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The	Interacting	Multiple	Model	Algorithm	for	Accurate	
State	Estimation	of	Maneuvering	Targets

Anthony F. Genovese

ccurate	 state	 estimation	 of	 targets	 with	 changing	 dynamics	 can	 be	 achieved	
through	the	use	of	multiple	filter	models.	The	 interacting	multiple	model	(IMM)	algo-
rithm	provides	a	structure	to	efficiently	manage	multiple	filter	models.	Design	of	an	IMM	
requires	selection	of	the	number	and	type	of	filter	models	and	selection	of	each	of	the	indi-
vidual	filter	parameters.	In	this	article	the	results	for	five	filter	models	on	10	target	trajec-
tory	segments	are	discussed	and	compared.	The	complexity	of	the	filter	models	increases	
from	a	single	constant	velocity	model	to	a	three-model	IMM	filter.	The	results	show	that	
the	overall	performance	of	the	state	estimates,	for	most	targets,	improves	as	the	complexity	
of	the	filter	models	increases.	Selection	of	IMM	filter	parameters	is	addressed	and	results	
are	provided	to	show	that	performance	of	the	IMM	appears	to	be	relatively	insensitive	to	
large	changes	in	filter	parameters.	The	performance	of	an	IMM	is	primarily	determined	by	
the	selection	of	the	component	filter	models.

INTRODUCTION
The	 performance	 of	 a	 tracking	 system	 is	 governed	

by	 the	 performance	 of	 the	 state	 estimation	 algorithm	
employed.	 Accurate	 state	 estimation	 of	 targets	 in	 a	
tracking	system	is	required	for	reliable	data	association	
and	 correlation.	 The	 states	 to	 be	 estimated	 are	 typi-
cally	the	kinematic	quantities	of	position,	velocity,	and	
acceleration.	Filters	are	used	on	measurements	to	reduce	
the	 uncertainty	 due	 to	 noise	 on	 the	 observation	 and	
to	estimate	quantities	not	directly	observed.	The	filter	
uses	 a	 model	 of	 the	 state	 process	 that	 can	 be	 used	 to	
accurately	predict	the	behavior	of	the	observed	target	to	
estimate	the	desired	kinematic	quantities.

State	estimation	of	potentially	maneuvering	targets	
from	 sensor	 measurements	 often	 requires	 the	 use	 of	

multiple	 filter	 models	 to	 account	 for	 varying	 target	
behavior.	 Efficient	 management	 of	 the	 multiple	 filter	
models	 is	 critical	 to	 limiting	 algorithm	 computations	
while	achieving	the	desired	tracking	performance.	This	
requirement	 is	 achieved	with	 the	 interacting	multiple	
model	(IMM)	algorithm.1

The	IMM	algorithm	is	a	method	for	combining	state	
hypotheses	 from	 multiple	 filter	 models	 to	 get	 a	 better	
state	estimate	of	 targets	with	changing	dynamics.	The	
filter	models	used	in	the	IMM	for	each	state	hypothesis	
can	be	selected	to	match	the	behavior	of	targets	of	inter-
est.	Model	management	for	the	IMM	algorithm	is	gov-
erned	by	an	underlying	Markov	chain	that	controls	the	
switching	behavior	among	the	multiple	models.	For	the	
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resulting	algorithm,	logic	decisions	are	not	required	for	
estimation	of	the	model	probabilities.2,3

BACKGROUND
State	estimation	for	tracking	is	most	effectively	done	

by	modeling	the	target	trajectory	as	a	linear	system.	The	
discrete-time	 state	 representation	of	a	 linear	 system	 is	
given	in	the	following	equation:

 Xk	+	1	=	kXk		wk ,

where	Xk	 is	the	state	estimate,	k	 is	a	state	transition	
matrix	 from	 time	 k	 to	 k	+	1,	 and	 wk	 is	 system	 process	
noise	assumed	to	be	Gaussian-distributed	zero	mean	and	
white.	

Observations	for	this	process	are	assumed	to	be	linear	
with	respect	to	the	state	estimate.	The	observations	are	
then	given	as

	 yk	=	HkXk	+	vk ,

where	Hk	is	the	matrix	relating	the	state	to	observation	
quantities	 and	 vk	 is	 observation	 noise	 assumed	 to	 be	
Gaussian-distributed	 zero	 mean	 and	 having	 zero	 cross	
correlation	with	the	process	noise	wk.

The	 Kalman	 filter	 provides	 the	 minimum	 mean	
squared	 error	 solution	 to	 this	 linear	 system	 problem	
when	the	process	under	observation	is	completely	rep-
resented	by	the	state	model.4	The	equations	used	to	pre-
dict	and	update	the	state	and	covariance	for	a	Kalman	
filter	are	given	as	follows:
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where
	 X		 =	the	state	estimate,
	 P		 =	the	covariance	matrix,	
	 ~,	^	=	the	predicted	and	filtered	quantities,		

	 	 respectively,
	 		 =		the	discrete	time	state	transition	matrix,
	 Q		 =		the	process	noise	matrix,
	 K		 =		the	Kalman	gain,
	 R		 =		the	covariance	of	the	measurement	quantity,
	 I		 =		an	identity	matrix,	
	 yk		 =		the	measurement	quantity	used	to	update	the	

	 	 state	estimate,	and	
	 T	 =	the	matrix	transpose	operation.

Most	 tracking	 systems	 employ	 a	 single	 filter	 model	
with	adaptive	gains	for	state	estimation	of	maneuvering	

targets.	These	systems	require	the	detection	of	the	target	
maneuver	via	a	second	estimator	and	decision-directed	
logic	 to	 change	 gains.	 The	 problems	 with	 this	 system	
are	 that	 the	 decision	 to	 switch	 can	 be	 delayed	 as	 a	
result	of	lags	in	the	maneuver	detection	filter	and	false	
alarms	can	give	false	maneuver	indications.	In	addition,	
a	 single	 state	 estimator	 will	 exhibit	 biases	 when	 the	
model	is	not	matched	to	the	target	motion.

Multiple	 filter	 models	 enable	 a	 tracking	 system	 to	
better	match	changing	target	dynamics.	This	will	yield	
the	best	overall	performance	on	the	maneuvering	and	
nonmaneuvering	time	intervals	of	targets.	The	effective	
application	 of	 multiple	 models	 requires	 an	 algorithm	
to	 manage	 the	 models.	 Desired	 performance	 must	 be	
weighed	against	system	resources.	The	IMM	algorithm	
has	been	shown	to	be	a	very	efficient	implementation	of	
the	multiple	model	approach.1

The IMM Algorithm
The	IMM	algorithm	is	a	method	for	combining	state	

hypotheses	 from	multiple	 filter	models	 to	 get	 a	 better	
state	estimate	of	targets	with	changing	dynamics.	The	
filter	models	used	to	form	each	state	hypothesis	can	be	
derived	 to	 match	 the	 behavior	 of	 targets	 of	 interest.	
Figure	1	shows	the	flow	diagram	for	an	IMM	algorithm	
with	 two	 filter	 models.	 Superscripts	 in	 the	 state	 vari-
ables	represent	the	model	hypotheses	(1	and	2),	and	the	
symbols	^	and	~	are	used	to	represent	filtered	and	pre-
dicted	quantities,	respectively.

The	state	estimates	 for	each	model	 from	the	previ-
ous	cycle,	X̂1	and	X̂2,	are	mixed	prior	to	state	update	
using	a	set	of	conditional	model	 probabilities.	The	con-
ditional	model	probabilities	 ( ˜ ) i j 	are	computed	using	
the	model	probabilities	from	the	previous	update	and	a	

Figure 1. A block diagram of the IMM algorithm with two filter 
models.
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state	switching	matrix	selected	a priori.	The	mixed	state	
estimates	are	updated	using	each	filter	model.	The	like-
lihood	 (i)	 for	 each	 filter	 model	 is	 computed	 during	
the	 state	 update	 from	 the	 innovations	 (Zi)	 and	 inno-
vations	covariance	matrix.	The	likelihood,	prior	model	
probabilities,	and	state	switching	matrix	are	then	used	
to	update	the	model	probabilities.	The	estimates	 from	
each	filter	model	are	combined	as	a	weighted	sum	using	
the	updated	model	probabilities.

The	equations	governing	the	IMM	algorithm	for	an	
arbitrary	number	of	filter	models,	N,	are	outlined	in	the	
following	steps.	The	process	then	begins	with	the	com-
puted	quantities	from	the	previous	filter	iteration.	Ini-
tialization	 procedures	 are	 required	 to	 obtain	 the	 state	
estimate,	covariance,	and	 initial	probabilities	 for	each	
filter	model.

State Interaction
Prior	to	the	filter	update,	the	model	state	estimates	

and	covariances	are	mixed	using	computed	conditional	
model	probabilities.	The	mixed	state	and	covariance	for	
model	j	at	time	k	is	computed	as
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where	pij	is	the	ij	element	of	the	state	switching	matrix	
()	 that	defines	 the	a priori	 probability	 for	 switching	
from	 model	 i	 to	 model	 j,	 and	 c j 	 is	 a	 normalization	
vector	used	to	maintain	a	total	model	probability	of	1.	
Also	note	that	X̂0 j	is	the	mixed	state	estimate	for	each	
filter	model	and	P̂0 j	is	the	mixed	state	covariance.

Model Probability Update
The	 likelihood	 of	 each	 model	 is	 computed	 using	

the	 innovations	Z j	computed	during	 state	update	and	
the	innovations	covariance	matrix	 S̃ j 	computed	in	the	
Kalman	 gain.	 This	 step	 is	 done	 after	 state	 prediction	
of	each	mixed	state	estimate.	If	Gaussian	statistics	are	
assumed,	the	likelihood	of	model	j	is	given	by
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where	 mo	 is	 a	 vector	 of	 observations	 for	 the	 current	
update	 and	 m̃ j 	 is	 the	 predicted	 track	 state	 for	 filter	
model	j	transformed	into	the	frame	of	the	observations.

The	 model	 probabilities	 are	 updated	 after	 all	 filter	
models	have	been	updated	as

	 ˆ j j j
c= 1

c 	

with
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, 	

where	 ̃ j 	 is	the	updated	model	probability	for	model	 j	
and	c	is	a	normalization	constant.	Note	that	innovations	
covariance	matrix	 S̃ j 	 is	 computed	using	 the	predicted	
covariance	matrix	P̂0 j.

State Estimate Combination
The	combined	state	estimate	and	covariance	is	com-

puted	from	the	updated	filtered	states	from	each	model	
weighted	by	the	updated	model	probabilities:
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FILTER MODEL DEFINITIONS
Three	 filter	 models	 have	 been	 selected	 to	 test	 the	

IMM	 algorithm	 with	 different	 configurations.	 These	
models	are	a	constant	velocity	(CV),	a	constant	accel-
eration	(CA),	and	a	three-dimensional	turn	with	a	kine-
matic	constraint	(TURN).

CV Model 
The	state	vector	for	the	CV	filter	model	is	defined	as

	 X = [ ˙ ˙ ˙ ,x x y y z z]T
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where	 x	 corresponds	 to	 the	 east	 component,	 y	 corre-
sponds	 to	 the	 north	 component,	 z	 corresponds	 to	 the	
zenith	 component,	 and	 ẋ ,	 ẏ,	 and	 ż 	 are	 the	 corre-
sponding	 rates.	 Target	 accelerations	 are	 modeled	 as	 a		
continuous-time	 white	 noise	 process	 to	 ensure	 model	
stability.	 This	 model	 will	 yield	 the	 best	 estimates	 of	
position	and	velocity	on	nonmaneuvering	targets.	The	
extended	Kalman	filter	derived	in	Ref.	5	is	used	as	the	
basis	for	the	CV	filter	model.

The	 state	 transition	 matrix	 for	 the	 CV	 model	 is	
defined	for	a	linear	prediction	from	the	track	valid	time	
to	the	time	of	the	measurements

	 =
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and	where	∆t	is	the	difference	of	the	measurement	time	
and	valid	time	of	the	track.

The	 plant	 noise	 matrix	 for	 the	 CV	 filter	 model	 is	
derived	as	the	discrete	time	representation	of	the	white	
noise	acceleration.	This	matrix	is	given	as
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The	parameter	q	is	the	filter	plant	noise	spectral	den-
sity	and	has	units	of	m2/s3.	This	parameter	is	selected	to	
control	the	steady-state	gain	performance	of	the	filter.

CA Model 
The	 filter	 state	 vector	 for	 the	 CA	 filter	 model	 is	

defined	as

	 X T= [ ˙ ˙ ˙ ] ,
..
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where	the	position	and	rate	terms	are	the	same	as	those	
in	the	CV	model	and	 x

..
,	 y

..
,	and	 z

..
	are	the	acceleration		

estimates.
The	state	transition	matrix	is	defined	for	a	linear	pre-

diction	in	all	three	dimensions	using	all	state	estimate	
terms
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The	plant	noise	matrix	is	defined	as
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The	 parameter	 q	 for	 this	 model	 has	 units	 of	 m2/s5.	
The	prediction	and	process	noise	model	for	this	filter	is	
derived	in	Ref.	6.

TURN Model 
The	filter	state	vector	for	the	TURN	filter	model	is	

the	same	as	that	for	the	CA	model,

	 X T= [ ˙ ˙ ˙ ] .
..

x x x y y y z z z
.. ..

	

The	state	transition	matrix	for	this	model	is	defined	
to	perform	a	constant-speed	 turn	maneuver	along	 the	
trajectory	defined	by	the	state	estimates	of	velocity	and	
acceleration.	This	matrix	is	given	as
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and		 is	 the	 turning	 rate	calculated	 from	elements	of	
the	filtered	track	state	as
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filter	model	covariance,	with	the	result	that	the	covari-
ance	is	smaller	than	true	measurement	noise-only	errors.	
However,	lag	errors	are	significantly	reduced	during	the	
turn	period	using	this	procedure.	The	full	derivation	of	
this	procedure	is	given	in	Ref.	7,	and	the	filter	model	is	
applied	within	an	IMM	structure	in	Ref.	8.

The	constraint	 is	applied	as	a	pseudo-measurement	
update	to	the	TURN	model.	The	filtering	equations	for	
this	formation	have	been	derived	as
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where	the	superscript	c	in	each	equation	denotes	terms	
related	 to	 the	 pseudo-measurement	 update.	 Rc	 is	 the	
variance	 of	 the	 pseudo-measurement	 update	 selected	
for	 this	 application	 to	 achieve	 a	 gain	 of	 0.5.	 In	 the	
IMM	filter	model	this	constraint	is	applied	twice:	once	
after	state	interaction	and	once	after	the	measurement	
update	for	the	TURN	filter	model.

FILTER MODELS FOR PERFORMANCE 
COMPARISON

A	study	has	been	conducted	to	compare	the	perfor-
mance	of	five	filtering	methods.	The	application	con-
sidered	is	tracking	of	airborne	targets.	The	filtered	root	
mean	square	(RMS)	position	and	velocity	errors	have	
been	 compared	 on	 a	 variety	 of	 maneuvering	 targets.	
The	 five	 filtering	 methods	 with	 operating	 parameters	
are	given	in	Table	1.

The	 five	 filter	 models	 have	 been	 selected	 to	 show	
filter	performance	as	a	function	of	increasing	filter	com-
plexity.	The	first	two	methods	are	single	filter	methods,	

Table 2. Sensor model parameters.

	 	 High	
	 Scan	 precision	
Update	period	(s)	 		4	 1
Range	accuracy	(m)	 50	 5
Bearing	accuracy	(Mrad)	 		5	 1
Elevation	accuracy	(Mrad)	 		5	 1

Table 1. Filtering methods for comparison study.

Method	 Filter	models	 Filter	parameters 
	 1	 CV	 qCV		=	400	m2/s3	
	 2	 CA	 qCA		=	400	m2/s5	
	 3	 CV-CV	IMM		 qCV 		=	1	m2/s3	
	 	 	 qCA 		=	3600	m2/s3	

	 4	 CV-CA	IMM		 qCV		=	1	m2/s3	
	 	 	 qCA		=	400	m2/s5	

 5	 CV-CA-TURN	IMM  qCV		=	1	m2/s3	
	 	 	 qCA	=	400	m2/s5	
	 	 	 qTURN	=	25	m2/s5 
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The	 plant	 noise	 matrix	 for	 this	
model	 is	 the	 same	 as	 for	 the	 CA	
model.

The	 TURN	 model	 also	 uses	 a	
pseudo-measurement	update	derived	
from	the	constraint	that	the	target	is	
undergoing	a	constant-speed	turning	
maneuver.	 Using	 the	 pseudo-mea-
surement	derived	 from	this	maneu-
ver	 assumption	 tends	 to	 influence	
the	 state	 estimates	 to	 change	 to	fit	
the	 profile	 of	 this	 type	 of	 target.	
Namely,	 the	 vector	 representation	
of	 the	 acceleration	 estimate	 will	
change	to	be	normal	to	the	velocity	
vector.	Application	of	 this	 pseudo-
measurement	 will	 also	 affect	 the	

and	the	last	three	are	IMM	filters.	Methods	1	and	2	will	
show	 filter	 model	 performance	 for	 nonadaptive	 single	
model	 filters.	The	CV	filter	 q	 value	 for	method	1	was	
selected	 high	 in	 order	 to	 reasonably	 limit	 lags	 during	
target	maneuvers.	The	CA	filter	q	value	was	selected	the	
same	 for	all	filter	methods	where	a	CA	model	 is	used.	
The	three	IMM	methods	represent	an	increase	in	com-
plexity	that	should	be	reflected	in	the	results.	The	filter	
parameters	 were	 selected	 experimentally	 using	 general	
guidelines.	Filter	parameter	selection	and	its	impact	on	
the	 IMM	 filter	 performance	 will	 be	 addressed	 later	 in	
this	article.

Two	sensor	models	are	selected	to	provide	a	broader	
view	of	the	filter	performance	as	applied	under	different	
operating	conditions.	The	first	 sensor	 is	 a	 surveillance	
(scan)	 radar	 that	 provides	 detections	 at	 a	 4-s	 update	
period.	The	second	is	a	high-precision	(HP)	radar	with	
an	 update	 period	 of	 1	 s.	 Each	 sensor	 model	 provides	
three-dimensional	 measurements	 of	 position	 that	 are	
zero-mean	 and	 Gaussian.	 The	 standard	 deviation	 of	
measurement	 noise	 for	 each	 sensor	 model	 is	 given	 in	
Table	2.

The	two	sensor	models	are	used	in	combination	with	
five	maneuvering	target	models	to	provide	a	testing	suite	
for	the	filter	models.	The	five	maneuvering	target	models	
are	a	weaving	maneuver	with	a	12-s	weave	period,	10-g	
linear	speed	acceleration	for	10	s,	high-altitude	6-g	dive,	
1-g	constant	speed	turn,	and	5.6-g	constant	speed	turn.
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RESULTS
The	 simulation	 results	 for	 each	 filter	 model	 are	

obtained	from	Monte	Carlo	simulations	with	100	real-
izations.	 The	 RMS	 errors	 for	 position	 and	 velocity	
are	 computed	 from	 the	filtered	 track	 state	 estimate	of		
each	filter	model.	Table	3	provides	the	peak	RMS	posi-
tion	and	velocity	 errors	 for	10	 selected	periods	of	 the	
target	and	sensor	combinations.	The	target	and	sensor	
combination	for	each	period	is	listed	in	the	first	two	col-
umns	of	Table	3.

The	first	 two	 rows	of	Table	3	 show	 the	peak	RMS	
errors	 of	 each	 filter	 model	 on	 the	 nonmaneuvering	
period	of	a	target	model.	The	scan	sensor	was	the	mea-
surement	source	for	period	1,	and	the	HP	sensor	was	the	
measurement	 source	 for	 period	 2.	 Examination	 of	 the	
table	entries	shows	that	each	of	the	IMM	models	out-
performs	the	single	filter	models.	This	finding	indicates	
that	the	proper	model	of	each	IMM,	the	CV	with	low	
process	noise,	was	primarily	selected	for	the	nonmaneu-
vering	trajectory.	The	single	CV	filter	model	could	not	
achieve	 the	 same	 variance	 reduction	 on	 nonmaneu-
vering	tracks	as	the	IMM	filters	because	the	q	value	was	
selected	 high	 to	 limit	 lags	 on	 target	 maneuvers.	 The	
single	CA	filter	model	has	the	largest	position	and	rate	
errors.	Since	the	majority	of	most	track	periods	in	practi-
cal	applications	are	nonmaneuvering,	that	would	make	
this	filter	model	undesirable.

The	 third	 row	 of	 Table	 3	 shows	 the	 peak	 RMS	
errors	for	the	weaving	target.	None	of	the	filter	models	
selected	for	the	IMM	methods	is	matched	to	the	chang-
ing	dynamics	of	the	weaving	target.	Thus,	the	results	for	
this	target	do	not	show	a	clear	advantage	of	one	filter	
model	over	any	of	the	others.	Figure	2	shows	the	RMS	
velocity	errors	for	all	filter	models	as	a	function	of	time	
for	the	weaving	target.	This	plot	shows	the	relative	per-
formance	of	each	filter	model	during	the	nonmaneuver-
ing	period	(<60	s),	as	well	as	the	magnitude	of	the	errors	
during	the	weave.	Although	the	IMM	does	not	reduce	
errors	 during	 the	 weaving	 period,	 the	 performance	 is	
not	 degraded	 from	 any	 single	 model.	 Figure	 3	 shows	

Table 3. Peak RMS errors for selected target periods.

  Position	errors	(m)/Velocity	errors	(m/s)
Target	 Sensor	 CV	 CA	 CV-CV	 CV-CA	 CV-CA-TURN
No	maneuver	 Scan	 289/42	 360/133	 243/20	 233/17	 241/22
No	maneuver	 HP	 50/23	 59/49	 40/10	 34/7	 36/9
Weave	 HP	 51/55	 44/60	 54/60		 49/56	 48/57
10-g	acceleration	 HP	 64/112	 37/64	 37/73	 43/76	 44/80
Diver	 Scan	 246/206	 180/136	 175/154	 172/132	 167/129
Diver	 HP	 48/73	 36/45	 36/56	 36/44	 34/41
1-g	turn	 HP	 85/36	 100/63	 86/39	 85/47	 81/36
5.6-g	turn	 Scan	 968/323	 445/179	 432/188	 444/174		 391/120
5.6-g	turn	 HP	 107/105	 77/60		 78/84	 76/67	 65/38
5.6-g	turn	(post	maneuver)	 HP	 70/25	 70/67	 66/32	 63/32	 66/53
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Figure 2. The filtered RMS velocity errors for the weaving target 
plotted as a function of time for each of the five filtering methods. 
Note that the weave maneuver begins at 60 s.

Figure 3. The average model probabilities for the CV-CA-TURN 
IMM on the weaving target. The model probabilities are averaged 
over 100 Monte Carlo realizations.
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the	average	model	probabilities	for	the	CV-CA-TURN	
IMM	on	 the	weaving	 target.	The	CV	model	 is	domi-
nant	during	the	nonmaneuvering	period,	but	the	IMM	
algorithm	 is	 not	 able	 to	 find	 a	 single	 preferred	 model	
during	the	target	weave.

The	fourth	row	of	Table	3	shows	the	peak	RMS	errors	
for	the	10-g	linear	speed	acceleration.	This	target	maneu-
ver	should	be	well	matched	to	the	CA	filter	model.	How-
ever,	 the	 results	 indicate	 that	 the	 single	 CA	 is	 only		
marginally	better	than	the	CV-CV	IMM	filter	model.	In	
addition,	it	appears	that	the	CV-CV	filter	is	better	than	
the	 more	 complex	 CV-CA	 and	 CV-CA-TURN	 filter	
models.	This	is	a	deceptive	result	because	the	peak	of	the	
filter	 error	 is	 in	 the	 initial	maneuver	 transition	period.	
Figure	4	shows	the	RMS	velocity	errors	as	a	function	of	
time.	This	plot	shows	that	although	the	errors	at	the	start	
of	the	maneuver	are	similar,	the	CA,	CV-CA,	and	CV-
CA-TURN	filters	are	much	better	 in	 steady	state.	The	
plot	also	shows	that	the	CA	filter	is	slow	to	recover	non-
maneuvering	error	levels	after	the	maneuver	ends.	Thus,		
the	 additional	 filter	 models	 in	 the	 more	 complex	 fil-
tering	 methods	 allow	 for	 a	 quicker	 recovery	 from	 the		
initial	lag.

The	fifth	and	 sixth	 rows	of	Table	3	 show	the	peak	
RMS	errors	for	the	high-altitude	diving	target	using	each	
sensor	model.	The	results	show	a	marginal	improvement	
in	 the	 filter	 errors	 as	 the	 model	 complexity	 increases.	
Figure	5	shows	the	RMS	velocity	errors	as	a	function	of	
time	 for	 the	diving	target	using	the	HP	sensor	model.	
This	 plot	 shows	 the	 peak	 errors	 at	 the	 start	 of	 the	
maneuver	 with	 the	 CV-CA-TURN	 IMM	 as	 best	 in	
steady	state.	This	demonstrates	that	the	TURN	model	
implemented	 for	 this	comparison	 study	works	well	 for	
maneuvers	in	three	dimensions.

The	 seventh	 row	 of	 Table	 3	 shows	 the	 peak	 RMS	
errors	 for	 the	 1-g	 constant-speed	 turn	 maneuver.	 All	
filter	 methods	 yield	 similar	 errors,	 with	 the	 exception	
of	 the	 single	 CA	 model,	 which	 had	 the	 worst	 overall		
performance.	 The	 lag	 errors	 produced	 from	 a	 small	
maneuver	do	not	require	the	dynamic	filter	adaptabil-
ity	of	a	complex	IMM.	The	errors	did	increase	from	the	
nonmaneuvering	steady-state	values,	indicating	that	the	
IMM	did	detect	the	maneuver	and	adapt.

The	eighth	and	ninth	rows	of	Table	3	show	the	peak	
RMS	errors	for	the	5.6-g	constant-speed	turn	maneuver	
using	each	sensor	model.	The	errors	for	these	cases	show	
a	 significant	 improvement	 as	 filter	 model	 complexity	
increases.	 This	 is	 expected	 since	 the	 TURN	 model	 is	
matched	to	the	target	maneuver.	This	is	also	true	when	
either	sensor	was	used	to	provide	measurements	to	the	
filter	models.	Figure	6	shows	the	RMS	velocity	errors	as	
a	function	of	time	for	the	5.6-g	turn	using	the	HP	sensor	
model.	This	plot	confirms	the	error	reduction	achieved	
in	the	maneuver	steady	state	using	the	CV-CA-TURN	
filter	model.	Note	from	Figure	6	the	improvement	from	
the	CV-CV	filter	to	the	CV-CA	filter	model.	This	plot	
shows	 the	 short-duration	 increase	 in	 errors	 following	
the	 target	 maneuver	 for	 the	 CA	 and	 CV-CA-TURN	
models.	The	peaks	of	 these	errors	are	 reflected	 in	 row	
10	of	Table	3.	Shown	in	Figure	7	are	the	average	model	
probabilities	for	the	CV-CA-TURN	IMM	on	the	5.6-g	
constant-speed	 turning	 target.	These	model	probabili-
ties	reflect	the	correct	selection	of	each	filter	model	for	
the	 target	 duration	 that	 yielded	 the	 best	 overall	 error	
performance.

In	 general,	 the	 filter	 performance	 improved,	 with	
respect	 to	 RMS	 errors,	 as	 the	 complexity	 of	 the	 filter	
models	increased.	The	CV	filter	model	could	not	achieve	
the	same	variance	reduction	on	nonmaneuvering	tracks	
as	the	IMM	filters	because	its	q	value	was	selected	high	

CV
CA
CV-CV
CV-CA
CV-CA-TURN

R
M

S
 r

at
e 

er
ro

rs
 (

m
/s

)

120

60

40

20

0
0 20 40 60 80 100

Time (s)

80

100

10 30 50 70 90

CV
CA
CV-CV
CV-CA
CV-CA-TURN

R
M

S
 r

at
e 

er
ro

rs
 (

m
/s

)

80

60

40

20

0
0 50 100 150

Time (s)

100

120

Figure 4. The filtered RMS velocity errors for the 10-g linear-
speed accelerating target plotted as a function of time for each 
of the five filtering methods. Note that the maneuver occurs from  
60 to 70 s.

Figure 5. The filtered RMS velocity errors for the high-altitude 
diving target plotted as a function of time for each of the five filter-
ing methods. Note that the dive starts at 110 s.
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to	limit	lags	on	target	maneuvers.	However,	this	model	
also	proved	to	have	the	largest	errors	during	most	of	the	
target	maneuvers.	The	CA	model	performed	well	with	
the	target	maneuvers	but	had	the	worst	performance	on	
the	nonmaneuvering	tracks.

All	 of	 the	 IMM	 models	 were	 equally	 effective	 on	
nonmaneuvering	 tracks.	 The	 key	 to	 the	 IMM	 filter	
model	performance	during	target	maneuvers	is	a	match	
of	 the	 filter	 state	 models	 to	 the	 target	 dynamics.	 The	
CV-CV	 IMM	does	not	 try	 to	model	 target	maneuvers	
but	 instead	 limits	 lags	 by	 increasing	 filter	 gains.	 Thus		
this	 model	 had	 the	 largest	 errors	 of	 the	 IMM	 models	
during	 target	 maneuvers.	 The	 CV-CA	 IMM	 out-per-
formed	 the	 CV-CV	 IMM	 on	 most	 target	 maneuvers	
because	of	the	acceleration	estimates	in	the	filter	model.	
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Figure 7. The average model probabilities for the CV-CA-TURN 
IMM on the 5.6-g constant-speed turning target. The model prob-
abilities are averaged over 100 Monte Carlo realizations.

The	 CV-CA-TURN	 yielded	 the	 best	 overall	 perfor-
mance	on	the	turning	targets	while	providing	a	compa-
rable	performance	on	all	other	targets.

PARAMETER SELECTION FOR THE 
IMM FILTER

Design	parameters	for	the	IMM	filters	are	selected	to	
control	filter	operating	characteristics	such	as	gain	and	
response	to	maneuvers.	The	required	design	parameters	
for	 the	 filtering	 methods	 defined	 in	 the	 performance	
comparison	 are	 the	 IMM	 state	 switching	 matrix	 ()	
and	the	filter	model	q	values.

State Switching Matrix
The	state	switching	matrix	is	selected	as	part	of	the	

IMM	algorithm	to	govern	the	underlying	mode	switch-
ing	 probabilities.	 This	 matrix	 defines	 the	 probability	
that	 a	 target	 will	 make	 the	 transition	 from	 one	 filter	
model	 state	 to	another	 state.	An	example	of	a	 typical	
state	switching	matrix,	for	an	IMM	with	two	models,	is	
given	here:

	 � =












=










p p
p p

11 12

21 22

0 95 0 05
0 12 0 88

. .

. .
. 	

The	 first	 filter	 model	 within	 an	 IMM	 is	 typically	
selected	 to	 handle	 the	 nonmaneuvering	 periods	 of	 a	
target	trajectory.	Under	most	conditions,	this	is	best	rep-
resented	by	a	constant-velocity	filter	model	with	small	
process	 noise.	 As	 a	 general	 guideline,	 the	 first	 model	
is	selected	to	have	the	highest	probability.	The	second	
model,	representing	a	target	maneuver,	is	selected	to	be	
less	probable	than	the	first	model.	This	is	done	to	repre-
sent	the	behavior	of	typical	airborne	tracks.

Figure	 8	 shows	 the	 RMS	 velocity	 errors	 using	 the	
CV-CA	IMM	filter	with	three	different	state	switching	

Π = [0.95 0.05; 0.12 0.88]

R
M

S
 r

at
e 

er
ro

rs
 (

m
/s

)

120

60

40

20

0
0 20 40 60 80 100

Time (s)

80

100

120 140 160

Π = [0.80 0.20; 0.05 0.95]
Π = [0.60 0.40; 0.60 0.40]

Π
Π
Π

Figure 8. The filtered RMS velocity errors using a CV-CA IMM 
filter model with three different switching matrices plotted as a 
function of time using the 5.6-g constant-speed turning target.
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matrices.	The	red	curve	represents	the	state	switching	
matrix	 selected	 for	 the	 filter	 performance	 comparison	
study.	A	comparison	of	the	plots	of	Figs.	6	and	8	shows	
that	the	selection	of	the	filter	models	has	a	larger	effect	
on	state	errors	 than	subtle	variations	 in	the	switching	
matrix.	The	black	and	blue	curves	in	Fig.	8	show	that	
moderate	 changes	 to	 the	 state	 switching	 matrix	 will	
effect	small	changes	to	the	filter	performance.	The	larg-
est	effects	are	seen	during	the	nonmaneuvering	periods	
when	the	total	error	is	dominated	by	state	noise.	In	gen-
eral,	 the	performance	of	 the	 IMM	appears	 to	be	 rela-
tively	insensitive	to	the	selection	of	the	state	switching	
matrix.

Process Noise Selection
The	filter	models	defined	 for	 the	filter	performance	

comparison	use	process	noise	as	a	 selected	filter	 input	
to	control	 the	 steady-state	gains.	The	process	noise	 is	
defined	by	a	single	selectable	parameter	specified	as	the		
q	 value.	 The	 relationship	 between	 the	 q	 value	 and	
steady-state	Kalman	filter	gains	is	known.	Reference	9	
provides	 closed	 form	 expressions	 for	 the	 CV	 process	
noise	model.	Small	q	values	yield	small	gains	that	pro-
vide	good	measurement	noise	reduction	but	lead	to	large	
lags	during	maneuvers.	Large	gains	provide	little	noise	
reduction	but	give	a	better	lag	response	during	maneu-
vers.	 Conceptually,	 a	 multiple	 model	 filter	 algorithm	
could	use	 two	filters,	one	at	each	extreme	of	 the	gain	
spectrum,	 and	 the	 algorithm	 would	 select	 the	 proper	
balance	between	the	two	filters.	This	is	not	true	for	the	
IMM	because	selection	of	process	noise	needs	to	con-
sider	the	interaction	between	filter	models.

Mixing	 filter	 model	 states	 and	 covariances	 in	 the	
IMM	algorithm	allows	for	a	prompt	reaction	to	chang-
ing	target	modes.	However,	this	mixing	will	also	affect	
the	 individual	 filter	 model	 gains.	 An	 example	 of	 this	
effect	is	shown	in	the	plots	of	Figs.	9	and	10.	Figure	9	
shows	 the	bearing	position	gain	 as	 a	 function	of	 time	
on	a	nonmaneuvering	target	for	a	single	CV	filter.	Four	
curves	are	shown,	representing	different	levels	of	input	
process	 noise.	 This	 plot	 shows	 reduction	 of	 the	 filter	
gain	as	q	values	are	decreased.	The	plot	in	Fig.	10	shows	
the	same	curves	taken	from	the	first	filter	of	a	CV-CV	
IMM	where	 the	process	noise	of	 the	 second	filter	was	
kept	constant.	In	contrast	to	the	plot	in	Fig.	9,	the	gains	
in	this	plot	are	shown	to	reach	a	practical	floor	as	the	
process	 noise	 is	 decreased.	 This	 floor	 varies	 with	 the		
q	values	of	the	second	filter,	indicating	an	inherent	limi-
tation	in	the	realizable	dynamic	range	of	gains	in	a	two-
model	IMM.

The	IMM	model	probability	calculations	are	affected	
by	the	process	noise	selection	for	each	filter.	The	selec-
tion	 of	 process	 noise	 parameters	 for	 filters	 within	 the	
IMM	 requires	 a	 balance	 between	 the	 high	 and	 low	
models	 to	 achieve	 the	 best	 model	 interaction.	 When	
the	difference	between	process	noise	in	the	two	models	
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Figure 9. Single CV Kalman filter bearing position gains as a 
function of time on a nonmaneuvering target. The four curves rep-
resent different levels of input process noise.
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Figure 10. The bearing position gains for the first filter model from 
a CV-CV IMM plotted as a function of time on a nonmaneuvering 
target. The four curves represent different levels of input process 
noise on the first filter model. The q value for the second filter 
model was kept fixed at 15,000 m2/s3.

is	too	large,	the	probability	of	the	maneuver	model	will	
be	 low	 during	 target	 maneuvers.	 The	 effect	 of	 this	 is	
a	degraded	performance	on	maneuvering	targets	when	
a	 filter	 with	 a	 higher	 process	 noise	 is	 used.	 Figure	 11	
shows	RMS	velocity	errors	 from	a	CV-CV	IMM	filter	
model	with	three	sets	of	q	values.	The	plot	represented	
by	the	red	curve	has	the	worst	lag	error	during	the	target	
maneuver	even	though	the	process	noise	for	the	maneu-
vering	model	is	the	largest.	Of	note,	the	blue	curve	in	
Fig.	11	uses	the	same	parameters	from	the	filter	compari-
son	also	plotted	 in	Fig.	6.	Similar	 to	 the	 state	 switch-	
ing	 matrix,	 selection	 of	 the	 filter	 models	 has	 a	 larger	
impact	 on	 model	 performance	 than	 the	 selection	 of	
filter	process	noise.
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Figure 11. The filtered RMS velocity errors using a CV-CV IMM 
filter model with three different sets of input process noise plotted 
as a function of time for the 5.6-g constant-speed turning target.

CONCLUSIONS
The	 comparative	 results	 for	 five	 filter	 models	 on	 a	

variety	of	maneuvering	targets	show	that	methods	that	
use	the	IMM	algorithm	provide	the	best	overall	results	
with	respect	to	filtered	position	and	rate	errors.	The	per-
formance	 improvement	 of	 the	 IMM	 is	 dependent	 on	
having	filter	models	that	are	well	matched	to	the	target	
behavior.	The	filter	model	that	is	best	matched	to	the	
target	 dynamics	 will	 provide	 the	 best	 state	 estimates	
and	will	have	the	highest	probability.	Results	presented	
here	 also	 show	 that	 behavior	 of	 the	 IMM	 algorithm	
is	 robust	 when	 none	 of	 the	 filter	 models	 matches	 the	
target	dynamics.	The	overall	IMM	performance	will	at	

all	 times	be	 similar	 to	 the	best	 individual	filter	model	
within	the	IMM.

The	 performance	 of	 the	 IMM	 algorithm	 has	 been	
shown	 to	 be	 relatively	 insensitive	 to	 state	 switching	
matrix	 and	 filter	 process	 noise	 parameter	 selection.	
Results	indicate	that	variations	in	the	model	parameters	
will	effect	small	changes	in	the	performance	of	the	filter	
algorithm.	 Parameter	 selection	 needs	 to	 be	 considered	
to	optimize	the	performance	of	an	IMM	given	the	com-
ponent	filter	models.	Selection	of	 the	 component	filter	
models	should	be	the	primary	consideration	for	design	of	
an	IMM	since	the	best	overall	performance	is	achieved	
when	a	filter	model	is	matched	to	the	target	kinematics.
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