repeated memory accesses are not necessary and 
so that computations can be easily pipelined. To date, 
however, the timing studies are incomplete and a 	
great deal of work still needs to be done. Although the 
findings presented here are preliminary, they do repre-
sent the result of optimal implementations on the Pow-
erPC 7400.

RADAR SITE SCENARIO
An initial demonstration of the detection algorithms 

was carried out using a sequence of 120 frames simu-
lating action against an air defense unit, as shown in 
Fig. 7a. The radar antenna was the primary target. After 
acquisition, a correlation tracker was initiated to see 
if the antenna could be tracked until the end of the 
sequence. The seeker began functioning at a nominal 
range-to-target of 600 m. Figure 7 shows the stages in 
applying region-based and edge-based processing. The 
multithreshold applied to the enhanced image histo-
gram produces the quantized image shown in Fig. 7b, 
having seven gray levels. 

The following criterion was used to filter the associ-
ated component tree: a node is active if and only if its 
area is less than 20 pixels, greater than 1,000 pixels, or 
its gray level is less than 4. Components remaining after 
this filtering step were considered target-like. This cri-
terion was sufficient to eliminate all natural background 
features in the image. The remaining objects include 
the radar antenna (ROI 1) and some very hot reflec-
tions from buildings (ROIs 2 and 3). The buildings 
themselves were not detected by the region-based pro-
cessing because they were connected to a large com-
ponent that also contained background and was elimi-
nated by the filter’s size criterion. 

Figures 7d through 7f show steps in the edge-based 
processing. Many of the edges and contours that can 
be seen in Fig. 7e are eliminated when the background 
threshold is applied. Figure 7g shows the final result 
of combining the region- and edge-based techniques. 
Additional filtering of the segmented ROI in Fig. 
7c using criteria involving common geometric image-	
processing features, such as convexity and eccentricity, 
eliminated the hot reflections from the buildings. 

Table 1 compares the values of several of these fea-
tures for each of the three ROIs (1, 2, and 3, from left 
to right). In all cases the values for the antenna (object 
1) are markedly different than those for the remaining 
two objects. Thus, if the radar antenna is the intended 
target in this image, a criterion based on its intensity 
and geometric structure would be able to discriminate 
between it and the background. For the edge-based pro-
cessing, thinning and size and shape discrimination are 
able to remove all objects except the two dark buildings. 
The clutter background has been eliminated, and we 
are left with the desired targets. This was accomplished 
with no direct user input and no dependence on target 
structure apart from some mild assumptions concerning 
target size and intensity, and that the target is composed 
of straight edges and corners.

The importance of the fusion step can be seen in Fig. 
7g. The edge-processing algorithm detected the major 
buildings, but not the radar antenna. By combining 
the complementary information from both region and 
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Figure 6.  Preliminary algorithm execution times.
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Region-based processing

Edge-based processing

Combined

Figure  7.  Detection processing steps: (a) original image, (b) quantized image, (c) seg-
mented image (enlarged), (d) median filtered image, (e) edge-enhanced image, (f) edge-
segmented image, (g) fused object set.

The radar antenna was detected in a single frame, 
and two additional frames were used to verify the 
detection. Once this validation was complete, track-
ing began. As shown in Figs. 8a and 8b, the image 
frame in which the target has been detected is bina-
rized, and a small region centered at the estimated 
target centroid is used as a template. Each subsequent 
image frame is binarized and correlated, with the tem-
plate constructed from the previous image in order to 
update the target location (Fig. 8c is a typical correla-
tion surface). Then the template is updated to account 
for changes in the image due to the seeker’s motion. In 
this way the antenna was tracked until the last frame 
in the sequence (Fig. 8d).

Although the algorithms have not been tested on 
an extensive set of images, this example is typical of 
the performance obtained on the real imagery we have 
examined so far. The ground clutter, while not extreme, 

Table 1.  Feature characteristics for ROIs in the segmented 
image.

	 Object
Feature	 1	 2	 3

Area (pixels)	 26 	 49 	 40 
Perimeter (pixels)	 15 	 29 	 25
Compactness	 8.65	 20.02	 15.63
Aspect ratio	 0.69	 1.78	 1.82
Convexity	 1.93	 0.76	 0.86

edge processing, a more complete set of target objects 
is obtained. Thus, by fusing the outputs of these com-
plementary processors, the discrimination power of 
more sophisticated image processing techniques can be 
attained by simple high-throughput processors working 
in parallel. 
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is typical of a desert environment and consists primarily of creosote bushes 
that can have intense IR signatures. 

CONCLUSIONS
This article provides an overview of the desired system capabilities of the 

LCGLS and summarizes work done at the Laboratory to address design con-
straints and assess system feasibility. The preliminary design includes

•	 Body-mounted optics and lens materials that can survive the high g force 
at launch

•	 An uncooled bolometric FPA and lightweight optics to reduce space and 
weight requirements

•	 Using the LWIR spectral band to minimize atmospheric degradation

In a demonstration using a sequence of real imagery to simulate closing on 
a radar site, the target detection system was able to acquire and track the 
designated target. Moreover, algorithms that have been benchmarked are 
generally fast.

Template
(15  20 pixels)

Antenna Building

(a) (b)

(c) (d)

Figure 8.  Correlation and tracking: (a) template of a region of the binarized raw image 
centered on the estimated target centroid, (b) subsequent binarized and correlated image 
frame, (c) typical correlation surface, (d) updated template and image resulting from the 
seeker’s motion.

While these results are promising, 
more in-depth analyses are required. 
The algorithms need further develop-
ment to optimize detection, segmen-
tation, and classification for speed 
and computational efficiency. A set 
of features that are robust against a 
wide variety of target and image con-
ditions and backgrounds must still be 
defined. Moreover, an automatic pro-
cedure must be developed for com-
bining the region- and edge-based 
algorithms, or fusing their outputs. 
Finally, the performance of the system 
needs to be validated in end-to-end 
flight simulation studies. If successful, 
such a technology could be inserted 
into a wide range of weapons. 
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