
H. MALCOM AND H. K. UTTERBACK
S

Flight Software in the Space Department: A Look at the
Past and a View Toward the Future

Horace Malcom and Harry K. Utterback

ince the first use of general-purpose reprogrammable computers onboard the early
Transit Improvement Program satellites, flight software developed within the APL
Space Department has undergone an evolutionary process, from a collection of
relatively simple control modules on single-processor custom-designed computers to
systems that contain many megabytes of memory and numerous interconnected high-
performance processors. At least one such system included over 50 loosely coupled
processors. Today’s flight software systems can be scripted to perform sophisticated
closed-loop tracking and navigation, autonomous attitude control, and onboard
processing of science data, and can greatly reduce the burden on ground operations in
monitoring and exercising control over the spacecraft. In this article, we describe the
nature of flight software, highlight some of the major changes that have occurred in
the functions performed by the software, and examine changes in the way the software
is specified, developed, and tested by the Space Department. (Keywords: Embedded
systems, Flight software, Real-time systems, Satellites.)
INTRODUCTION
“Flight software” is the system of programs that

reside in the memory of onboard spacecraft computers.
These computer systems are also called embedded sys-
tems because they serve as the control mechanism for
a larger system such as a spacecraft command or telem-
etry system. Before the Triad satellite, which was built
by APL and launched in late 1972 as the first of the
Transit Improvement Program (TIP) satellites, the
command, telemetry, and other onboard subsystems
were controlled by hard-wired logic circuits that re-
sponded to signals transmitted (uplinked) from the
522 JO
ground. Telemetry systems used voltage-controlled os-
cillators to modulate transmitters in sending house-
keeping and other data to the ground (downlinking).
Since then, not only have the command and telemetry
systems come to depend on programmable computers
and flight software, but so has almost every other sub-
system onboard a typical satellite, including the atti-
tude and guidance control systems, the power manage-
ment systems, and most science instrument systems.

With the launch of Triad, APL was among the
first, if not the first, to use onboard general-purpose
HNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1999)

FLIGHT SOFTWARE: PAST AND FUTURE
reprogrammable computers and uploadable flight soft-
ware systems.1 The Triad computer was based on a
custom-designed and custom-built 16-bit processor. No
suitable commercial processor was available. The Intel
4004 was not introduced until 1971 and was only a 4-
bit processor. After the release of the Intel 8080 8-bit
microprocessor in 1974, the Laboratory became one of
the pioneers in the use of commercial microprocessors
by incorporating an 8080 into the Seasat-A altimeter
launched in 1978.

By today’s standards, APL’s early satellite computer
systems would be considered primitive. However, the
basic functions that they performed can still be found
in the systems currently being designed and built by the
Laboratory. These functions include executing up-
linked and stored commands; monitoring, recording,
and downlinking telemetry data; controlling sensors
and managing power; and determining and controlling
attitude. Where the current systems differ from the
earlier ones is in their higher level of complexity, great-
er degree of autonomy, and greater number and variety
of subsystems and experiments that must be controlled.
Today’s systems rely more on the ability to upload
software to extend their capability and to correct for
errors that may not be detected until after launch. The
early systems, with their relatively low-power 8- and 16-
bit processors, had limited memory capacities compared
with current systems based on 32-bit processors. These
newer processors employ pipelining, multimegabyte
memories, and instruction and data caches and are
frequently configured in multiprocessor arrangements.

Rather than attempting to chronicle the develop-
ment of every flight software system used on APL
spacecraft and instruments, we highlight in this article
events in the evolution of flight software in the Space
Department, beginning in the late 1960s and early
1970s and extending to the present.

THE NATURE OF FLIGHT SOFTWARE
Flight software is an example of a real-time embed-

ded system in which the operational code resides ini-
tially in some form of nonvolatile read-only memory
(ROM) such as electrically erasable programmable
ROM (EEPROM). Such systems are self-starting be-
cause at power up, a ROM-resident boot program is
automatically initiated, which in turn performs a series
of self-tests on the processor and memory. If these tests
reveal no abnormalities, then the boot program typi-
cally copies the operational code into read/write ran-
dom access memory (RAM) and starts the execution
of the operational code. Any errors detected as a result
of the tests performed by the boot program are normally
reported in the output telemetry stream and result in
the performance of contingency actions. These contin-
gencies may simply correspond to the boot program
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1
waiting for commands to specify the proper action to
take in responding to the problem, or they may involve
switching control to a redundant backup system.

By its very nature, flight software must respond in
real time to events that usually occur asynchronously
so that it can affect the progress of the processes under
its control. This real-time response is achieved through
the use of hardware-generated interrupts. These inter-
rupt signals indicate, for example, the arrival of new
commands, the expiration of timers, the extraction of
telemetry data, the production of sensor data, the ex-
istence of error conditions, etc.

Most of our early software systems used a “fore-
ground/background” design in which the main process-
ing (e.g., formatting science and telemetry data, exe-
cuting commands) was performed in a continuous
background-polling loop. Within this loop, various
flags were tested to detect the arrival of new commands
or new data, which were then processed before the loop
was repeated. The flags associated with the arrival of
commands through the command interface or the data
acquired from an experiment or sensor were set by
software, “running in the foreground,” in response to
hardware interrupts triggered to signal such events. The
interrupts would temporarily suspend the execution of
the background loop and cause control to be transferred
to an interrupt service routine, which was said to run
in the foreground. There were almost always multiple
competing interrupt sources that were handled on a
priority basis. The timely response to such interrupts
was critical in providing a software system that would
behave in a deterministic fashion.

Custom-designed executive or kernel programs had
to be written for these early systems since, as noted
earlier, no suitable commercial operating systems were
available. The need for such custom systems was espe-
cially true for the APL-designed processors on satellites
such as the TIP/Nova series, as well as for the commer-
cial processors (e.g., Intel 8080, 8085, and 8086; RCA-
1802; etc.) used in the late 1970s and early 1980s.
These systems tended to have memories with storage
capacities from just a few kilobytes to at most tens of
kilobytes and ran at speeds of around 1 MHz. Some of
the flight processors used to control experiment sub-
systems had extremely limited memory (e.g., 4 KB of
ROM and 2 KB of RAM for the Energetic Particles
Detector [EPD] onboard the Galileo spacecraft).

Beginning in the 1980s, APL initiated a multitask-
ing approach in the design of many flight software
systems. With this approach, the software is organized
as a system of units (called tasks or processes), each
implementing some different functionality (telemetry
formatting, science data acquisition, command process-
ing, etc.), and each executing as a separate thread of
control. Each task or process can communicate with
other tasks through services (e.g., message queues,
999) 523

H. MALCOM AND H. K. UTTERBACK
mailboxes, semaphores, event flags, etc.) provided by
an operating system. This approach greatly simplifies
the design of the software system; it relies on the op-
erating system to resolve contention for resources and
to handle the details involved in task scheduling and
intertask communications. A good example of this
scheme is the one used for the Tracking Processor
System (TPS) on the Midcourse Space Experiment
(MSX) spacecraft, which contained 18 separate tasks
written in the Ada programming language.

An important factor in flight software design is the
nature of the environment in which it must operate.
Very early on, it was understood that the behavior of
solid-state circuits was affected by exposure to the types
of radiation common in space (see the article by Ebert
and Hoffman, this issue). The consequences for flight
software include the possible alteration of instructions
in memory due to single-event upsets and double-bit
errors. To cope with such problems, the hardware nor-
mally includes error-detecting and error-correcting cir-
cuitry and watchdog timers (clock counters that must
be periodically reset by the software to avoid a processor
restart when the timer counts down to zero). Error
detection and correction (EDAC) circuitry can correct
single-bit errors in memory and detect double-bit
memory errors. The flight software must perform
“scrubbing” by continually cycling through memory,
reading the contents of each location, and rewriting the
data at those locations found by the EDAC circuitry
to contain a single-bit error. This procedure corrects
single-bit errors before a second error can occur in the
same location.

Some of the Space Department’s early satellites
employed magnetic core memories that offered some
degree of immunity to radiation and allowed for repro-
gramming. However, to achieve a higher level of radi-
ation hardness, many other early flight systems used
masked ROMs or programmable ROM (PROMs),
which could not be changed after the flight software
(i.e., firmware) was deposited into them. These ROMs
often required that the flight code be completed and
fully tested much earlier than would be necessary if
some form of memory whose contents could be erased
and rewritten had been used. The flight code had to be
deposited into masked ROM during the manufacturing
process, which, for these systems that relied on this
technique, could require as long as a 6-month turn-
around time. Such long turnarounds contributed to
tight schedules for developers.

For example, as noted earlier, the EPD instrument
on Galileo resided in a 4-KB masked ROM and thus
could not be changed. This problem was overcome by
using a technique based on a series of “patch hooks” in
which the ROM-resident code would jump, at strategic
points, to locations in RAM. These locations would
normally contain an instruction that immediately
524 J
returned to the proper location in ROM to continue
execution. However, by using the Spacecraft Command
System, instruction sequences could be loaded at the
patch-hook locations within RAM, which would per-
form some new functionality before returning and re-
suming execution of the code in ROM.

Good software design tools and techniques

can increase the likelihood that changes made

in one part of a system will not have a ripple

effect on other parts.

The wisdom in deciding to use uploadable systems
was amply demonstrated with TIP II and III. Having
a reprogrammable computer onboard these satellites
provided the power and flexibility to work around early
deployment problems while still achieving many of the
mission’s goals.2 The adaptability and flexibility of
uploadable software have been proven time and again
over the years on a number of subsystems and spacecraft
built by APL. It was through a patch-hook scheme that
the EPD System on Galileo was able to salvage the
primary science objectives despite the greatly reduced
downlink data rate that resulted from the failure of the
spacecraft’s main antenna to fully deploy. 3 More recent
examples include the Near Earth Asteroid Rendezvous
(NEAR) spacecraft for which reprogramming allowed
the elimination of cross talk between the X-Ray and
Gamma-Ray Spectrometers (XGRS). No matter how
extensively and exhaustively the flight hardware and
software systems are tested, cases almost always exist in
which flaws, however minor, go undetected until the
spacecraft integration phase or even after launch. In
such cases, the usual remedy is to modify the flight
software to correct or compensate for the problem.

Unlike ground-based computer systems, early flight
software systems did not have access to large-capacity
online disk storage units. Instead, output data products
were placed into a downlink telemetry stream or stored
temporarily in a nonvolatile memory. The TIP systems
used a ROM-resident 64-word bootstrap loader pro-
gram, which in turn read in a more powerful loader
transmitted from the ground.1 These systems also used
a 32-KB magnetic core memory to accommodate the
application software and to serve as temporary storage
for output data. Later spacecraft used magnetic tape
recorders ranging in capacity from 5 megabits to 54
gigabits. More recent spacecraft used dynamic RAM
(DRAM) chips to implement solid-state recorders,
as first used on NEAR4 and also on the Advanced
OHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1999)

Composition Explorer (ACE) and Thermosphere-
Ionosphere-Mesosphere Energetics and Dynamics
(TIMED) spacecraft. The solid-state recorder devices
contained in these higher-performing systems pro-
vide multiple-gigabit storage capacities but, as dem-
onstrated on NEAR, may cause a loss of data when
they are shut down owing to power emergencies.

Increased Complexity
Although many of the functions performed by the

subsystems onboard today’s spacecraft can be found in
very early versions, their scope and level of complexity
have increased significantly. The Triad Command
System could handle 70 commands, and the onboard
computer could be programmed to cause the execution
of stored commands at prescribed times or in response
to specified conditions within the recorded data.5

Current systems comprise multiple subsystems and in-
struments, each containing one or more computers and
each with its own discrete set of real-time and delayed
commands which, taken together, can number into the
hundreds.

Along with the escalating level of complexity in the
functions provided by command and data handling
(C&DH) systems, and by the attitude control and
onboard experiments, has come a commensurate in-
crease in the scope and complexity of the software
required to manage and support those functions. There
is also a much greater reliance on software to accom-
plish these more ambitious missions for which long
communication time delays and extended periods of
noncontact with ground control stations make com-
manding and monitoring operations by ground-based
operators less feasible. In addition to the basic functions
typically performed, the newer flight software systems
allow for onboard image processing, more sophisticated
data compression techniques, closed-loop tracking and
navigation, and onboard data editing through prepro-
cessing of science data.

One technique for achieving a higher level of auton-
omy is illustrated by the Far Ultraviolet Spectroscopic
Explorer (FUSE) Instrument Data System (IDS),
which uses an onboard scripting language (SCL) to
provide more flexible control and to specify command
sequences in response to various conditions. The At-
titude Control System (ACS) as well as the C&DH
Systems on MSX and NEAR contain autonomy rules
designed to handle potential hardware or software
faults. These systems can detect such problems and
respond by achieving a “safe” spacecraft state.

With the increasing scale and scope of spacecraft
missions, and with each subsystem and science instru-
ment usually requiring its own set of flight software, the
timely completion of such projects can only be ensured
through concurrent development by separate teams.
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1
FLIGHT SOFTWARE: PAST AND FUTURE

Until recently, these teams tended to work indepen-
dently but required a clear, complete, and precise
specification of the interfaces between subsystems. On
missions such as NEAR, with a compressed develop-
ment schedule, greater efforts were made to share soft-
ware designs and components among teams to cut costs
and meet the schedule. For example, a common boot
program was developed and used for several instrument
systems on NEAR. This program also served as a model
for the Ultra Low Energy Isotope Spectrometer (UL-
EIS) instrument on the ACE spacecraft. The same
concept was carried over to the TIMED Project, in
which the C&DH System, the Guidance and Control
Computer, and the GPS (Global Positioning System)
Navigation System all share a common boot program
module.

The Processors
The typical spacecraft computer lags several gener-

ations behind current commercial products, mainly
because of the need to limit power consumption and
the need for radiation hardness for the onboard central
processing units (CPUs) and memories. Achieving ra-
diation hardness is an expensive and time-consuming
process. The market for radiation-hardened processor
systems is relatively small when compared with the
market for commercial computer systems and thus
provides less incentive for commercial companies to
develop them. Consequently, the computational power
and speed of these onboard systems usually cannot
compare to the power of a fairly inexpensive desktop
computer. In many cases, these less powerful processors
limit the types of functions that can be easily performed
by flight software. As mentioned earlier, the unavail-
ability of low-power radiation-hard computers resulted
in the custom design by APL of the computers used on
the Triad, TIP, and Nova satellites.

With the advent of microprocessors in the early
1970s, the Space Department began evaluating these
new devices for use in onboard computers. The Intel
8080 microprocessor, introduced in 1974, was used as
the basis for the Seasat Radar Altimeter’s Controller/
Tracker.6 The launch of that altimeter in 1978 marked
the first use of a commercial microprocessor in space.
In 1979, Magsat, built by APL, was launched with the
first command and attitude systems to use a micropro-
cessor7—the radiation-hardened RCA-1802 that ap-
plied low-power CMOS technology. Both the Intel
8080 and RCA-1802 were 8-bit processors with clock
rates of about 1 MHz. By the time these systems were
launched, more powerful systems (e.g., Intel 8085 and
8086) had been commercially released but were not yet
available in radiation-hardened form.

Because of its relatively high immunity to radiation
and low power consumption, the RCA-1802 became
999) 525

H. MALCOM AND H. K. UTTERBACK
the processor of choice for instrument control systems
and command and telemetry systems for a number of
years. In addition to being used for Magsat, it was
exploited for the Ion Composition Telescope (ICT)
provided by APL for the Firewheel satellite, the Lab-
oratory’s EPD instrument on Galileo, the Medium
Energy Particle Analyzer (MEPA) instrument and com-
mand and telemetry systems on the Charge Composi-
tion Explorer Active Magnetospheric Particle Tracer
(CCE/AMPTE) Project, Geosat, the Ulysses Hi-Scale
instrument, Hilat, and systems as recent as the Elec-
tron, Proton and Alpha Monitor (EPAM) Experiment
on ACE.

In addition to the RCA-1802 and Intel 8080, other
8-bit processors such as the Intel 8085 were used for
several flight systems. The U1 instrument on Delta 181
and the U2 on Delta 183 were both controlled by data
processing units (DPUs) based on 8085s, as was the
Geosat-A Altimeter launched in 1985.

As the demand for processing power increased, 16-
bit processors (Intel 8086, Military Standard 1750A,
RTX2000, RTX2010, etc.) came into use. The 8086s
were used as target tracking processors onboard the
Delta 181 (Thrusted Vector) and Delta 183 (Delta
Star) spacecraft, as well as for the Topex Altimeter and
the Star Tracker (START) System. The MSX space-
craft used five 1750As to implement the target track-
ing, attitude determination and control, data handling,
and image processing functions for the Ultraviolet and
Visible Imagers (UVISI) suite of instruments. The
UVISI Image Processing System used a 1750A in con-
junction with a digital signal processor (the ADPS-
2100) in a simple processor pipeline arrangement.
Other systems that incorporated digital signal proces-
sors included the special-purpose, inexpensive Satellite
Radar Altimeter, which used the ADPS-2100 together
with an 80C86RH processor.

The first 32-bit processor to be used was the FRISC
(Forth Reduced Instruction Set Computer) chip, de-
signed and built by APL,8 and later licensed to a com-
mercial vendor which marketed it under the name
SC32. This processor was used in the ground support
equipment for the Topex Altimeter and for the first
time in space to control the Magnetic Field Experiment
(MFE) flown on the Swedish Freja satellite. Since then,
other instruments and spacecraft have also been based
on 32-bit processors, including the IDS based on a
Motorola 68020 processor onboard FUSE, and more
recently the Mongoose V processor based on the 32-
bit million instructions per second (MIPS) R3000,
which was used by the C&DH System, Guidance and
Control Computer, and dual-processor GPS Navigator/
Tracker System on TIMED.

Tables 1 and 2, respectively, illustrate the variety of
processors used on APL spacecraft and instrument sys-
tems. They are meant to show the relative magnitudes
526 JOH
of the flight software systems based on memory usage
and lines of code. Although not every spacecraft or
instrument is listed, the tables provide a representative
sample. The code size entries in some cases are approx-
imate, and for some of the systems implemented in the
Forth language, the number of Forth “words” (similar
to small subroutines or procedures in other program-
ming languages) is given. Figure 1 compares the pro-
cessing power of CPUs onboard some of the APL space-
craft to illustrate the progression in their processing
power and to contrast the capabilities of current and
older system. The fact that a single instruction on the
16- and 32-bit machines usually accomplishes more
than a single instruction on an 8-bit processor must be
taken into account when considering the MIPS ratings
listed in the tables.

The Development Environment
Again, owing to the limited memory resources and

relatively low performance provided by the available
processors, coupled with ever-increasing demands
made on the flight software, programming of these
systems tended (especially early on) to rely on assembly
language to maximize run-time efficiency. However,
this level of programming is inclined to be more tedious
and error-prone than it is with higher-level languages
such as C or Ada. In addition, there were few, if any,
choices in development tools such as language trans-
lators, linker/loads, debuggers, etc., for these early sys-
tems.

Custom-designed processors required in-house de-
velopment of the supporting programming tools. The
processor used for Triad and the TIP satellites, for in-
stance, required a custom-designed assembly language.

TIMED
(Mongoose V)

FUSE
(Motorola 68020)

NEAR and ACE
(RTX2010)

MSX
(MIL-STD 1750A)

Delta 181
(80C86RH)

AMPTE
(RCA1802)

Magsat
(RCA1802)

Seasat
(Intel 8080)

Triad
(custom CPU)

TIP
(custom CPU)

12.8

6.4

3.2

1.6

0.8

0.4

0.2

1970 1980 1990 2000
Year

M
ill

io
ns

 o
f i

ns
tr

uc
tio

ns
 p

er
 s

ec
on

d

Figure 1. Relative processing power of flight processors. Electri-
cal power limitations and the need for radiation hardness make
it difficult to obtain and use the latest processors. However,
a definite trend is evident toward more computationally powerful
processors over the years.
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1999)

FLIGHT SOFTWARE: PAST AND FUTURE
Table 1. Flight software on APL spacecraft.

Speed Memory Language/code
Project Launch Processor (MIPS) capacity (lines)

Triad 1972 Custom-built 16-bit 0.25 max., 4K � 16 core, ARTIC and assembly/
computer 0.005 avg. 64 words of ROM 5630 diagnostic

TIP II 1975 Custom-built 16-bit 0.25 max., 32-KB core, Assembly/5700
computer 0.005 avg. 64 words of ROM

TIP III 1976 Custom-built 16-bit 0.25 max., 32-KB core, Assembly/5750
computer 0.005 avg. 64 words of ROM

Magsat Telecommunica-
tions System 1979 RCA-1802 0.5 4 KB ROM, 1 KB RAM Assembly/2800

Magsat ACS 1979 RCA-1802, 8-bit CPU 0.5 4 KB ROM, 1 KB RAM Forth/1890

Hilat Magnetometer 1983 RCA-1802, 8-bit CPU 0.5 4 KB ROM, 2 KB RAM Forth/432

CCE/AMPTE Command
System 1984 RCA-1802, 8-bit CPU 0.5 4 KB ROM, 2 KB RAM Assembly/3200

CCE/AMPTE
Telemetry System 1984 RCA-1802, 8-bit CPU 0.5 4 KB ROM, 2 KB RAM Assembly/3879

Geosat-A Command System 1985 RCA-1802, 8-bit CPU 0.5 4 KB ROM, 1 KB RAM Assembly/1157

Polar BEAR Magnetometer 1986 RCA-1802, 8-bit CPU 0.5 4 KB ROM, 2 KB RAM Forth/432

Delta 180 1986 Intel 8086A, 8087, Pascal/8212,
8089 0.5 192 KB RAM assembly/5020

Delta 181 1988 80C86RH, Southwest 0.5 192 KB RAM Pascal/8609,
Research SC-1 assembly/4818

Delta 183 1989 80C86RH, Southwest 0.5 192 KB RAM Pascal/8310,
Research SC-1 assembly/8708

MSX C&DH 1996 MIL-STD 1750A 2 512 KB RAM Ada/6188,
16-bit CPU assembly/2929

MSX C&DH DH and
Serial I/O Controller 1996 Intel 8085 (2) 0.1 2 KB PROM Assembly/6200

MSX TPS 1996 MIL-STD 1750A, 2 2 KB PROM, 256 EEPROM, Ada/11689,
16-bit CPU 512 KB RAM assembly/10760

MSX AFC 1996 MIL-STD 1750A, 2 2 KB PROM, Ada/39642,
16-bit CPU 256 EEPROM, 512 KB RAM assembly/16157

MSX UVISI 1996 MIL-STD 1750A, 2 2 KB PROM, 256 K EEPROM, Ada/3357,
Image Processor ADSP-2100 512 KB RAM, assembly/7946

364 KB RAM for ADSP Assembly/5120 ADSP

MSX UVISI Serial I/O 1996 Intel 8085 0.25 2 KB PROM C/8963, assembly/11283

MSX Beacon Receiver 1996 80C86RH, 0.5 8 K � 24 bit EEPROM, C/3182, assembly/878
ADSP-2100 (3) 16 KB RAM

NEAR C&DH 1996 RTX2010 3 64 KB Forth/13500

NEAR AIU 1996 RTX2010 6 128 KB C and Forth/1300

NEAR Flight Computer 1996 MIL-STD 1750A 1.7 512 KB Ada and assembly/18000

ACE C&DH 1997 RTX2010 3 64 KB Forth/13500

FUSE 1999 Motorola 68020 14 128 KB PROM, 1 MB EPROM, C/41000, assembler/1200,
1 MB RAM, 48 MB bulk RAM SCL/20000

TIMED GPS Navigation 2000 Mongoose V 12 2 MB SRAM, 4 MB flash C/31000, assembler/1960
Processor 16 KB DPRAM

TIMED GPS Tracking
Processor 2000 Mongoose V 12 2 MB SRAM, 8 KB DPRAM C/22599, assembler/600

TIMED C&DH 2000 Mongoose V 12 2 MB SRAM, 4 MB flash, C/25000, assembler/1200
16 KB DPRAM

TIMED AFC 2000 Mongoose V 12 2 MB SRAM, 4 MB flash, C/30000, assembler/1200
16 KB DPRAM

TIMED AIU 2000 RTX2010 3 128 KB RAM C/17000, assembler/6000

Note: AFC = Attitude Flight Computer, AIU = Attitude Interface Unit, DPRAM = Dual-Port RAM, SRAM = Static RAM; all other
acronyms can be found in the text.
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1999) 527

H. MALCOM AND H. K. UTTERBACK
Table 2. Flight software systems for APL science instruments.

Speed Memory Language/
Instrument Spacecraft Launch Processor (MIPS) capacity code (lines)

RadarAltimeter Seasat-A 1978 Intel 8080 0.2 4 KB ROM, 2 KB RAM Assembly/2100

ICT Firewheel 1979 RCA-1802 0.5 4 KB ROM, 2 KB RAM Assembly/3560

EPD Galileo 1981 RCA-1802 0.5 4 KB ROM, 2 KB RAM Assembly/4870

MEPA CCE/AMPTE 1984 RCA-1802 0.5 6 KB ROM, 2 KB RAM Assembly/3680

START Spartan 1985 80C86RH 0.5 64K ROM, 512 KB RAM Pascal/5680,
assembly/1210

U2 Delta 181 1988 Intel 8085 0.25 16 KB PROM, 8 KB RAM C/3064,
assembly/480

Topex Altimeter Topex 1989 80C86RH 0.5 32 KB ROM, 32 KB RAM C/4714,
assembly/4139

Hi-scale Ulysses 1990 RCA-1802 1 6 KB ROM, 3 KB RAM Assembly/4080

HUT Astro-1 1990 and AMD-2900 0.5 2K PROM, 48K RAM, Forth/12000
1996 128K Image RAM

MFE Freja 1992 SC32 4 64K � 32 RAM, 64K � 32 Forth/4455
EEPROM, 8 KB PROM

SSUSI ECU DMSP Block 1994 RTX2000 6.25 32K � 16 RAM, 64K � 16 Forth/4374
5D-3 EEPROM, 4K � 16 PROM

SSUSI DPU DMSP Block 1994 RTX2000 6.25 24K � 16 RAM, Forth/732
5D-3 2K � 16 PROM

UVISI Instrument MSX 1996 8085 (2) 0.25 16 KB PROM, 8 KB RAM C/3631,

Control Unit assembly/5151

UVISI sensors MSX 1996 8085 (9) 0.25 16 KB PROM, 8 KB RAM C/8964,
assembly/11283

XRGS NEAR 1996 RTX2010 6 96K � 16 RAM, 32K � 16 Forth/9545
EEPROM, 4K � 16 PROM

Multispectral NEAR 1996 RTX2010 6 96K � 16 RAM, 32K � 16 Forth/5926
Imager EEPROM, 4K � 16 PROM

NIS/Magnetometer NEAR 1996 RTX2010 6 96K � 16 RAM, 32K � 16 Forth/3019
EEPROM, 4K � 16 PROM

NLR NEAR 1996 RTX2010 6 96K � 16 RAM, 32K � 16 Forth/2946
EEPROM, 4K � 16 PROM

MIMI CPU Cassini 1997 RTX2010 6 448K � 16 RAM, 64K � 16 Forth/14785
EEPROM, 4K � 16 PROM

MIMI EPU Cassini 1997 RTX2010 6 448K � 16 RAM, 64K � 16 Forth/13689
EEPROM, 4K � 16 PROM

ULEIS ACE 1997 RTX2010 6 96K � 16 RAM, 32K � 16 Forth/3762
EEPROM, 4K � 16 PROM

HENA Image 1999 RTX2010 6 640K � 16 RAM, 128K � 16 Forth/8892
EEPROM, 4K � 16 PROM

GUVI TIMED 2000 80C86RH 1 48 KB PROM, 256 KB C/10000
EEPROM, 320 KB RAM

GUVI TIMED 2000 RTX2010 6 16 KB PROM, 256 KB RAM Forth/1357

Note: Acronyms not defined in the text are as follows: DMSP, Defense Meteorological Satellite Program; ECU, Electronics Control Unit; EPU, Event
Processing Unit; GUVI, Global Ultraviolet Imager: HENA, High Energy Neutral Analyzer; MIMI, Magnetospheric Imaging Instrument; NIS, Near Infrared
Spectrometer; NLR, NEAR Laser Rangefinder; SSUSI, Special Sensor Ultraviolet Imager.
The result was a cross assembler, called ARTIC,5 which
was implemented on an IBM mainframe computer
(360/91) in the PL/1 programming language. Later, the
cross assembler was rewritten to execute on the Xerox
Sigma 3 computer in assembly language.
528 JOH
The cross assembler and loader used in developing
flight software for many of the systems based on
the RCA-1802 microprocessor were implemented in-
house and written in a language called APL (A Pro-
gramming Language). These tools ran on the IBM 3033
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1999)

FLIGHT SOFTWARE: PAST AND FUTURE
mainframe and generated files containing the execut-
able code image that could then be downloaded from
the host IBM computer over a communications link
into a PROM programmer device.

For years, this use of cross-development tools hosted
on a mainframe was the standard means of generating
flight code. Commercial development systems based on
the Digital Equipment Company’s PDP-11 were pur-
chased and used for the development of the Geosat and
CCE/AMPTE Command and Telemetry Systems. To-
day, systems still rely on cross-development tools, but
they are typically obtained from commercial vendors,
are much more powerful and convenient to use, and
usually run on workstations or desktop computers. In
many cases, the generated software can be downloaded
from a remote host over a network, with the target
system capable of being executed and debugged or
monitored remotely over the network. This approach
was followed in developing flight software for the MSX
spacecraft. Software modules written in Ada or assem-
bly language were translated by a cross compiler and
a cross assembler running on a VAX host computer to
produce object code to be downloaded into the 1750A
processor systems for the Attitude Control, Tracking
Processor, and UVISI Image Processor Systems.

Several of the systems on the NEAR spacecraft
relied on the Forth programming language, which
provides either an interpretive or compiled mode of
operation. The former allows the software to be run
interactively to facilitate the debugging process. Once
debugged, the source code can be compiled into an
executable image for loading into RAM or EEPROM.
Forth systems have been implemented for commercial
systems such as the RCA-1802, the RTX2000, and the
RTX2010, as well as for custom chips (FRISC and
SC32) designed at APL. Some of these systems directly
execute the high-level Forth language and have proven
to be particularly well-suited for use in space instru-
mentation on “lightsats,” i.e., small satellites with lim-
ited power and weight allocations.9 Despite the rela-
tively small size of these systems, they must perform
increasingly complex data processing functions under
real-time multitasking control.

The Seasat-A Radar Altimeter marked one of the
first projects to use an in-circuit emulator (ICE), in this
case for the 8080 microprocessor.6 Such devices allow
the operation of the processor to be simulated and mon-
itored from an attached host system based on a work-
station or PC. The development and checkout of the
embedded software can consequently proceed even if
the actual target processor is not yet available. The use
of such tools is especially important given that the
hardware and software are usually developed in parallel.

To observe the operation of the code after it has
been loaded into memory, a logic analyzer was often
used, when an ICE was not available, to provide a trace
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (
of execution and to monitor data and addresses placed
onto the system bus. Unfortunately, tools of this sort
often require dealing with the hexadecimal represen-
tation of the machine instructions and data. This
approach is even less appealing for the more recent and
powerful processors that use instruction pipelining and
cache memories for instructions and data. On these
systems, instructions fetched from cache do not appear
on the data bus and are thus not captured by the logic
analyzer. The Mongoose V processor, which is based on
a MIPS R3000 core, is an example of this type of
processor. The TIMED spacecraft uses four Mongoose
V processors.

Support for multitasking can be provided by either
a real-time executive or by facilities built into the
language. Both the Forth and Ada programming lan-
guages include such facilities. For languages without
them (e.g., C, Pascal, assembly) a real-time multitask-
ing operating system (RTOS) must be used. The first
commercial RTOSs on APL spacecraft were for the
flight systems onboard the Star Tracker (START)
Project and the Delta 181 and 183 Projects in 1985–
1989. These systems were implemented using a com-
bination of assembly language and Pascal modules, and
were designed as a collection of cooperating, concur-
rently executing tasks that used synchronization and
intertask communication services provided by the op-
erating system.

 Making any software system easier to develop, test,
and maintain requires a good set of tools. Bus analyzers,
visualization tools, and source-level debuggers can help
in diagnosing problems and in understanding the sys-
tem’s behavior. Good software design tools and tech-
niques can increase the likelihood that changes made in
one part of a system will not have a ripple effect on other
parts. Configuration management systems can help cap-
ture and record changes in the software and facilitate the
re-creation of previous versions of the software when
necessary. Flight software developers increasingly rely on
such tools to create robust, reliable code.

The Development Process
Although valiant efforts were made to employ struc-

tured and modularized designs for the early software
systems, the resulting systems were often difficult to
understand for anyone other than the original devel-
opers. This was due in large part to the complexity
of the systems, combined with the fact that assembly
language was often the only viable choice for
implementation. Thus, these systems were difficult to
maintain or extend and usually required the original
developer to make any needed changes.

The original EPD software, completed in 1981, was
designed to output science and telemetry data at a 91-
bps data rate. The Galileo spacecraft was waiting for a
1999) 529

H. MALCOM AND H. K. UTTERBACK
May 1986 launch when the Challenger accident oc-
curred, resulting in an extended postponement of space
shuttle launches. By the time Galileo was actually
launched in October 1989, several software changes
were required owing to improvements made in the
hardware system during the intervening period. Other
changes to the software, after launch, were necessary
because of the failure of the spacecraft’s main high-gain
antenna. The secondary antenna had to be used, thus
effectively cutting the output data rate available to the
instrument down to only 5 bps. By using the patch-
hook capability, the EPD software was modified to
apply a different data collection and readout scheme to
cope with the reduced output data rate. By the time
Galileo arrived at Jupiter in December 1995, 14 years
had elapsed since the EPD ROM-based flight software
had been completed. The lack of complete reprogram-
mability and the need to patch around ROM-based
code forced the modified software to take on the ap-
pearance of “spaghetti code.”

Many other examples exist, including the HUT
(Hopkins Ultraviolet Telescope) software system,10 in
which the original developer had to make a number of
changes since the same instrument being used on one
mission was used on a second mission. Such changes
may span several years for long-term projects.

Recall that another significant factor in the flight
software development process is that the software is
usually developed simultaneously with the hardware.
This situation causes software developers problems
above and beyond the usual, i.e., ferreting out real
requirements, defining interfaces, creating an elegant
and robust design, planning tests, etc. Since the hard-
ware is new, the developers must “learn” the new
machine and its interfaces to the rest of the spacecraft.
Generally, hardware engineers need help in determin-
ing if their new computer and related hardware is
working properly, a need that usually draws the software
developers into the effort of designing and implement-
ing diagnostic software. In addition, new hardware
often adds complexity to software development, e.g.,
the use of flash EPROM adds a burden of complexity
to both the flight and ground software systems to ac-
commodate the special loading and modification
needs of that type of memory.

To generate code containing fewer faults and to fa-
cilitate maintenance and modification by the original
developer and others, the Space Department initiated
a more formalized development process. The first major
software project to undergo a formal design review
process was the AMPTE ground system in 1983. Since
then, the software development process has progres-
sively embraced all levels of design review. Today, soft-
ware development plans, requirements reviews, prelim-
inary design reviews, detailed design reviews, and code
walkthroughs are common steps in the process. Their
530 JO
purpose is to determine whether the designs adequately
reflect the science and engineering objectives specified
in the requirements. Software configuration manage-
ment became a formal part of the development process
during the software implementation for MSX; software
problem reports were used to track errors and enhance-
ments in both the ground and flight systems for the first
time, and regular meetings of a configuration control
board were convened to examine the problems and
their solutions. A commercial source code control
system is being used on TIMED to track the soft-
ware configuration and to maintain software problem
reports.

 The Testing Approach
Considering the expense of spacecraft failures in

terms of dollars and lost scientific data, thorough
testing of flight software systems is critical. With the
added complexity and functionality of the newer sys-
tems, however, adequate testing is becoming much
more expensive and time-consuming.

Developers must perform unit testing of software
components before integrating them into higher-level
systems. This often requires embedding the component
to be tested into the larger system, which frequently is
not possible since the various system components are
being developed concurrently. To cope with such sit-
uations, the design of the system must allow for com-
ponents to be “stubbed out” and replaced with simpler
modules that provide equivalent functionality.

In general, flight software testing must proceed even
though the actual spacecraft flight hardware is not
available during the software development phase.
Therefore, the use of simulators is essential in identi-
fying and correcting faults before the spacecraft-level
testing phase. In the case of Triad and TIP, a flight
computer simulator was built before the flight hardware
was available. This simulator emulated the flight com-
puter and its interfaces to the spacecraft. It proved very
useful in developing and testing the software for those
systems. A software-based test-bed simulation was used
for the Delta 181 software development effort to facil-
itate testing. This effort was extended to develop and
test software for the Delta 183.

By using ground support equipment along with
hardware and software simulators, many closed-loop-
tracking experiments were conducted for the MSX
Project before integration with the spacecraft.11 These
simulations enabled the input of preset image sequences
into the UVISI Image Processor System. Within these
images, the image processor would identify candidate
objects of interest and pass a prioritized list of such
candidates to the Tracking Processor, which in turn
would issue commands to the Attitude Control System
to track and follow the selected object.
HNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1999)

FLIGHT SOFTWARE: PAST AND FUTURE
Such autonomous control systems raise difficult
verification and validation (V&V) issues, however.
V&V techniques must be employed to increase the
level of confidence in these decision-making systems.12

They can also aid in ensuring that the science objec-
tives are achieved. A private firm was given the Inde-
pendent V&V task beginning with Delta 181 and again
for Delta 183, MSX, and NEAR.

Today, software is included in integration and test
plans in the early phases of development, and various
levels of testing are conducted throughout the devel-
opment schedule. No longer can the attitude be taken
that it is “just software.” The same disciplined engineer-
ing approach followed for hardware systems must be
taken for software design, development, and testing.

FUTURE DIRECTIONS
Beginning with the NEAR Project, as the first space-

craft in NASA’s Discovery Program, emphasis shifted
away from developing large, complex, expensive sys-
tems that required long production schedules. Instead,
attention turned to the development of systems that
were lower in cost and could be designed and built in
less time without sacrificing quality or functionality.
Making such systems feasible has entailed a correspond-
ing shift in the approach taken for flight software
development.

Unlike the early days when a unique software system
was developed for each subsystem, often resulting in
duplication of effort and functionality, current systems
attempt to reduce cost by using suitable commercial off-
the-shelf software systems and reusable components.
Such systems must mesh well with the environment
and the requirements of the intended applications and
should not require extensive customization. Software
development techniques have progressed from the use
of custom tools written in-house to the use of commer-
cially available integrated tool sets and a greater reli-
ance on high-level languages and scripting systems,
which facilitate the implementation of complex com-
putational and control algorithms. No longer are
custom-designed real-time executives the norm. In-
stead, commercial real-time operating systems are used
that allow multitasking with prioritized and preemptive
scheduling of tasks to better cope with the dynamically
changing and event-driven scenarios that occur in
space missions.

The future will require an even greater use of
such systems, perhaps coupled with tools that can
automatically generate code as was done for the Atti-
tude Flight Computer on TIMED.13 Based on descrip-
tions of the system requirements, constraints, and re-
sources, these automatic code generators can help to
shorten development schedules. A greater reliance on
object-oriented languages and development techniques
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1
should facilitate and promote software reuse. To further
reduce cost, future systems may reverse the trend to-
ward the use of numerous relatively low-performance
processor systems and emphasize the use of one or two
high-performance systems that allow the disparate
functions required of the spacecraft to be combined
into a single flight software system. The feasibility of
such software systems will depend on the availability
of sufficiently powerful computers that are capable of
withstanding the conditions to which they will be
subjected in space and on a willingness to accept the
lack of redundancy that results from concentrating
more and more functions within a single system.

Future systems will also have to include a greater
degree of autonomy to better cope with faults and
unanticipated situations as well as to reduce the costs
associated with close monitoring and control by ground
operation teams. The designs of these systems, in ad-
dition to reducing cost, will have to maximize flexibil-
ity and allow for reconfiguration so as to take advantage
of unexpected opportunities to deliver additional sci-
ence data. An example of such flexibility is the changes
made on NEAR after launch to extend the science
objectives by including the ability to sense the arrival
of gamma ray bursts and to obtain imagery during a
flyby of the asteroid Mathilde.

CONCLUSION
Not only is software one of the most important risk

and reliability areas, it is also rapidly becoming one of
the largest cost items in spacecraft development. Reuse
of hardware will enable the reuse of software, which
will reduce overall software costs. Additionally, the
adherence to a well-defined and rigorous software de-
velopment process will help to ensure that the science
objectives of future space missions will be faithfully
carried out through the timely production of what are
becoming more and more complex, software-intensive
systems for spacecraft.

REFERENCES
1Perschy, J. A., Elder, B. M., and Utterback, H. K., “Triad Programmable
Computer,” Johns Hopkins APL Tech. Dig. 12(4), 12–24 (1973).

2Jenkins, R. E., and Whisnant, J. M., “A Demonstration of the Value of
Spacecraft Computers,” Johns Hopkins APL Tech. Dig. 5(3), 225–237 (1984).

3Williams, D. J., “Jupiter—At Last!” Johns Hopkins APL Tech. Dig. 17(4), 338–
356 (1996).

4Burek, R. K., “The NEAR Solid-State Data Recorders,” Johns Hopkins APL
Tech. Dig. 19(2), 235–240 (1998).

5Utterback, H. K., Whisnant, J. M., and Jenkins, R. E., “A System of Software
for the TIP Spacecraft Computer,” in Proc. Symp. on Computer Techniques for
Satellite Control and Data Processing, Slough, England (11–12 Oct 1977).

6Perschy, J. A., “The SEASAT-A Satellite Radar Altimeter Spaceborne
Microcomputer,” J. Br. Interplanet. Soc. 32, 9–14 (1979).

7Lew, A. L., Moore, B. C., Dozsa, J. R., and Burek, R. K., “The MAGSAT
Telecommunications System,” Johns Hopkins APL Tech. Dig. 1(3), 183–187
(1980).

8Lee, S. C., and Hayes, J. R., “Development of a Forth Language Directed
Processor Using VLSI Circuitry,” Johns Hopkins APL Tech Dig. 10(3), 216–
225 (1989).
999) 531

H. MALCOM AND H. K. UTTERBACK
9Henshaw, R., Ballard, B., Hayes, J., and Lohr, D. A., “An Innovative On-
Board Processor for Lightsats,” in Proc. AIAA/USU Conf. on Small Satellites,
AIAA (Aug 1990).

10Ballard, B., “Forth Direct Execution Processors in the Hopkins Ultraviolet
Telescope,” J. Forth Applic. Res. 2(1), 33–47 (1984).

11 Wilson, D. S., “A Testbed for the MSX Attitude and Tracking Processors,”
Johns Hopkins APL Tech. Dig. 17(2), 161–172 (1996).

12Space Department Software Quality Assurance Guidelines, SDO-9989, JHU/
APL, Laurel, MD (22 Sep 1992).
532 JOH
13Salada, W. F., and Dellinger, W. F., “Using MathWorks’ Simulink‚ and Real-
Time Workshop‚ Code Generator to Produce Attitude Control Test and Flight
Code,” in Proc. 12th AIAA/USU Conf. on Small Satellites, AIAA (Aug 1998).

ACKNOWLEDGMENTS: We would like to thank the people who provided
information in preparing this article, including J. A. Perschy, R. E. Jenkins, R. C.
Moore, J. R. Hayes, J. O. Goldsten, J. D. Boldt, S. F. Hutton, S. P. Williams, P. D.
Schwartz, B. K. Heggestad, and W. F. Salada. We also thank the editors and
reviewers whose helpful comments resulted in improvements to the article.
THE AUTHORS

HORACE MALCOM received B.S. and M.S. degrees in physics from Emory
University and an M.S. degree in computer science from the Pennsylvania State
University. Mr. Malcom is a Principal Professional Staff Physicist in APL’s Space
Department, specializing in real-time embedded flight software for satellites.
Since 1980, he has taught courses in computer architecture and systems software
in the JHU G. W. C. Whiting School of Engineering Part-Time Programs in
Engineering and Applied Science, for which he also serves as a member of the
Computer Science Program Committee. He has served as lead software engineer
on a number of systems including the ICT and EPD on the Firewheel and Galileo
spacecraft, the spacecraft telemetry system and MEPA instrument on AMPTE,
the Star Tracker System on START, the UVISI Image Processor System on
MSX, and the ULEIS instrument on ACE. Currently Mr. Malcom is engaged in
developing flight software for the GPS Navigation System on the TIMED
spacecraft. His e-mail address is horace.malcom@jhuapl.edu.
HARRY K. UTTERBACK received an A.B. in mathematics from Gettysburg
College in 1957 and an M.S. in computer science in 1975 from The Johns
Hopkins University. Mr. Utterback is a member of APL’s Principal Professional
Staff assigned to the Space Reliability and Quality Assurance Group of the Space
Department. He also teaches in the JHU G. W. C. Whiting School of
Engineering Part-Time Programs in Engineering and Applied Science. Mr.
Utterback has developed real-time software systems for various spacecraft and
ground systems since joining APL in 1969. He has served as the Chairman of the
IR&D Committee on Software Engineering. He is a member of the AIAA, an
emeritus member of the AIAA Technical Committee on Software Systems, and
also a member of the IEEE Computer Society and the American Society for
Quality. His current interests focus on quality assurance and improvements to the
software development process. His e-mail address is harry.utterback@jhuapl.edu.
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 4 (1999)

mailto:horace.malcom@jhuapl.edu
mailto:harry.utterback@jhuapl.edu

