
D. P. WATSON
The Integrated Vulnerability Management System

David P. Watson
276
Real-time estimation of submarine detectability is a complex problem for the
modern, forward-deployed attack submarine because of the complexity of the littoral
environment and the wide variety of potential detection sensors. This article describes
a prototype system, the Integrated Vulnerability Management (IVM) System, for
integrating information about the environment, threat systems, and the submarine
itself. The IVM System rapidly computes detectability statistics and presents them to a
system operator for use in various tactical operations. This capability represents a major
advancement over current stealth management procedures and tools, which depend in
many cases on manual parameter estimation and coordination. The operational concept
for the prototype system is discussed, followed by a detailed description of the core
technical elements. (Keywords: Real-time, Signature model, Submarine, Tactical
decision aid, User interface.)
INTRODUCTION
The primary role of U.S. Navy attack submarine

(SSN) class ships historically has been to hunt, track,
and, if necessary, attack enemy submarines. Detectabil-
ity of ownship by the enemy (counterdetection) is the
paramount concern in these operations. The subma-
rine’s most effective attribute is stealth, and all tactical
guidance relies on the maintenance of this condition.
In this article, we refer to the threat of counterdetec-
tion as “vulnerability.” (In the surface ship community,
however, vulnerability refers to a physical damage
condition. The term “susceptibility” is used to describe
counterdetection in surface ships.) Obviously, the need
for stealth is not unique to the submarine community,
and the approach presented here could be applied to
other platforms such as aircraft or surface ships as well.
JOH
The submarine domain, however, presents a uniquely
complex environment for vulnerability management.

In addition to its primary mission of antisubmarine
warfare (ASW), the SSN may be involved in missions
in near-shore (littoral) waters in support of surveil-
lance, rescue, or strike operations. In fact, as the ASW
threat environment evolves and requirements for a
highly capable and covert littoral platform increase,
such missions are becoming more frequent and impor-
tant for the SSN.

This article describes a prototype system, the Inte-
grated Vulnerability Management (IVM) System, de-
veloped in APL’s Submarine Technology Department
for the real-time assessment of counterdetection
threats, the quantitative estimation of threat level, and
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 3 (1999)

INTEGRATED VULNERABILITY MANAGEMENT SYSTEM
an integrated graphical user interface (GUI) for display
and manipulation of this information. The system was
developed under sponsorship of the Defense Advanced
Research Projects Agency (DARPA) and is currently
being transitioned to the Navy for use in next-gener-
ation submarine combat systems.

Vulnerability Management
The problem of managing ownship vulnerability can

be broken into three fundamental components: threat
assessment, vulnerability estimation, and decision sup-
port. Threat assessment involves determining the crit-
ical attributes of all potential counterdetection threats
(note that this might include neutral as well as hostile
forces, depending on the mission). In addition to the
threat’s location, it would be helpful to know sensor
types and performance parameters. In general, this
information cannot be measured directly, and therefore
must be inferred by the system. The second aspect of
vulnerability management concerns the detailed esti-
mation of ownship signatures. The final aspect is the
utilization of assessment and estimation data to provide
recommendations for planning future mission opera-
tions and for optimizing current ship configuration.

High-fidelity signature and detector modeling is the
core component in the vulnerability management sys-
tem. APL has a long history of model development in
this area for threat assessment and technology devel-
opment studies. These models are, however, not gen-
erally constrained by real-time or embedded system
requirements. Therefore, initial efforts in the develop-
ment of a vulnerability management tool focused on
decision support and user interface aspects of the
problem.1

In 1995, APL began an effort to prototype a tactical
decision support tool that would address real-time sig-
nature modeling and ship integration problems as well
as intelligent decision support and user interface devel-
opment. The goals of this effort were to leverage emerg-
ing technologies in computer graphics, distributed
real-time computing, and tactical automation to pro-
duce a tool that could be quickly transitioned into
operational submarine combat systems to address this
critical need. The following sections describe various
aspects of this prototype, the IVM System.

OPERATIONAL CONCEPT
The general concept for IVM is to provide complete

functionality within the combat system architecture
without the requirement for a dedicated watchstander.
Submarines, in particular, are limited in the number of
crew (and the amount of space) available for combat
control operations, and there is great sensitivity to
imposing additional tasks. It was decided early in the
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 3 (1
IVM concept development stage to design the system
for various levels of operator interaction, from unat-
tended alerting to support for one or more operators
dedicated to stealth planning.

Figure 1 shows one of the possible user interface
configurations for the IVM System, highlighting a
number of important features. The interface window is
partitioned into frames that display different aspects of
the overall vulnerability picture. In the example, the
largest frame (top right) displays a geographic scene
showing ownship, significant contacts in the tactical
scene, and certain environmental features. Overlaid on
this scene are contours indicating probability of detec-
tion regions for various contacts, allowing the operator
to quickly view threat capabilities. A particular contact
has been designated for further analysis by the operator,
resulting in a highlighted symbol and detection perfor-
mance contour. The designation also configures other
panes of the top-level frame to focus on the contact.
The plot pane (bottom right) shows a graph of prob-
ability of counterdetection as a function of range in the
line of bearing between ownship and the designated
contact.

The parameter pane (top left) presents the various
measured and inferred values used by the real-time
models to derive vulnerability information. These are
available for review and for editing by the operator. The
parameters consist of the three general categories
already noted: ownship state, contact attributes, and
environment. Examples of ownship state would be
speed, depth, and mast exposure heights. Contact at-
tributes include not only the standard kinematic esti-
mates (position, course, and speed), but inferences the
system has made regarding detection capability, i.e., the
number and type of sensor systems. Environmental pa-
rameters include water and atmospheric parameters,
either measured by onboard sensors or broadcast from
centralized tactical meteorological or oceanographic
sources. In real-time operation, the IVM System auto-
matically updates these parameters through interfaces
to the ship’s combat system and common tactical
databases.

The operator may choose to edit these parameters
at any time, either to provide an improved estimate or
to experiment with alternative configurations. In this
case, once parameter modification has been confirmed,
all relevant vulnerability models are recomputed in real
time and the tactical picture is updated. This “what if”
capability is a central feature in the IVM concept of
operations, allowing the operator to plan for future
situations.

The bottom left pane of Fig. 1 provides a high-level
summary of the vulnerability situation in the form of
a counterdetection alert matrix. It is formed by listing
all contacts in the tactical scene and then computing
counterdetection probability across their individual
999) 277

D. P. WATSON

Figure 1 . Example of the Integrated Vulnerability Management System user interface. (Top left: parameter pane; bottom left:
counterdetection alert matrix; top right: ownship, contacts, and environmental features; bottom right: graph of probability of detection.)
sensor configurations. The resulting thresholded color
chart provides quick notification of current and antic-
ipated counterdetection threats. The operator has the
option to tailor the alerting display by creating summa-
ry alert columns based on the logical disjunction of alert
conditions across various types of contacts (e.g., all air
platforms classified as hostile).

This set of tools forms the basis for an integrated
vulnerability analysis capability that might be used in
various ways. During mission planning, the system can
function as an elaborate signature calculator. The user
might configure different hypothetical combinations of
environment, ownship state, and expected threats, and
then run the relevant signature models in an iterative
process to optimize mission timing and ownship con-
figuration. During mission execution, the system is con-
tinually updating the vulnerability situation, and might
operate unattended until an alert event occurs. When
that happens, an operator might be assigned to analyze
ship signatures and perhaps recommend an alternative
course of action to remove the alert condition based
on model predictions. It should be emphasized that
278 JOH
definitive operational doctrine for the IVM System has
not been produced.

IVM SYSTEM DESCRIPTION
To explore both the computational and operational

feasibility of IVM, APL developed the prototype system
using commercial off-the-shelf (COTS) workstation
technology. The IVM workstation was designed to be
integrated directly into the combat system as shown in
Fig. 2. Various generic combat system components are
shown linked through a generic tactical information
network. In future ship combat systems, this network
will be implemented on COTS networking compo-
nents with open interface standards for the sharing of
tactical contact, ownship, and environmental informa-
tion. The figure shows several subsystems that directly
relate to the new vulnerability management capability.
In most cases, these subsystems currently exist in the
submarine combat system. In other cases, the IVM
capability may require additional ship instrumentation,
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 3 (1999)

INTEGRATED VULNERABILITY MANAGEMENT SYSTEM

Joint Maritime
Command

 Information
System

Organic threat
sensors and

alerts

Platform
status

Environmental
sensors and
databases

Tactical
data fusion

Platform
control

Platform
control

Weapons
control

Tactical
information

network

IVM

Planning Tactical scene overlay Vulnerability analysis/alerting

Figure 2 . Integrated Vulnerability Management System concept.
connectivity, and functionality. In particular, the IVM
System is specifically designed to both support and
benefit from the higher level of platform connectivity
implied in current Navy “network-centric” ASW
concepts.

Network Connectivity
As shown in Fig. 2, network connectivity plays a

significant role in the acquisition of nonlocal and
nonorganic tactical information, including air and
surface contact tracks and environmental parameters.
This information is used to augment the submarine’s
primary onboard (“organic”) sensor systems, which are
the primary sources for real-time, local-situation infor-
mation. The link between onboard and offboard infor-
mation is made through a data fusion process (external
to IVM), which results in a single, unambiguous set of
detected and tracked contacts to be processed by the
IVM System.
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 3 (19
Ownship and Environmental Data
Besides the parameters noted in the section on

Operational Concept, ownship state also includes po-
sition, course, heading, and depth, which are currently
available on the combat system network. In addition,
the signature models of the IVM System in many cases
can use even more information on ownship state, in-
cluding details about the ship design or equipment
lineup, where relevant. The system is currently config-
ured for direct operator entry of these parameters, but
automation of this process through additional ship in-
strumentation and networking would be beneficial in
the future.

The second major information category, environ-
mental parameters (e.g., ocean optical and acoustic
characteristics), is important for IVM modeling.
Historically, ocean acoustic parameters have been the
focus during submarine operations. However, with
the introduction of nonacoustic modeling in IVM,
99) 279

D. P. WATSON
nonacoustic ocean and atmospheric parameters have
become equally important. In many cases, these param-
eters are highly variable in both space and time, and
yet have dramatic effects on submarine detectability.
Without an organic measurement capability for these
parameters, the IVM System must rely on historical
environmental databases. If IVM capabilities are to be
fully exploited, enhancement of the submarine’s organ-
ic environmental sensing capability and integration
with the emerging Navy tactical meteorological and
oceanographic information systems will be required.

System Architecture
The primary components of IVM functionality are

shown in Fig. 2 as planning, tactical scene overlay, and
vulnerability analysis/alerting. The architecture for
implementing this functionality has been developed for
modularity in both hardware and software to support
functional and throughput performance goals. It is also
assumed that the IVM System might prove valuable to
a broader class of platforms, including stealth surface
ships and aircraft. A modular design approach will
facilitate system reconfiguration with different models,
external interfaces, and displays. This section discusses
the hardware and software architecture features that
support these goals.

Software Architecture

Signature computation. The fundamental process in
IVM is signature generation. A signature is a point or
an array of data representing the probability of ownship
detection for a sensor at one or more points in space.
Associated with a signature is the set of parameters—
ownship state, sensed (or reported) contacts, and en-
vironmental—used as inputs to the signature modeling
process, known as the “state vector.” Parameter values
may be measured directly, inferred, or retrieved from
historical databases. Once a complete state vector has
been formed, it is passed to one or more model processes
for use in signature computation. This process is driven
periodically, based on real-time updates from the com-
bat system, and aperiodically, based on requests submit-
ted by the operator. Once a signature has been
computed by the system, it is made available for display,
alert thresholding, or use in mission planning. The
formation of state vectors, computation of signatures,
and management of computed signatures are central
components of the IVM System.

The software architecture for IVM is driven by
the fact that signature model processing is computa-
tionally intensive, yet can be performed in parallel.
IVM configurations typically contain from 3 to 10 in-
dependent modeling processes. In other words, the
submarine is simultaneously informed about its detect-
ability by optical, radar, infrared, and other means. The
280 JOHN
signature modeling processing in each of these areas
can be performed in parallel and then integrated
to form an overall estimate of vulnerability. Figure 3
shows an overview of the multiprocess IVM software
architecture that exploits this parallelism. All inter-
process communication is performed using a simple
TCP/IP (transmission control protocol/internet proto-
col) socket library.

Kernel process. Central to the software architecture
is a kernel process that integrates and coordinates all
run-time components of the system including input/
output, GUIs, state vector formation, model manage-
ment, and alert generation. The kernel contains a
complete representation of all tactical scene objects
and manages updates to and from other system compo-
nents. An initial attempt to build an asynchronous,
multithreaded access layer to the kernel’s tactical scene
objects for external processes was abandoned during
development as unnecessarily complex. The current
design uses a single thread of control in the kernel, and
all object sharing is through explicit message passing
across the links shown in Fig. 4. Thus, the kernel can
be thought of as a single loop that sequences among the

Figure 3 . Software architecture summary. (DII COE = defense
information infrastructure common operating environment, ATM =
asynchronous transfer mode, GUI = graphical user interface.)

M
od

el
 m

an
ag

er

Kernel
process

Core processes

External track
interface

Signature
model

processes

Program-specific
GUIs

IVM segment

TAC-4
processing

and
graphics

Ethernet/
ATM

Common object
repository (CORE)

and DII COE

Network standards

Workstation and display standards

Combat system standards

Combat Control System standards
S HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 3 (1999)

INTEGRATED VULNERABILITY MANAGEMENT SYSTEM
external interface, GUIs, the model manager, and other
system processes.

External track interface. The external track inter-
face (ETI) process shown in Fig. 3 provides real-time
synchronization for the IVM System. During prototyp-
ing efforts, a variety of external systems were interfaced
to IVM for concept demonstration using a combination
of simple socket and high-level CORBA (common
object request broker architecture) protocols. In addi-
tion to real-time synchronization, the function of the
ETI is to convert external ownship, contact, and en-
vironmental data formats into a common format for
kernel processing. This translation process provides a
critical portability capability to the IVM prototype. In
order to integrate the system with new tactical or sim-
ulation systems, software modifications are isolated to
the ETI component rather than distributed across all
components. The ETI developed for the prototype
system conforms to a layered set of DoD and Navy
standards as shown in Fig. 3. At the lowest level, pro-
cessing is performed on a standard tactical computing
platform, TAC-4. All network interfacing is through
TCP/IP, implemented on Ethernet or asynchronous
transfer mode (ATM) networks, which are the standard
for the Navy’s new Virginia-class SSN.

DII common operating environment. The defense
information infrastructure (DII) common operating
environment (COE) comprises software, display, and
networking tools and standards applicable to next-gen-
eration tactical software development. The IVM pro-
totype is built within the DII/COE and employs the
standard geographic display product, the Joint Mapping
Toolkit, for top-level geographic scene display. Further
interface standardization is provided by a Navy stan-
dard for object-oriented tactical information distribu-
tion based on the CORBA protocol. This standard
specifies standardized object definitions, using the
CORBA interface design language for ownship state,
contact parameters, sensor parameters, and system
events.

Model processing and management. Once data
have been input to the IVM System and used for state
vector formation, the system must coordinate signature

Interface wrapper

Signature
model

Request
manager

Bulk cache
Cache

management

Signature
client

Signature
object

Signature
object

Signature request

Computation
request

Figure 4 . Model management processing.
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 3 (19
generation through the set of model processes. Concep-
tually, the process is simple: the state vector is passed
to each of the signature model processes, which in turn
perform the required computation and return a signa-
ture data structure. However, there are a number of
issues that must be addressed in the implementation.
First, model processing is time-consuming and must not
be allowed to interrupt the real-time responsiveness of
the system. Processing-time requirements for the cur-
rent IVM model range from less than 1 s to approxi-
mately 20 s per signature. With a worst-case situation
requiring 10 different types of signatures to be comput-
ed for a new tactical state, it is unacceptable for the
system to wait for signature computation to be complet-
ed. The problem is solved by implementing model
processing as a set of asynchronous parallel processes.
The IVM model manager coordinates this processing
and provides important filtering and caching functions.

The first step in the management of signature model
computation is determining whether changes in state
vector values warrant a new model run by the system.
Many state vector values, such as ownship state, are
updated as frequently as 1 Hz by the combat system, yet
small changes in magnitude may have little or no
impact on the resultant signature estimation. Thus,
some sort of prefilter or threshold must be applied to
state vector changes to prevent unnecessary computa-
tion. In the IVM System, this process, known as sig-
nificant event detection, uses a predefined library of
thresholds on individual state vector values to trigger
new model runs. This library is based on sensitivity
analyses performed during system design.

The second technique used in the model manage-
ment process is signature caching. Once a model run
has been completed and the signature data structure
results have been made available for display or further
processing, the system stores the result and the origi-
nating state vector in dynamic memory for fast subse-
quent retrieval. Figure 4 shows an overview of this
process. When requests for new signature computation
are generated, either by real-time system updates or
asynchronous user requests, the state vector is sent to
a request manager. This process performs significant
event detection, as described previously, by comparing
the new state vector with a set of recently processed
state vectors. If a match is found, the resulting signature
data structure is passed directly back to the requester.

 All of this model management occurs within the
main kernel process for efficiency. If no match is found
for the new state vector, then an asynchronous model
processing request must be made. As shown in Fig. 4,
a request queue is maintained for each model to coor-
dinate multiple, sequential requests that might occur at
intervals shorter than the time required for model
computation. A TCP/IP socket protocol is used for
request message passing to the model process itself.
99) 281

D. P. WATSON
This messaging infrastructure, as well as state vector
format conversion to the native model representation,
is shown in Fig. 4 as a “wrapper”around the core model
processing. This layer is used because IVM models come
from a variety of sources outside the IVM development
program. In many cases, these are legacy codes with
their own variable names and data formats. The IVM
model wrapper converts the standard request message
format into native model formats and creates a standard
signature output data structure for transmission back to
the kernel process. Once results are available in the
kernel, the request queue is updated, and the signature
and associated state vector are recorded in the signature
cache and made available to the system for alert gen-
eration, display, and further processing.

 A cache management function must be used to
periodically delete data structures that have not been
used for some time to keep the cache from exceeding
available memory. This function has not yet been
implemented, but must be completed in order for the
system to operate for any significant duration.

The main benefit of this somewhat elaborate scheme
for data management is to provide very high respon-
siveness in “what if” queries by the user. Whereas initial
computations may take several seconds, once the
system has cached the results, feedback is nearly instan-
taneous. This facilitates the use of these computation-
ally expensive models in a variety of analysis and plan-
ning tasks.

Graphical user interface. The final processing com-
ponent shown in Fig. 3 is the IVM GUI. In fact, the
IVM System is currently designed for multiple, semi-
independent GUI connections. Many of the particular
features of the IVM GUI, including geographic tactical
scene display, alert matrix display, and signature/param-
eter display, were discussed in the Operational Concept
section and shown in Fig. 1.

All display processing is performed in separate, asyn-
chronous processes to optimize system responsiveness
to user controls. If multiple GUI processes are used,
both GUIs share the kernel state. This means that as
real-time updates occur, both GUIs are updated con-
currently. Also, if a user at one workstation performs a
parameter override operation, that override is shared at
all other IVM workstations. The loose coupling be-
tween display processes and core input/output and
model processing provides great flexibility in the use
of IVM in an overall combat system architecture. In
addition to the GUI developed in the prototype, system
interaction might occur through a nongraphic
(command line) interface or be abstracted into a
“vulnerability server” capability to provide signature
and alerting information to other systems through the
existing GUI process protocols.

An overall guiding principle in IVM development
is cross-platform implementation using proven open
282 JO
computing standards. All IVM software is developed in
ANSI C++, using Hewlett-Packard (HP) and Sun
Microsystems workstations. GUI processing uses X11/
R6 with Motif development libraries. Three-dimen-
sional graphics panes within the overall GUI frame-
work are implemented using standard OpenGL
development libraries. As previously discussed, the DII/
COE provides an overall run-time and development
layer above the operating system. Although this envi-
ronment is available for the Sun Solaris operating sys-
tem as well as HP, IVM GUI development has been
limited to HP at this time.

Hardware Architecture

Initially, IVM prototype development was not con-
strained in hardware implementation. The distributed
architecture described above was developed in a lab-
oratory environment with several dedicated worksta-
tions, including high-performance Silicon Graphics,
Inc., Onyx/Reality hardware for three-dimensional sig-
nature visualization and GUI prototyping. As the pro-
gram focus shifted from concept development to
technology transition, the constraints of shipboard
implementation became a major design driver. Subma-
rines, in particular, are severely constrained in available
space for additional processing hardware and displays.
The decision to transition the proprietary Silicon
Graphics GUI implementation to the DII/COE stan-
dard was motivated, at least in part, by the possibility
of reconfiguring existing workstations in the submarine
control center for IVM user interface as required. Even
more significant was the requirement for multiple pro-
cessors for signature model computation. In the labo-
ratory, each of these processors was a complete
workstation, with dedicated keyboard, monitor, and
peripheral devices. To meet transition hardware con-
straints while minimizing software modification, a
dedicated signature model multicomputer system was
developed based on COTS components as shown in
Fig. 5.

The signature model processor design is based on
Force Computers, Inc., single-board computer systems.
These are identical to a full workstation configuration,
with central processing unit, processor memory, disk
interface, and network interface hardware. There was
no reason to change the processor interconnect topol-
ogy or technology from that currently operational in
the workstation network prototype. Therefore, system
configuration simply required physical and power inter-
faces, and these were provided by a standard
19-in. VME chassis. The resulting implementation
requires 7 slots of the chassis (out of 12 available).
The signature model processing load is distributed
across this array and linked with a single host processor
system that runs GUI, kernel, and interface processes.
HNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 3 (1999)

Figure 5 . Hardware architecture summary (CPU = central pro-
cessing unit).

512 MB
shared
RAM

H-SPARC
CPU

H-SPARC
CPU

H-SPARC
CPU

H-SPARC
CPU

H-SPARC
CPU

128 MB

H-SPARC
CPU

128 MB

H-SPARC
CPU

128 MB

H-SPARC
CPU

128 MB

128 MB HP C110 (TAC-4)

Visualize-48

21-in.monitor

VME chassis

10 BaseT Ethernet

GUI kernel
All processor interconnects are implemented with
10 BaseT Ethernet (10 Mbps).

Real-time processing requirements for the IVM
System are limited to issues of user interface responsive-
ness. Therefore, a specialized operating system was not
required in the signature model processor. Initial signa-
ture model development was performed on Sun work-
stations using the Solaris operating system, and this was
maintained in the final prototype. The overall goal in
the model processor hardware specification was to
minimize the cost and schedule risk associated with
platform transition by making the switch to the new
environment “software transparent.” This was accom-
plished, and transition to the new hardware was per-
formed in less than a week.

It should be noted that the hardware architecture is
essentially scalable. If new signature models are desired
in the future, it is simple to add processing cards to host
the new processes. All infrastructures for kernel com-
munication and coordination are in place.

The signature model components of IVM are inde-
pendent from each other and from the core processing
system. The prototype development program did not
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 3 (19
INTEGRATED VULNERABILITY MANAGEMENT SYSTEM

develop any new model codes, emphasizing instead the
essential infrastructure for management and coordina-
tion of a diverse set of legacy components. The current
IVM System includes a set of demonstration models at
different levels of maturity and validation status, but in
general, all share a similar overall structure (see the
boxed insert).

SUMMARY
The IVM prototype described here has reached a

significant developmental milestone and is ready for
evaluation in a structured sea test environment. How-
ever, a number of areas require further development.
Perhaps the most important of these involves the def-
inition of vulnerability itself. The IVM System
currently equates vulnerability with probability of
counterdetection. While this metric is convenient for
computation and integration across a number of differ-
ent domains, it does not fully capture the tactical
notion of vulnerability. Ideally, such a metric would
9

IVM SIGNATURE MODEL PROCESSING
The figure shows a generic signature modeling process.

The process starts with a physical model of the source of the
signature. This might be an active source such as ownship
acoustic noise or a passive source such as parts of the ship’s
structure. In either case, estimation of source parameters is
the first step in the formation of the model state vector.
The IVM radar model uses a library of ship models that
capture all relevant physical features. Once the specific ship
configuration has been specified, including operating con-
ditions of the platform, the physical models are used to
create a signature map as a function of ship orientation as
appropriate.

The next step is to determine a probability of sensor
detection. This will be a function of various sensor system
parameters, which may be obtained by database lookup
based on a hypothesized threat sensor type or measured
directly by onboard threat databases. The IVM System typ-
ically computes this probability of detection across the full
azimuth and out to a fixed maximum range, thus producing
an array of probabilities for subsequent processing and
display.

All the model processes in IVM follow the same basic
structure, starting with analyzing source phenomenology,
computing environmental effects, and then modeling the
detection process.

Generic IVM signature model process.

Ship
design

Geometric
representation

Signature
source

calculation
mapping

Threat
parameters

Detection
probability
envelopes

Geoscene
overlay
9) 283

D. P. WATSON
capture notions of classification uncertainty as well as
assumptions about the threat’s offensive intent and
capability. Clearly, more work is needed in this area to
link quantitative model results to heuristic rules for
tactical assessment and mission objectives.

The IVM concept development effort began at APL
with goals of demonstrating a new class of tactical
decision support tool for stealth management. This goal
has been accomplished with endorsement from both
DARPA and the Navy. High-fidelity, real-time signa-
ture modeling has been demonstrated as a viable tool
for situation awareness, alerting, and planning. An
operating concept incorporating advanced graphics
capabilities and real-time combat system interface has
284 JOH
been developed. Finally, the overall concept of dynamic
vulnerability management has been introduced as a
potential complement to stealth platform design, with
the potential to serve as a critical component in future
cost-driven development efforts. As littoral submarine
operations become complicated with the proliferation
of sophisticated, low-cost sensor technology, real-time
vulnerability management will become a primary com-
ponent of submarine planning and operation.

REFERENCE
1Wenstrand, D. C., Dantzler, H. L., Jr., Hall, M. R., Scheerer, D. J., Sinex,
C. H., et al., A Multiple Knowledge Base Approach to Submarine Stealth
Monitoring and Planning, Technical Paper presented at DARPA’s Associate
Technology Symposium, George Mason University (7 Jun 1991).
THE AUTHOR

DAVID P. WATSON received a B.S. degree in mathematics from Hampden-
Sydney College in 1980 and a B.A. in applied mathematics from California State
University, Fullerton, in 1987. Before joining APL in 1995, he worked at
Lockheed-Martin Laboratories in the application of high-performance comput-
ing systems to tactical automation and decision support. Mr. Watson is currently
a member of APL’s Senior Technical Staff and is Assistant Supervisor of the
Information Technologies Group of the Submarine Technology Department. His
e-mail address is david.watson@jhuapl.edu.
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 20, NUMBER 3 (1999)

mailto:david.watson@jhuapl.edu

