Ideas About Simulation Conceptual Model Development

Dale K. Pace

he conceptual model for a simulation addresses the simulation’s context, how it

will satisfy its requirements, and how its entities and processes will be represented. The
conceptual model is key to (1) assessing a simulation’s validity for any situation not
explicitly tested and (2) determining the appropriateness of a simulation (or its parts)
for reuse or use with other simulations in a distributed simulation. There are no widely
accepted approaches for decomposing the representation of the simulation subject into
the entities and processes of a simulation’s conceptual model, for abstracting such
representation from available information about the subject, or for describing and
documenting the simulation’s conceptual model. This article discusses the development
of a conceptual model for both unitary and distributed simulations, focusing on
approaches that enhance model completeness, consistency, coherence, and correctness.
More than a decade of work at APL in this area is represented in the ideas presented
here. (Keywords: Conceptual model, Fidelity, Simulation, Validation.)

INTRODUCTION

Contemporary software developments, including
those for simulations, are limited more by methods for
conceptual model development than by implementa-
tion capabilities. According to Cook,!

We are not really having a problem coding a solution—we are
having a problem understanding what solution to code. . . . If

you focus on requirements and verification and validation,
the coding will take care of itself.

To compound the problem, there are no generally
accepted guidelines to help a simulation developer
determine which attributes of a subject should be rep-
resented in a simulation or what level of fidelity is
required for their representation. As explained later,
guidelines and formalisms have been developed, but

they have either limited applicability or lack wide
acceptance and use. A format for describing conceptual
models for simulations has been recommended” and is
expected to become part of the DoD Recommended
Practices Guide for Verification, Validation, and Accred-
itation (VV&A).? Despite efforts to create an integrated
collection of standards, divisiveness over software
standards has caused many critical factors (e.g., data
item descriptions) to be omitted in some contracts.’
This, in turn, reduces the likelihood of quality concep-
tual model development.

Proper development of a conceptual model is crit-
ical. A simulation’s conceptual model describes how
a developer intends an implementation to satisfy its
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requirements. This model is the primary mechanism for
transforming simulation requirements into specifica-
tions that can guide simulation development and im-
plementation. Therefore, the conceptual model is the
only rational basis for judging a simulation’s capabilities
under circumstances other than those specifically test-
ed. It is also the basis for judgments about the appro-
priateness of the simulation (or its parts) for reuse in
other simulations, an important consideration in an era
of simulation-based design and acquisition. Conceptual
models of simulations also provide the primary basis for
judgment about the consistency and compatibility of
simulations in a distributed simulation application such
as a High Level Architecture (HLA) federation.

Guidance about conceptual model development,
evaluation, and characterization has still not been
generalized coherently. For example, in the early 1990s,
Mayhew?® provided guidelines for conceptual models of
software user interfaces. The DoD Joint Technical
Architecture’ prescribed Integrated Computer Aided
Manufacturing Definition (IDEF) models for data and
process descriptions of systems that exchange informa-
tion, but that descriptive methodology is not yet used
for all defense software projects. However, it is being
applied specifically to object-oriented systems in a new
set of IEEE standards.’

Soft systems methodology, knowledge-based system
development, formal methods, and knowledge engi-
neering have approaches for abstraction and expression
pertinent to simulation conceptual modeling. These
methods have been used successfully in many applica-
tions. For example, an intelligent brokering service for
knowledge-component reuse on the Web’ is envisioned
as allowing one to enter the specification of the knowl-
edge-intensive problem (e.g., an engineering design
problem) and then enabling the broker (using shared
ontologies to support such component reuse) to exam-
ine available libraries of software components so as to
configure a suitable problem solver. This example
shows the kind of benefit possible when development
discipline (such as shared ontologies) is employed ex-
tensively. Unfortunately, because these methods have
not yet matured to general applicability, each research-
er develops or modifies existing methods so that he or
she can address a particular problem. This is reflected
in the many articles in the Jowrnal of Conceptual Mod-
eling'® about the capabilities and limitations of descrip-
tive and development formalisms, especially those in
the object-oriented arena, for conceptual modeling.

Likewise, there is little consensus about how to
evaluate conceptual models. Teeuw and van den Berg,!!
as well as Lindland et al.,!? identify quality criteria for
conceptual models: completeness, propriety (perti-
nence), clarity, consistency, orthogonality (modularity,
the independence of aspects of the subject represent-
ed), and generality (implementation independence).

I focus on four quality attributes for a simulation con-
ceptual model:

1. Completeness: The simulation conceptual model
identifies all representational entities and processes of
the problem domain (sometimes called the “mission
space” in DoD parlance) and all control and operating
characteristics of the simulation, which I will
call “simulation space,” needed to ensure that speci-
fications for the simulation fully satisfy simulation
requirements.

2. Consistency: Representational entities and processes
within the conceptual model are addressed from com-
patible perspectives in regard to such features as
coordinate systems and units; levels of aggregation,
deaggregation, precision, accuracy, etc.; and descrip-
tive paradigms.

3. Coherence: The conceptual model is organized so
that all elements of both mission space and simulation
space have function (i.e., there are no extraneous
items) and potential (i.e., there are no parts of the
conceptual model which are impossible to activate).

4. Correctness: The simulation conceptual model is
appropriate for the intended application and has
potential to perform in such a way as to fully satisfy
simulation requirements.

This article begins with a definition for the simula-
tion conceptual model and then addresses the funda-
mental issue of how to develop such a model, focusing
on approaches and formalisms that can enhance sim-
ulation conceptual model clarity, completeness, consis-
tency, and correctness. These methods include

e Conceptual model definition processes, which are
closely associated with the subject of requirements
engineering

¢ Conceptual model decomposition, which isconcerned
with the level of detail or aggregation that is appropri-
ate for simulation elements

e “Real world” abstraction to provide representation in
the simulation

Conceptual model development is addressed for
both unitary and distributed simulations, and includes
comments about implementation and control aspects of
the model (i.e., the simulation space) as well as its main
focus on representational aspects (i.e., the mission
space). Simulation conceptual model development is
still an art; guiding principles are incomplete and evolv-
ing for both unitary and distributed simulation.

THE SIMULATION CONCEPTUAL
MODEL
The current version of the DoD Glossary of Modeling

and Simulation Terms" does not define “simulation
conceptual model.” It follows the approach of the
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Distributed Interactive Simulation (DIS) community
by defining “conceptual model” as the agreement be-
tween the simulation developer and user about what
the simulation will do. In this article the connotation
for simulation conceptual model is that found in the
current (revised) version of the DoD Recommended
Practices Guide for Verification, Validation, and Accred-
itation (VV&A)’: a simulation developer’s way of trans-
lating modeling requirements (what is to be represent-
ed by the simulation) into a detailed design framework
(how it is to be done), from which the software, hard-
ware, networks (in the case of distributed simulation),
and systems/equipment that will make up the simula-
tion can be built. A conceptual model is the collection
of information that describes a simulation developer’s
concept about the simulation and its pieces. That in-
formation consists of assumptions, algorithms, charac-
teristics, relationships, and data, which describe how
the simulation developer understands what is to be
represented by the simulation (entities, actions, tasks,
processes, interactions, etc.) and how that representa-
tion will satisfy simulation requirements. The more
perspicuous and precise the conceptual model, the
more likely the simulation development both fully
satisfies requirements and demonstrates that the re-
quirements are satisfied (i.e., validation).

A simulation conceptual model should be a primary
mechanism for clear and comprehensive communica-
tion among simulation developer design and imple-
mentation personnel (systems analysts, system engi-
neers, software designers, code developers, testers, etc.),
simulation users, subject-matter experts (SMEs) in-
volved in simulation reviews, and evaluation person-
nel, such as those involved in VV&A. A simulation’s
conceptual model addresses the simulation’s context,
elements, and concept (Fig. 1).

Simulation requirements

b

*Mission space

Simulation context

*Provides authoritative information
on relevant entities/processes,
data, algorithms, assumptions,
behaviors, etc.

*Sets constraints/bounds on the
simulation concept

(architecture)

Constraints . .
*Simulation space

«Includes operational/functional

capabilities
Conceptual model

Simulation concept

«Includes all simulation elements and
specifies their interaction
«Simulation elements represent
entities/processes (tasks, actions,
behaviors, etc.) by assumptions,
algorithms, data, and relationships

SIMULATION CONCEPTUAL MODEL DEVELOPMENT

The simulation context provides “authoritative”
information about the domain which the simulation is
to address. In simulations that provide realistic repre-
sentations of physical processes, the laws of physics and
principles of engineering are part of the simulation
context. For many military-related simulations, the
simulation context includes standard organizational
structures and general doctrine, strategy, and tactics.
Often it is merely a collection of pointers and references
to sources that define behaviors and processes for things
that will be represented within the simulation. Special
care, particularly for distributed simulations, must be
used when algorithms are taken from more than one
source to ensure that sources do not employ contradic-
tory assumptions or factors (such as different models for
the shape of the Earth, differences in characterizing the
environment, etc.). The information contained in the
simulation context establishes boundaries on how the
simulation developer can properly build the simulation.

A simulation element consists of information de-
scribing concepts for an entity, a composite or collec-
tion of entities, or a process that is represented within
a simulation. It includes assumptions, algorithms, char-
acteristics, relationships (especially interactions with
other things within the simulation), data, etc., that
identify and describe an item’s possible states, tasks,
events, behavior, performance, parameters, attributes,
etc. A simulation element can address a complete sys-
tem (e.g., a missile or radar), a subsystem (e.g., the
antenna of a radar), an element within a subsystem
(e.g., a circuit within a radar transmitter), or even a
fundamental item (e.g., an atom). It can also address
composites of systems (e.g., a ship with its collection
of sensors, weapons, etc.). It should be noted that a
person, part of a person (e.g., a hand), or a group of
people can likewise be addressed by a simulation ele-
ment. It can also address a process
such as environmental effects on
sensor performance.

The simulation concept de-
scribes the simulation developer’s
concept for the entire simulation
application (all the federates and
other pieces in a distributed simu-
lation, i.e., everything that com-
prises the simulation) and explains
how the simulation developer
expects to build a simulation that
can fully satisfy user-defined re-
quirements. The simulation con-
text establishes constraints and
boundary conditions for the simu-
lation concept. If the simulation is

concerned with a realistic repre-

Figure 1. The simulation conceptual model.

sentation of missile flight, then
laws of physics and principles of
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aerodynamics are part of the simulation context, mak-
ing the simulation concept accommodate conservation
of momentum, etc. An unrealistic, cartoon-like repre-
sentation of missile flight would not necessarily be so
constrained. The simulation concept includes simula-
tion elements, i.e., the things represented in the sim-
ulation. The simulation concept is the total of all sim-
ulation elements and specifies how those elements
interact. This is essentially the mission space part of the
simulation concept.

The simulation space part of the simulation concept
includes all additional information needed to explain
how the simulation will satisfy its objectives. Such
information often addresses control capabilities intend-
ed for the simulation (e.g., pause and restart capabil-
ities; data collection and display capabilities; and how
data and simulation control factors can be entered into
the simulation by keyboard, voice, gesture, touch, or
feedback from other parts of the simulation). Simula-
tion space characteristics can range from the identifi-
cation of specific kinds of computing systems (hardware
and operating systems that the simulation must run on),
to timing constraints so that real systems can be part
of the simulation (e.g., hardware-in-the-loop unitary
simulations or involvement of live forces in distributed
simulations), to simulation control capabilities de-
scribed previously. Some simulation space consider-
ations are closely related to implementation issues for
the simulation; for example, the selection of a parallel
computing architecture has implications for algorithms
used to describe simulation elements.

A primary function of the simulation conceptual
model is to serve as the mechanism by which simulation
requirements are transformed into detailed simulation
specifications (and associated simulation design) that
fully satisfy the requirements. This transformation is
easiest and most reliable if both the requirements and
the specifications can be expressed in the same descrip-
tive formalism, because every translation (even if
mundane) from one descriptive formalism to another
introduces an additional source of potential error. Such
errors may result from something as simple as failure to
translate one set of units to another, which caused the
failure of NASA’s Mars Climate Orbiter in September
1999.* Misinterpretation of symbols and factors is also
possible. This can result from different connotations for
items with multiple definitions, as with the statistical
term “mean,” where the arithmetic mean is quite dif-
ferent from the geometric mean. Similar problems re-
sult when there is no convenient construct or concept
in the subsequent descriptive format to address all
aspects of the information contained in the format from
which the information is being translated (this is a well-
known problem in natural language translation).

Extensive literature on transformation from one de-
scriptive format to another exists, especially concerning

formal software development environments. The liter-
ature ranges from earlier works like the 1990 book by
Partsch, Specification and Transformation of Programs,"
to more recent endeavors such as Poston’s Automating
Specification-Based Software Testing'® and Grady’s System
Vdlidation and Verification.!” Such works provide general
insights about issues related to descriptive format trans-
formations. Although no satisfactory general and com-
plete solution to the problem of transformation has yet
been devised, these references and related literature
provide one starting point for a more general, compre-
hensive theory of simulation conceptual model devel-
opment and for a framework within which to discuss
how this development is affected by descriptive format
choices.

A description of the simulation context, simulation
elements, and simulation concept is nearly always
ambiguous because some parameters are generic and
others are application (run) specific. A simulation el-
ement for a sensor may contain parameter values and
algorithms that fully characterize sensor states, behav-
ior, performance, etc. For a particular application, it
may be desirable to change some parameters from run
to run. One could have a parameter set by simulation
inputs at the beginning of each simulation run. Or one
could have a slightly different simulation element for
the sensor, with the appropriate parameter value, for
each run.

CONCEPTUAL MODEL
DEVELOPMENT

Once simulation objectives have been established,
development of the simulation conceptual model may
begin. Simulation requirements and conceptual model
development are a classic “chicken—egg” pair. They
each stimulate and derive from the other. Conceptual
model development may even begin before completion
of the simulation requirements. In some cases, the it-
erative and interactive formulation of simulation re-
quirements with development of the simulation con-
ceptual model can be beneficial.

Conceptual model development may reveal prob-
lems with simulation requirements, especially if there
has not been a rigorous validation of simulation re-
quirements prior to the initiation of conceptual model
development or if the best practices of contemporary
requirements engineering have not been employed
comprehensively. As the simulation conceptual model
is developed to fully satisfy simulation requirements,
inconsistencies and a lack of balance among the re-
quirements (some very lax and others very stringent in
the same general area) may become apparent. Likewise,
development of the conceptual model may reveal se-
rious “holes” (areas where the simulation developer is
left to his own initiative about what the simulation
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should be able to do) in the requirements. A good
simulation development program will insist upon the
use of the best contemporary requirements engineering
practices, encourage early formal and rigorous valida-
tion of simulation requirements, and ensure that re-
quirement deficiencies uncovered during conceptual
model development are corrected with appropriate
modifications to the simulation requirements.

Improvement in simulation requirements has major
benefits. About half of all software errors are due to
requirement deficiencies and errors. The cost to correct
an error caught early may be only a few percent of the
cost to correct that same error later in the development
cycle.!® In addition, formal conceptual model develop-
ment is likely to produce a description of the simulation
that will yield a more reliable estimation of resources
required to develop the simulation, e.g., an estimation
based on Function Point Analysis instead of the num-
ber of source lines of code.'®

There are four basic steps in the development of a
simulation conceptual model (Fig. 2). The first step is
to collect authoritative information about the intended
application domain that will comprise the simulation
context. Development of the simulation concept and
collection of authoritative information for the simula-
tion context are likely to occur iteratively as the en-
tities and processes to be represented in the simulation
are more clearly defined. Authoritative descriptions of
military activities such as those contained in Concep-
tual Models of the Mission Space (CMMS) in the
Defense Modeling and Simulation Office (DMSQO)
repository'’ can be used in the simulation context when
appropriate for a simulation’s intended application, as
can the laws of physics and similar principles.

It is unlikely that the formal, documented simulation
context, should one exist, will cover everything needed
to fully describe the domain that a simulation is to
address. CMMS endeavors to emphasize a disciplined

Step 4
Address relationships among
simulation elements

Step 3
Develop simulation elements

Step 2
Identify entities and processes
for representation

Step 1
Collect authoritative simulation
context information

Figure 2. Steps in conceptual model development.

SIMULATION CONCEPTUAL MODEL DEVELOPMENT

procedure by which the simulation developer is system-
atically informed about the real world and the set of
information standards used by simulation SMEs to com-
municate with and obtain feedback from military oper-
ations SMEs. Common semantics and syntax, a com-
mon format database management system, and common
data interchange formats are keys to removing potential
ambiguity between the ideas of the warfighting SMEs
and the simulation development SMEs. Significant
progress has been made in developing a CMMS tool set
to provide the keys noted above, but information be-
yond that likely to be obtained in the first-level abstrac-
tion (i.e., the CMMS itself) may be required for a sim-
ulation conceptual model. SMEs may be “called upon
to fill in details needed by simulation developers” that
are “not provided in doctrinal and/or authoritative
sources.”?°

Unfortunately, caution is also required. It has long
been known that inserting the knowledge engineer (or
other agent of information translation) in the role of
an intermediary between the expert and the knowl-
edge-based systems (or simulation) developer may cre-
ate as many problems as it solves.?! Many approaches
have been developed to address this problem. For ex-
ample, Sharp?? developed a process to ensure that the
expert and the knowledge engineer or program devel-
oper have the same understanding of the information
being acquired and transferred to a knowledge-based
system or to some other form of expression.

The more complete and clearly stated a simulation
context is, the easier it will be to understand how one
simulation entity (or simulation in a federation) may
differ from another in its assumptions about the domain
which is addressed. This becomes important when
questions of compatibility among simulations (feder-
ates) considered for a distributed simulation implemen-
tation (federation) are addressed as well as in assessing
the coherence and compatibility of simulation parts.

The second step in conceptual model development is
to identify entities and processes that must be represent-
ed for the simulation to accomplish its objectives. This
enumeration process is fundamental. It is here where
basic decisions are made about the level of detail and
aggregation that is appropriate to support simulation
requirements. These decisions determine whether a sys-
tem (such as a radar) will be represented as a single
entity, as a composite of subsystem entities (such as an
antenna or receiver), or as a composite of composites of
ever-smaller entities (to whatever level of detail is need-
ed for the purpose of the simulation). Decisions are made
at this step about the level of representation of human
decisions and actions. Take, for example, the movement
of a platform (tank, aircraft, ship, etc.). Are decisions
and responses of all the people involved (the crew)
represented implicitly as a single aspect of the movement
control process, or is each person represented explicitly
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(as in a tank simulator with a position for every member
of the tank crew)?

The third step is the development of simulation
elements. A simulation element is needed for each
entity or process (or composites of such) identified in
step two. Here, decisions are made initially about the
level of accuracy, precision, resolution, etc., needed in
the representation of the entity or process. Simulation
elements determine the functional and behavioral ca-
pabilities of the simulation. Simulation fidelity is a
function of both the scope of representation in a sim-
ulation (the entities and processes identified in step
two) and the quality of entity and process representa-
tion in terms of accuracy, precision, etc.

The fourth step addresses relationships among sim-
ulation elements to ensure that constraints and bound-
ary conditions imposed by the simulation context are
accommodated. In addition, it ensures that simulation
space issues (e.g., control capabilities that allow the
simulation to be stopped, backed up in time, restarted,
etc., or that identify data to be collected during the
simulation) are addressed appropriately. These four steps
will be iterated often in most simulation developments.

Conceptual model development should always be
done within the context of simulation theory, such as
Application Domain Modeling?® or Discrete Event
System Specification (DEVS)** methodology, to ensure
that conceptual model development has coherence and
can be related directly to simulation development.
Sarjoughian and Zeigler” developed a collaborative
method for employing DEVS constructs in High Level
Architecture (HLA) federation development. YE-
ROOS,* an acronym derived whimsically from “yet
another project on evaluation and research on object-
oriented strategies,” provides another approach. This is
a collaborative venture of researchers from Belgium,
Switzerland, Argentina, and Senegal housed at the
QANT Research Unit of the University of Louvain,
Louvain-La-Neuve, Belgium, to investigate and publish
theoretical foundations for conceptual modeling.

SIMULATION REQUIREMENTS AND
CONCEPTUAL MODEL DEFINITION

Simulation consumers, i.e., those who use simula-
tion results, usually develop simulation requirements.
They seldom are expert in formal methods that allow
requirements to be stated with mathematical precision.
Simulation specifications and the requirements from
which they are derived through the simulation concep-
tual model are typically stated in natural language
(even when a computer-aided software engineering or
CASE tool is used to facilitate tracing requirements to
implementation). This informal approach to require-
ments limits the likelihood that the simulation will
prove to be correct because of the “ambiguity, context

sensitivity, and vagueness inherent in natural language
in specification.””’” And worse, the best practices of
contemporary requirements engineering often are not
applied in developing requirements for the simulation,
causing benefits that could result from the application
of these best practices to be missed.

It may be impossible to fully express the require-
ments for a simulation, the conceptual model embod-
ying those requirements, and the specifications de-
rived therefrom in precise, mathematically formal
terms because the simulation subject is too complex,
those expressing this information have limited fluency
in the mathematical languages, or their mastery of the
formal descriptive format is incomplete. Even when
mathematically precise formal methods cannot be
used fully, their partial application can provide signif-
icant benefit in allowing parts of the simulation to
possess provable correctness. This perspective should
be taken for each simulation element and its associ-
ated requirements and specifications as well as for the
overall simulation conceptual model and its require-
ments and specifications.

A long-term goal of the simulation community
should be increased familiarity and competence with
set theory, propositional logic, predicate logic, etc.
These are the foundation for formal development en-
vironments such as those employed with languages like
the Vienna Development Method (VDM) from IBM
Laboratories in Vienna or Z developed at Oxford Uni-
versity. Increased familiarity with these topics would
encourage the use of more formal and precise methods
for simulation requirements and specifications, as well
as for the conceptual model which connects them and
the simulation elements within the conceptual model.
The more that such formal approaches can be used, the
greater the utility of various “automatic” verification
tools, so that the scarce resource of knowledgeable,
competent personnel can be focused more on valida-
tion issues to ensure that the simulation not only works
properly but that it is really working as intended. This
has been a major motivation in NASA’s emphasis on
the value and utility of formal methods.”®

The movement toward greater use of more formal
constructs in requirements and specifications is not
unique to simulation development, but is a general
trend as software engineering matures.”’ This progres-
sion is essential to allow more use of automation in
the verification and validation of software and sim-
ulation, especially during design and early stages of
development.®

CONCEPTUAL MODEL
DECOMPOSITION

12!

Booch et al.’” identify four basic principles of

modeling:
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1. The choice of models has a profound influence on
how a problem is attacked and how a solution is
shaped.

2. Every model may be expressed at different levels of

precision.

. The best models are connected to reality.

4. No single model is sufficient.

|S¥)

These principles suggest that modeling is essentially
an art that has not yet matured into a scientific method.
This is especially true for simulation conceptual model
development. However, it does not prevent the appli-
cation of rational processes to conceptual model devel-
opment. We address this rational process in terms of
conceptual model decomposition and conceptual mod-
el abstraction.

Conceptual model decomposition determines the
simulation elements contained in the conceptual mod-
el. This determines the scope of representation in the
simulation and the discernible levels of the simulation.
The following rationale can guide the selection of sim-
ulation elements for inclusion. These six items can
serve as a checklist (Fig. 3) in conceptual model decom-
position while the model is being developed. Using this
rationale will help to ensure that a conceptual model
is complete and coherent.

1. There should be a specific simulation element for every
item (parameter, attribute, entity, process, etc.) speci-
fied for representation by the simulation requirements.
This rationale reemphasizes the importance of appro-
priate requirements for the simulation. Since a primary
function of the conceptual model is to facilitate the
transformation of requirements intospecifications, there
must be a total tracking of items in the requirements to
the conceptual model. This item sets a minimum level
of detail in simulation decomposition.

Item exists in
“standard”
Item is specified in paradigms
requirements l

N

Item is required
by computation

/

N

Item exists in the
“real world”

7

ltem is of potential
assessment interest

\

Extrapgieous
jte

7 N

Figure 3. Checklist: rationale for simulation conceptual model
decomposition.

SIMULATION CONCEPTUAL MODEL DEVELOPMENT

. There should be a specific simulation element for

every item (parameter, attribute, entity, task, state,
etc.) of potential assessment interest related to the
purpose of the simulation. This stresses the impor-
tance of understanding the potential use of the simu-
lation so that all measures of performance, measures of
effectiveness, and measures of merit that might be
associated with the use of the simulation are fully
understood in order that the conceptual model may
fully accommodate them. This rationale normally has
implications for the simulation space aspects of the
simulation (especially in regard to data collection and
display capabilities) as well as for the representational
aspects of the mission space.

. As far as possible, there should be “real world” coun-

terparts (objects, parameters for which data exist or
could exist, etc.) for every simulation element. The
potential impact of data and metadata structures on
simulation elements and on the overall simulation
conceptual model should not be underestimated.
Credibility for simulations with realistic representa-
tions is always enhanced when there is easy corre-
spondence between its elements and the real world so
that direct comparisons can be made more readily.

. Wherever possible, the simulation elements should

correspond to standard and widely accepted decompo-
sition paradigms to facilitate acceptance of the con-
ceptual model and effective interaction (including
reuse of algorithms and other simulation components)
with other simulation endeavors. In most disciplines,
standard paradigms exist for how an entity or process
is described, measured, and evaluated. The clarity and
credibility of a simulation conceptual model are en-
hanced when such standard paradigms are employed.

. Simulation elements required for computational con-

siderations (e.g., an approximation used as a surrogate
for a more desirable parameter which is not
computationally viable) that fail to meet any of the
previously stated items should be used only when
absolutely essential. Many computationally intensive
problems require the use of approximations or less
than the most rigorous mathematical expressions.
Such should be used only when necessary, and a clear
statement of the reason for use should be included as
part of the conceptual model.

. There should be no extraneous simulation elements.

Elements not directly related to specific items in the
simulation requirements, not implied directly by
potential assessment issues, and without a specific
counterpart in the real world or in standard decom-
position paradigms should not be included in the
simulation conceptual model. Every extraneous ele-
ment is a source of potential simulation problems.
Eliminating extraneous items removes unnecessary
potential sources of errors and follows the principle
of parsimony encapsulated in Ockham’s Razor.
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General guidance about the construction of an
HLA federation is available’’; however, the rationale
for how to decompose an HLA federation (or other
distributed simulation) into federates (component sim-
ulations) is embryonic. Pollack and Baker®® developed
HLA-specific software metrics for use in determining
the appropriate level of decomposition in a specific
HLA application. The metrics provided a quantitative
measure for achieving a balanced federation in the
effort to optimize the sometimes competing goals of
utility and efficiency. Applying these metrics to a spe-
cific legacy simulation and a baseline federation object
model identified the need for further decomposition to
effectively support the intended application. As others
perform similar assessments, it is likely that a set of
metrics having general utility will emerge and become
accepted by the community. Until these metrics are
developed, those designing a distributed simulation
will have to consider the availability of compatible
simulation components as well as computational and
bandwidth factors in determining how to best decom-
pose the distributed simulation (HLA federation) for
the intended application.

REPRESENTATIONAL ABSTRACTION

The identification of simulation elements in con-
ceptual model decomposition determines the scope of
subject representation and the discernible levels possi-
ble in the mission space. How the characteristics of the
simulation elements are abstracted determines the ac-
curacy and precision of the representation. Because no
single model is sufficient, the Unified Modeling Lan-
guage (UML) that Booch et al.’! developed has nine
kinds of diagrams (class, object, use case, sequence,
collaboration, statechart, activity, component, and
deployment) to fully express the five most useful views
(use case, design, process, implementation, and deploy-
ment) comprising the architecture of a software-inten-
sive system. Similarly, representational abstraction for
simulation elements is likely to need a multifaceted
descriptive approach.

Simulation fidelity is a complex function of the
scope and discernible levels of the simulation as well
as accuracy, precision, and other parameter quality
characteristics. During recent years, substantial atten-
tion has been paid to describing simulation fidelity,
with progress being made toward standardizing conno-
tations for fidelity-related terms and an awareness of
issues associated with simulation fidelity.** Widely ac-
cepted principles for determining required levels of
fidelity and abstraction and approaches that will pro-
duce them have not yet evolved.

The failure to fully account for uncertainties and
errors that may exist in the data used as the basis for
models, algorithms, entity characteristics and behaviors,

processes, and other aspects of a simulation is a com-
mon problem in simulation verification and valida-
tion.”” This issue is closely associated with the subject
of simulation fidelity and an important consideration
in representational abstraction.

Knowledge engineering provides abstraction princi-
ples that can be helpful in developing a simulation
conceptual model. Theoretical approaches to knowl-
edge engineering typically break it into three phases:
knowledge acquisition, knowledge elicitation, and
knowledge representation. Such theoretical approaches
usually identify three knowledge structures: declarative
knowledge (why things work the way they do), proce-
dural knowledge (how to perform a task), and strategic
knowledge (the basis for problem solving). Typically
different acquisition, elicitation, and representation
techniques are used for each kind of knowledge. Un-
fortunately, these theoretical approaches do not yet
allow abstraction to be performed as a scientific meth-
od; thus, abstraction remains an art.*® It takes only a
casual review of recent articles in such publications as
the Jowrnal of Data and Knowledge Engineering®’ to reveal
that contemporary researchers in this arena often de-
velop a “new” descriptive language (or dialect of a
language) or formalism for the problem at hand because
current techniques do not yet have broad, general
application capabilities.

In order to develop a conceptual model which is
clear, complete, consistent, and correct, the rationale
presented earlier for simulation conceptual model de-
composition should be used, and quality criteria from
Teeuw and van den Berg!! should be employed to judge
abstractions. Again, these criteria are completeness,
propriety (pertinence), clarity, consistency, orthogonal-
ity (modularity, the independence of aspects of the
subject represented), and generality (as implementa-
tion independent as feasible).

As one develops a simulation conceptual model and
evaluates it by these criteria, it is important to docu-
ment how one assesses the model, and then to note why
it changes in response to the evaluation and how cri-
teria for a quality conceptual model are met more fully.
Otherwise, the rationale for some changes (and their
benefits) may be lost as time passes, and lessons learned
from the conceptual model development will not be so
readily available for use in subsequent developments.

It has been recommended that simulation concep-
tual model documentation employ the scientific paper
approach, even if also employing the design accommo-
dation approach by using an implementation-oriented
descriptive format such as UML.2 Nine items (listed
below) are suggested for the description of a portion of
the conceptual model (such as a simulation element)
or the entire conceptual model in the scientific paper
approach to documenting a simulation conceptual
model:
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. Conceptual model portion identification

. Principal simulation developer point(s) of contact for
the conceptual model (or part of it)

. Requirements and purpose

. Overview

. General assumptions

. Identification of possible states, tasks, actions, behav-
iors, relationships and interactions, events, and pa-
rameters and factors for entities and processes
being described

. Identification of algorithms

. Simulation development plans

9. Summary and synopsis

[3)
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This list is functionally equivalent to the 10 items
in the generic content guidelines from IEEE/EIA Indus-
try Implementation of International Standard ISO/IEC:
ISO/IEC12207 Standard for Information Technology Soft-
ware Life Cycle Processes for describing a planned or
actual function, design, performance, or process, i.e.,
date of issue and status, scope, issuing organization,
references, context, notation for description, body,
summary, glossary, and change history.*

CONCLUSIONS

This article discussed the tenebrous topic of how to
represent knowledge so that simulation requirements
and specifications, as well as the simulation conceptual
model connecting them, can be described completely,
correctly, consistently, and clearly. When this occurs,
the likelihood that the simulation will function as
desired is enhanced. There are many horror stories from
simulation developments that have no explicit concep-
tual model, a poorly (or only partially) developed con-
ceptual model, or incomplete documentation of the
simulation conceptual model. Simulation developers
and users can avoid problems caused by inadequate
conceptual models by following the suggestions pre-
sented here.

As indicated, much remains to be done before sim-
ulation conceptual models can be routinely developed
with the rigor, precision, and formalism needed to sig-
nificantly increase their correctness. The obstinate
complexity of the logical, philosophical, and computa-
tional foundations of knowledge representation is not
as widely appreciated as it should be.”® Consequently,
one must be pragmatic in developing a simulation
conceptual model. One must accommodate the capa-
bilities (and limitations) of those responsible for sim-
ulation requirements and those who will implement the
simulation. Comprehensive, clear, correct, and consis-
tent descriptions of requirements, specifications, and
the conceptual model that can be understood by all are
far more important than adherence to a doctrinaire
emphasis on a particular methodology or formalism. Yet

SIMULATION CONCEPTUAL MODEL DEVELOPMENT

at the same time, it would be prudent for most involved
in simulation development and use to move toward
an increased application of formal methods to expand
mathematically precise descriptions in simulation re-
quirements, specifications, and conceptual models as
far as circumstances will permit. This is a thrust which
NASA has used effectively.?®*’

Suggestions presented in this article will help the
simulation community move toward more effective
methods in developing simulation conceptual models,
even though these suggestions are more general and
limited than many, including myself, would prefer.
Sources identified may help the reader to a broadened
appreciation of the various aspects of conceptual model
development. [ have observed that few in the simula-
tion community have very broad awareness of the
available literature, especially in the arenas of simula-
tion conceptual model development and related topics
such as simulation fidelity and VV&A. This lack of
awareness can prevent the use of best contemporary
practices in simulation development, evaluation, and
application.

The ideas presented in this article are applicable to
acquisition, analysis, and training simulation applica-
tion domains for both unitary and distributed simula-
tions in the defense community as well as to scientific,
technical, economic, social, educational, gaming, etc.,
simulations, whether unitary or distributed, in non-
defense communities. There is much room for improve-
ment in the development and descriptive methods for
requirements, specifications, and conceptual models of
simulations in all of these arenas.
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