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A new method for direct numerical simulation of electromagnetic or acoustic
wave scattering by randomly rough surfaces is presented. The numerical scheme is
derived from the well-known method of moments, in which the surface current integral
equation is discretized to form a large matrix inverse problem. The simulations use
recent advances in the efficient solution of the inverse problem that exploit the special
structure of the moment matrix. By applying specialized numerical techniques, the
computing time and memory requirements are reduced, thereby making simulation
practical for desktop workstations. As an example, radar sea-scattering simulations are
shown that illustrate the diffuse nature of the radar/ocean surface interaction as well as
the strong dependence on wind speed and incidence angle. These calculations are
particularly relevant to APL programs involving imaging radars and over-water low-
elevation-angle target detection and tracking.
(Keywords: Method of moments, Monte Carlo methods, Radar sea scattering, Rough
surface scattering.)
INTRODUCTION
The scattering of electromagnetic waves by a ran-

domly rough surface (e.g., the ocean) has long been of
interest to APL. Diffuse scattering from the ocean sur-
face can introduce unwanted clutter or noise to radar
return and can also affect the signal strength, particu-
larly in low-grazing-angle radars. For imaging radars,
such as those used to detect internal waves or ship or
submarine surface signatures, the diffusely scattered
wave energy represents signal rather than noise. In
204 JOH
either case, a clear understanding of the scattering
characteristics is needed to model and predict system
performance.

APL has made several efforts to physically model
radar sea scattering. However, previous approaches
have been approximate and limited in their range of
validity or applicability to the realistic radar problem.
These limitations mirror the extreme difficulty of the
problem, which remains a highly active area of research
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)



DIRECT NUMERICAL SIMULATION OF SEA SCATTERING
in electromagnetics.1 Realizing that the complexity of
the problem precludes a general analytical approach,
our objective is to develop a powerful and efficient
numerical method, with minimal approximations, that
has practical application and can be reasonably run on
ordinary desktop workstations.

The rough surface scattering problem is illustrated in
Fig. 1. An electromagnetic (or acoustic) wave of a
general form is incident at angle ui to the mean surface
normal. The wave scatters diffusely over scattering
angle us. The objective is to calculate the amplitude
and phase of the scattered field relative to the incident
field. Most analytical approaches to the problem cal-
culate this ratio only in the far field; however, our
approach is valid at any point above the surface. Since,
in practice, the rough surface (e.g., the ocean) may only
be statistically defined, statistical moments of the scat-
tered field (usually the mean and standard deviation)
become important. The moments are calculated from
a numerical approach by a Monte Carlo method, that
is, by averaging over repeated random realizations of
the surface, each one generated from the same statis-
tical description.

The most common analytical solutions (see Ref. 2
and references therein) to rough surface scattering
problems may require the surface to be smooth on the
scale of the wavelength l of the incident field,
or perhaps require that fluctuations in surface height
from the mean plane are very small compared with the
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Figure 1. Coordinate system and geometry for modeling wave scattering from a one-
dimensional randomly rough surface. The rough surface S (red curve) is described by the
height z = f (x) above the mean plane or x axis. A wave field cinc is incident at angle ui to
the mean surface normal. The scattered field csc propagates over a range of scattering
angles us (k i and ks = wavevectors of the incident and scattered fields, respectively).
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THEORETICAL
DESCRIPTION

A wave field, cinc(r), is incident
on the rough surface, which is
described by a height z = f(x) above
a mean plane (Fig. 1). The starting
point for the moment method is the
surface current integral equation
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which is derived by evaluating the standard Helmholtz
integral equation on the surface S. Here, G(r, r′) is the
free-space electromagnetic Green’s function, which in
two dimensions (cylindrical geometry) becomes the
Hankel function H0

(1) of the first kind, order zero. (This
article assumes cylindrical geometry throughout. The
extension to three dimensions is discussed in the Sum-
mary.) The quantity u under the surface integral is the
unknown. For the electromagnetic scattering problem,
u is proportional to the induced surface current. Note
that Eq. 1 assumes Dirichlet boundary conditions or the
equivalent of a horizontally polarized electric field
incident on a perfectly conducting surface. More general
boundary conditions are discussed later in this article.

The principal idea behind the BMIA is to define a
two-point interaction distance rd that is very large
compared with the surface height f(x) everywhere on
the solution space. The integral term in Eq. 1 is then
split into two integrals, one for source point x′ and field
point x separated less than rd (strong interaction) and
one for separations greater than rd (weak interaction).
The method of moments solution to Eq. 1, then, con-
sists of discretizing the solution space to form the
matrix-vector equation

Z X C= . (2)

The source vector C  and unknown vector X  consist of
cinc and u evaluated at discrete points [xi, f(xi)] and
[xj, f(xj)], where xi = iD and D is the sampling interval
along the x axis. The moment matrix Z  is the sum of
strong and weak interaction matrices, that is,
Z Z Z= +(s) ( ).w

To discretize the strong interaction integral, we
assumed that, within each discrete segment j(i Þ j), the
argument of the Hankel function, as well as the
unknown function u, is effectively constant. This will
be true provided the sampling interval D is sufficiently
small compared with l. Since the integrand is effec-
tively constant, the moment integral (strong interac-
tion) for source point i and field point j is approximately
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where k = 2pl is the wavenumber of the radiation field.
This result becomes exact in the limit of vanishingly
small D. When the source and field points coincide
(i = j), care must be taken to properly account for the
singularity at xi = xj. The result is similar to Eq. 3.

For the weak interaction matrix, we take further
advantage of the problem geometry. Given that the
source and field points lie outside the interaction dis-
tance rd, the difference in surface heights (fi – fj) is, by
definition, much smaller than the separation distance
(xi – xj). In that case, the Hankel function can be ex-
panded asymptotically as
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where the expansion coefficients am can be calculated
explicitly to any desired order. For ocean surface radar
scattering, we have found that three expansion coeffi-
cients (M = 2) are usually sufficient.

With the Hankel function expansion, the weak
interaction has a similar asymptotic expansion. In
matrix form, the moment integral (weak interaction)
in Eq. 1 becomes

Z Z( ) ( ) ,w w=
=
∑ m

m

M

0
(5)

where each order (m = 0, 1, . . .) includes the corre-
sponding expansion term in Eq. 4. From Eqs. 1 and 4,
the order zero term, for example, is given by
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Equation 2 contains products of the weak interac-
tion matrices, such as Z0

( )w , with the unknown vector
X . Since the weak interaction matrix includes all
interactions outside the separation distance rd, it will
typically be very large and sparse. The matrix-vector
product normally requires order N2 multiplications.
However, in this case the expansion of the Hankel
function (Eq. 4) about a canonical grid (the mean

(4)
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plane) results in a cyclically symmetric matrix. As
shown in the boxed insert (Efficient Multiplication of
a Shift Matrix and a Vector), this matrix-vector prod-
uct can be computed using a “divide and conquer”
strategy that reduces to order N log(N) operations. For
very large systems, the computational time savings can
be substantial.

Having covered the construction of the interaction
matrices, the next step in the approach is the iterative
solution of Eq. 2 for the unknown vector X . Our
solution involves inverting the dominant, strong inter-
action matrix only and successively correcting the
solution for X  by the product with the weak interaction
matrix. The iterative technique can be summarized by

Z X C( ) ( ) ( ) , , , ,s n n n+ = =1 0 1 2 K (7)

where n represents the iteration number. The vector

C (n) is the updated source term given by

C C( )0 =

and

C C Z X( ) ( ) ( )– .n n

m

M
=

=
∑ w

0
(8)

Note from Eq. 7 that the new unknown, X( )n+1 , is
obtained by inverting the banded matrix Z( ).s  The in-
verse of Z( )s can be determined by the standard LU
decomposition method, that is, a one-time forward
sweep requiring order b2N/2 operations, where b (b < N)
is the bandwidth as determined by the interaction dis-
tance. The stored matrix is then repeatedly used for back-
ward substitution, requiring order 2bN operations. Equa-
tion 7 is iterated until a convergence criterion is satisfied.

The foregoing discussion is a general description of
the BMIA. Recently, we have applied highly specialized
numerical methods to the solution of Eq. 2 that further
accelerate the iterative convergence and drastically
reduce the memory requirement. One technique is a
multigrid method (see the boxed insert), designed to
address the problem of disparate spatial scales. This
method enables us to separately reduce the residual,
r Z X C= – , on each of the different grids, which
represent successively finer spatial resolution or wave-
number domains (a flowchart showing the interaction
between different grid levels is included in the insert).
In addition to the multigrid method, we have also
employed the so-called preconditioned, generalized
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conjugate residual method12 to further accelerate the
convergence at each grid level. Instead of solving the
original problem (that is, Z X C( )s = ), we solve the
equivalent problem ˜ ˜ ,( ) ( ) ( )– –

Z Z X Z Cs s s1 1
=  where ˜ ( )Z s

is an approximate operator to Z( ).s  This technique, which
further reduces the operation count compared with stan-
dard LU decomposition, is also described in the insert.

VALIDATION RESULTS AND
ANALYSIS: GAUSSIAN ROUGH
SURFACES

Using the foregoing techniques, we now discuss
sample calculations of the scattering cross section of
random rough surfaces with Gaussian spectra. The
incident field can take any form in a moment method
solution, but the choice should be one that satisfies
Maxwell’s equations. The simplest choice, used in most
analytical solutions for rough surface scattering, is a
uniform plane wave incident at angle ui to the mean
surface normal. This is not representative of the radar
problem, however. A better choice, which approxi-
mately satisfies Maxwell’s equations, is the tapered
plane wave developed by Thorsos.13 The tapered plane
wave has a parameter g, having dimensions of length,
that controls the tapering of the incident wave.
Typically, if the moment method is solved on a domain
of length L, the taper is chosen to be some fraction of
L. In this article we use g = L/4. This avoids artificial
edge diffraction by having the field taper to zero at the
edges of the domain. We use the tapered plane wave
here as a model of a radar beam originating from a point
source located far from the illumination footprint.

Once we calculate the unknown surface current u(x)
by the moment method (in discrete form), we can
obtain the scattered field at any point above the surface
by integrating the product of the surface current with
the Green’s function, an integral analogous to that
shown in Eq. 1 but with the field point r off the surface.
The quantity we consider is the far-field scattering cross
section, defined as the ratio of scattered plane wave
power propagating far away from the surface to the total
power incident on the surface. The expression for the
normalized scattering or radar cross section using the
tapered plane wave for the incident field is
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A schematic for the computation of
a finite impulse response (FIR) filter
via the use of fast Fourier transform
(FFT) algorithms. The overlap-add
procedure computes the FIR as a
sequence of vector convolutions.
Each vector convolution, in turn, is
computed using zero padding and a
cyclic convolution. Each cyclic con-
volution uses an FFT and the cyclic
convolution property of the discrete
Fourier transform.

Given an m vector u , we wish to compute the n vector
x  obtained by multiplication with S  as

x Su= .

Clearly, the direct computation of x  uses mn multipli-
cations and (m – 1)n additions. This calculation can be
made significantly more efficient, however, if one considers
that the coordinates of x  are the output of a finite impulse
response (FIR) filter whose tap weights are the coordinates
of u  and whose input signal is b0, b1, b2,…,bm+n–2. This filter
can be implemented using a fast Fourier transform (FFT)
algorithm, which results in an order of magnitude reduction
in the arithmetic complexity (i.e., the number of multipli-
cations and additions) of the calculation.

The conversion of the matrix product to an FFT-based
filtering is done through a sequence of algorithms (see the
figure). First, an FIR filter can be implemented by using a
vector convolution process and an algorithm known as an
overlap-add procedure (see, e.g., Ref. 8). Basically, the idea
is to partition the input signal into nonoverlapping blocks,

EFFICIENT MULTIPLICATION OF A SHIFT
MATRIX AND A VECTOR

A shift matrix is a rectangular matrix in which each row
is a shift of the previous row one position to the right, with
a new number introduced in the left-most position. Thus,
for example, the 3 3 4 matrix
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The weak interaction matrices ( Z(w)) discussed in the text
(see Theoretical Description) are of this form.
where a(us, x) = sin(us)x + cos(us) f(x). The integral in
Eq. 9 must, of course, be done in discrete form. The total
scattering cross section s is also defined as the ratio of
the “effective” reflecting area of the surface to the total
illuminated area. It is therefore a dimensionless quan-
tity, with a maximum value of 1 corresponding to a
perfectly reflecting (lossless) surface. The quantity shown
in Eq. 9 is the differential scattering cross section, having
208 JO
units of radian–1. A useful check of the numerical accu-
racy of our calculation, since the surface is assumed loss-
less, is to demonstrate that the integral of s(us) over all
scattering angles equals 1. This statement of energy con-
servation is numerically tested in the following examples.

To generate random rough surfaces, we use a spectral
method13 in which the surface profile is calculated by
discrete inverse Fourier transform or fast Fourier
HNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)
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vector-convolve each block with the vector of tap weights,
and patch together the output via the overlap-add procedure
by adding the head of each subsequent block output to the
tail of its predecessor block output.

For the shift matrix multiply, one selects a block size N
between m and (m + n – 1). The input signal b0, b1, b2,…,
bm+n–2, which is formed from the elements of the matrix S ,
is partitioned into nonoverlapping blocks of size N. The first
block is vector-convolved with the vector u , the first
(m – 1) output values from this convolution are discarded,
the next (N – m + 1) output values become the first coor-
dinates of the matrix multiply, and the final (m – 1) output
values are stored in registers for overlap-add processing. For
each subsequent block, the first (m – 1) output values are
added to the previous (m – 1) values that were stored for sub-
sequent processing and become the next (m – 1) coordinates
of the matrix multiply. The next (N – m + 1) output values
are again the next coordinates of the matrix multiply, and
the final (m – 1) output values are stored in the registers as
before. Processing continues in this fashion until we have
the n coordinates of the matrix multiply.

Second, a vector convolution can be computed using a
cyclic convolution processor. Here, we are vector-convolving
an N vector and an m vector. We expand both  vectors into
(N + m – 1) vectors by zero-filling on the tail end of each with
the appropriate number of zeros. It can easily be shown that
the cyclic convolution of the resulting two vectors is equal to
the vector convolution of the original vectors.

Finally, the discrete Fourier transform (DFT) satisfies the
cyclic convolution property that the DFT of the cyclic con-
volution of two vectors is the coordinate-wise product of the
DFTs of the two vectors. Thus, a fast algorithm for comput-
ing the cyclic convolution computes the DFTs of the two
input vectors, point-by-point multiplies these two vectors,
and computes the inverse DFT of the resulting vector. The
three DFTs use the FFT algorithm.

The particular shift matrix (weak interaction) used in
this article is a square matrix of size N. For this, we choose
a block size N and partition the input into two sets. All FFTs
are therefore of size (2N – 1). The vector of tap weights is
the same for both input blocks, so its FFT need only be
computed once. Thus, five FFTs are used to compute the
shift matrix multiply. In addition, we perform (4N – 2) com-
plex multiplications and (N – 1) real additions, yielding the
total number of real arithmetic operations (multiplications
and additions) of the order N log(N), rather than N2, as
would be required for the direct calculation.
transform (FFT). The Fourier transform for the individ-
ual realization F(kj) is calculated from the power spec-
tral density S(kj) according to

F k LS k

N iN j N

j N
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where L is the length of the realization and for j < 0, F(kj)
= F*(k–j), where the asterisk indicates a complex con-
jugate. The quantity N(0 : 1), each time it appears, is
a random variate: an independent draw from a Gauss-
ian distribution of zero mean and unit variance.

The power spectral density determines the physical
characteristics of the rough surface. For Gaussian rough
surfaces, the spectrum is Gaussian in kj and is charac-
terized by the mean squared height <h2> and surface
correlation length l. Equation 10 defines a random Fou-
rier transform. Each time it is calculated and inverted,
a statistically independent surface realization results. In
the Monte Carlo approach, statistical moments of the
scattered field are taken over an ensemble of many
surface realizations. In this article, we discuss only the
mean cross section or ensemble average of Eq. 9.

Sample calculations are now shown for Gaussian
surfaces having rms height of 0.5l and correlation
length of 1.0l. The ensemble-averaged bistatic radar
cross section for surfaces of length L = 40l is shown in
Fig. 2. In this example, the field is incident at 10° from
the normal. The result is an average over 4000 realiza-
tions of the surface, a very large number that is made
possible by the speed of the BMIA code. In Fig. 2, our
results are compared against simulation results pub-
lished by Tsang et al.7 The comparison is good; the
small differences are explained by our use of a more
stringent convergence criterion. Note that the peak
scattered power in Fig. 2 occurs not in the specular
direction but rather in the backscatter direction,
us = ui = –10°. The surface, therefore, exhibits en-
hanced backscattering, an anomalously large return, or
retroreflection. This phenomenon has been attributed
to a complicated multiple scattering effect that favors
phase-coherent paths in the backward direction.14 The
possible relevance of this effect to sea spikes (i.e.,
anomalously large and transient radar returns from the
ocean) is currently under investigation.

Figure 3 shows scattering results from surfaces with
similar statistics for a very low grazing angle (ui = 85°).
The surface length used is a very large 1200l, which
is necessitated by the physics of very low-grazing-angle
scatter. At such angles, a finite-width beam has a very
large horizontal projection. Furthermore, the incident
wave can be multiply-scattered and can induce surface
currents well outside the projected footprint. Compar-
ison of Figs. 2 and 3 demonstrates the substantial dif-
ference between low-grazing-angle and near-normal in-
cidence rough surface scattering; i.e., whereas Fig. 2
shows broad, diffuse scatter with a slight enhancement
in the backscatter direction, Fig. 3 shows a sharp, spec-
ular (us = ui = 85°) peak or mirror-like reflection. This
997) 209
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coarse-grid correction, and the correction to Xp+1 must be
transferred back (prolongated) to the fine grid, i.e.,

X X I X I Xp p p
p

p p
p

p
new old old– ,= + ( )+

+ +
1

1 1 (C)

where “new” represents the updated information during the
multigrid iterative solution. This prolongation is vital to the
success of the scheme. Changes in the variables are trans-
ferred back to the fine grid rather than the variables them-
selves. Both Ip

p+1 , the prolongation operator from the coarse
grid to the fine grid, and Ip

p
+1 , the restriction operator from

the fine grid to the coarse grid, can be simply constructed
through linear interpolation.11

Implementing the multigrid algorithm in conjunction
with the preconditioned generalized conjugate residual
(GCR) method at each grid level is also crucial to the
success of the algorithm, not only to accelerate convergence
but also to reduce the working space. Before starting the
multigrid iteration, the residual on the grid p = 0 is first
smoothed and estimated, then restricted to the next-finest
grid level. Given Eq. A, on the coarse grid (p + 1) we must
solve

Z X I X I rp p p
p

p p
p

p+ + + +=1 1 1 1( – ) . (D)

With the definition DX X I Xp p p
p

p+ + +=1 1 1– , the iterative
solution of Eq. D by the preconditioned GCR method is

˜ ˜ ( – ),(s) (s)Z X Z X I r Z Xp p
n

p p
n

p
p

p p p
n

+ +
+

+ + + + += +1 1
1

1 1 1 1 1D D Da (E)

where n is the iteration number at each grid level, and a
is a free parameter whose optimal value can be determined
by minimizing a functional.12 The coarse-grid operator Zp+1

is constructed based on the grid spacing Dp+1, and the pre-
conditioned operator ˜ (s)Zp+1

 is a matrix with a truncated
bandwidth (the strong interaction) whose storage space is
much smaller than that for Zp+1

(s) . This is the critical step
for reducing the total storage space for all  ˜ (s)Zp

, p = 1,2,..., J.
On the coarsest grid J, ˜ (s)ZJ

should be reasonably set equal
to ZJ

(s)  to ensure fast convergence.
When the coarse-grid correction process transfers the

correction from grid level p + 1 to p, Eq. D can be written as

D D DX X I Xp p p
p

p
new old old= + +

+
1

1 (F)

for p > 0 and

X X I X0 0
1

1
new old old= +p D (G)

for p = 0. Note that the superscript “new” becomes “old” if
it is being used to update the information. The order in
which the grids are visited is called the multigrid cycle. (For
comparisons among different cycles, see Ref. 11.) The calcu-
lations in this article use the W cycle. For one multigrid
iteration, the coarse-grid correction process transfers the
correction back to the finest-grid level, p = 0. If the residual
does not meet the convergence criterion ( ),r0 < e  the multi-
grid iteration is repeated until the convergence check is satisfied.

MULTIGRID METHOD
Elliptic and hyperbolic partial differential and integral

equations are common in engineering and physics and re-
quire extensive numerical computations. Often, the prob-
lems exceed the computer’s memory capacity or require
prohibitive amounts of computing time. The multigrid
method9,10 has emerged as an important advance in algo-
rithmic efficiency that greatly expands the range of prob-
lems one can compute. The solution is not generated on a
single-grid basis but rather on a multigrid basis, i.e., a
sequence of grids spanning the finest grid spacing D to the
coarsest spacing 2pD, where p is the grid level.

For the banded matrix problem, we use “standard coars-
ening,” which involves doubling the mesh from one grid to
the next-coarsest grid and also smoothing the residual
( – )r C= ZX  to the next-coarsest grid (a process known as
restriction). The problem is solved on the coarse grid (low-
resolution or small-wavenumber domain), and the coarse-
grid correction for the variable transfers the correction back
(prolongation) to the fine grid (large-wavenumber domain)
to gain rapid convergence (see the accompanying flow-
chart). The multigrid method lets us reduce the residual on
the different frequency domains. On the coarse grid (level
p + 1), the equation solved is an approximation to the fine-
grid (level p) equation. The interaction between the fine
grid and the coarse grid can be symbolically correlated by

Z X Z I X I rp p p p
p

p p
p

p+ + + + +=1 1 1 1 1– ( ) . (A)

Here, Zp+1  represents the operator of Eq. 4 (see text) on
the coarse grid, Ip

p
+1  is an interpolation operator (restric-

tion) from the fine grid “p” to the coarse grid “p + 1,” and
Xp  and rp  are the unknown vector and residual, respective-
ly, on the fine grid. Note that r C Z X0 0 0= –  corresponds
to the residual on the finest grid (the original problem). The
left-hand side of Eq. A is the difference between the coarse-
grid operator acting on the coarse grid and the coarse-grid
operator acting on the interpolated fine grid (which is held
fixed). After the fine-grid solution has been found, the
residual rp  will be zero and the solution of Eq. A becomes

X I Xp p
p

p+ +=1 1 , (B)

as required for convergence. When the residual is nonzero,
the left-hand side of Eq. B acts as a forcing term for the

r

r

r

r
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exemplifies the well-known result that all rough surfac-
es reflect specularly in the grazing limit, as evidenced
by examining the glossy reflection from a sheet of paper
viewed “edge on.” Note that although the differential
cross section in Fig. 3 becomes large near the specular
direction, the total cross section, or integral of s(us)
over all scattering angles, is a conserved quantity. In
fact, in the limit of a flat surface with a plane wave
incident, s(us) becomes a delta function, singular at ui.

Figure 3 was calculated with a sampling rate of 10
points per wavelength. The linear system, therefore,
consisted of N = 12,000 unknowns. A problem of this
size requires 116 MB of computer memory using the
single-grid technique discussed earlier. By using a four-
grid decomposition, the memory requirement is reduced
to 31 MB. Because of the time and memory required, the
problem was not run with the single-grid method. The
four-grid solution required 195 min of computer time for
one realization of the surface on a 99-MHz workstation.
Although this is substantially longer than the 40l case
shown in Fig. 2, we averaged over 50 realizations to
obtain reasonable ensemble statistics. The result thus
demonstrates the capability of the BMIA code to
simulate very low-grazing-angle scatter and to integrate
over very large surfaces, both of which are required for
many problems of practical interest.

SEA SCATTERING SIMULATIONS
Although the previous discussion demonstrates the

capability of the BMIA code on a well-studied class of
rough surfaces, our objective is to apply the method to
the problem of radar/ocean surface interaction, which
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Figure 2. Calculation of the ensemble-averaged, normalized ra-
dar cross section from a Gaussian rough surface with rms height
of 0.5l and correlation length of 1.0l. The incidence angle is 10°,
and the result is averaged over 4000 realizations. The banded
matrix iterative method results (red) are compared with those
published by Tsang et al.7
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Figure 3. Same as Fig. 2, but for an incidence angle of 85° (near
grazing). The surface length is increased to 1200l, and the result
is averaged over 50 realizations.

presents many challenges. A primary difficulty is ac-
counting for the tremendous range of spatial scales on
the ocean surface (see the boxed insert, Ocean Surface
Hydrodynamics). Whereas diffuse scattering is primar-
ily due to roughness scales comparable to or smaller than
the radar wavelength (which typically falls in the
gravity–capillary portion of the surface spectrum), the
larger scales (gravity waves) contribute through tilt,
mean curvature, and shadowing effects. In addition,
while the radar is sensitive to the small scales, the
illumination footprint may be quite large by compar-
ison. This problem is similar to the one addressed by
Fig. 3, where the integration domain is very large
compared with the wavelength. In many radar/sea scat-
tering problems, however, the situation can be far more
extreme than in Fig. 3, particularly at low grazing angles.

Although the BMIA calculation is not a compre-
hensive solution to the sea scattering problem, tremen-
dous progress has been made in developing an increas-
ingly more realistic simulation. For example, the
multigrid method discussed previously has been used to
reduce the memory requirement of the problem from
the level of large supercomputers to that of typical
desktop workstations. Moreover, the speed of the sim-
ulation makes it practical to do reasonable amounts of
statistical averaging.

Unfortunately, even with a fully capable numerical
method, a realistic simulation requires a detailed and
accurate model of the ocean surface, and no such model
exists. Although approximate, the best models use a
linear spectral method similar to that presented in the
previous section. As noted earlier (Ocean Surface
Hydrodynamics insert), the spectral method has several
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OCEAN SURFACE HYDRODYNAMICS
The broadband structure of the ocean surface, with

roughness scales spanning many orders of magnitude, plays
a crucial role in the scattering of electromagnetic fields. An
important deficiency in current research on microwave
remote sensing of the ocean is the lack of detailed knowl-
edge of the shape and time evolution of the ocean surface
and how these quantities depend on the local wind field.
In most cases, a statistical description of the surface is all
that is available. Such a description is usually given in terms
of the surface-height variance spectrum S(k), where k is a
two-dimensional wavenumber vector. The surface is mod-
eled by a continuum of traveling wave components obeying
the surface wave dispersion relation

v( ) tanh ,k k V= +


















+ ⋅gk
k
k

kD1
0

2

where g is the acceleration of gravity, D is the water depth,
and k g0 = t r/ , with t being the surface tension and r the
water density. The quantity V represents any additional
background current (including orbital currents from longer
surface wave components) that may be present. The phase
speed of a particular wave component, cp(k), is just v/k.
From the preceding equation, the minimum value of cp(k)
occurs for k = k0, corresponding to a wavelength of about
17 cm. Most of our knowledge of S(k) derives from point
measurements of the waveheight frequency spectrum S(v).
For a surface where S(k) = S(k) (e.g., a one-dimensional
surface), one can show that S(k) and S(v) are related by

S k
k

d
dk

S( ) ( ),= 1 v
v

where dv/dk is the group velocity.

Several empirical models that parameterize S(k) in terms
of wind speed (or friction velocity) have been devel-
oped.15,16 Figure 4 in the text shows plots of S(k) versus k
for the Bjerkaas–Riedel model15 at various wind speeds.
Note in Fig. 4 that as the wind speed increases, the spectral
peak also increases in magnitude and moves to smaller k
values (longer waves), and that the spectral density for
higher k values (corresponding to wavelengths on the order
of 10 cm or less) increases as well. This latter region of the
spectrum, where the surface wave scales coincide roughly
with the wavelengths of microwave radars, is particularly
important in radar scattering calculations.

Even for the special case where S(k) = S(k), there are
fundamental difficulties associated with inferring S(k) from
corresponding measurements of S(v). These difficulties are
caused by nonlinearities in the surface-wave hydrodynamics.
A manifestation of these effects appears through the k·V
term in the first equation. This term is generally nonzero
because the surface velocity resulting from orbital motion
of longer waves will shift the frequency of the shorter waves
riding on them. Thus, since dv/dk is a function of V as well
as k, accurate measurements of S(v) do not uniquely deter-
mine S(k) unless V is also known.

The long-wave orbital surface current can also exchange
energy with the short-scale waves through wave-current
interaction processes. This mechanism, as well as wind stress
variation over the long waves, can result in modulation of
the short-scale spectral density as a function of position over
the long-wave surface.17 The basic idea is conceptualized in
the accompanying figure, where we show the small-scale
roughness to be largest near the crest on the downwind face
of the longer waves. This type of nonhomogeneity of the
short-wave spectrum skews the surface profile, creating wave
crests that are sharper and higher than the troughs, and thus
yield a non-Gaussian probability distribution for the surface
elevation. Such non-Gaussian probability distributions are
indeed observed experimentally (see, e.g., Ref. 18).
important omissions, such as the coupling between
disparate length scales. Another limitation is that, by
nature, it is an averaged representation and therefore
ignores singular or transient effects such as breaking
waves, whitecaps, dynamic wind-surface coupling, etc.
Despite these difficulties with the spectral representa-
tion, our sea scattering simulations use the APL-
developed Bjerkaas–Riedel spectrum15 illustrated in
Fig. 4. To generate random realizations of the ocean
surface, this spectrum is discretized and substituted into
Eq. 10 for S(kj).

Figure 5 shows a BMIA calculation (analogous to
Fig. 3) of the averaged bistatic radar cross section from
80 realizations of a 2.7-m length of sea surface (wind
speed, 10 m/s). The 3-cm wavelength incident radar
beam is approximated by the tapered plane wave form
and is incident at the near-grazing angle of 85°. It can
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Therefore, accurate predictions of the radar cross section for
microwave scattering from the ocean depend on an ade-
quate description of the surface height statistics (which are
usually non-Gaussian) or, equivalently, on a proper treat-
ment of the nonhomogeneity of the short-wave spectrum.

Most of our knowledge of short-wave spectral modula-
tion in the presence of longer waves has been obtained using
microwave radars whose range cell is small compared with
the wavelengths of the long waves. The accompanying
schematic shows how these measurements may be obtained
for backscatter geometry. Notice that in this description of
the scattering process, we have implicitly divided the surface
spectrum into long- and short-wave regions whose bound-
aries are roughly determined by the size of the range cell.

Distance/time

Short-scale waves

Long-scale waves

Wind
Coherent

radar

W
av

eh
ei

gh
t, 

f

Composite surface schematic.

The long-wave portion of the spectrum is assumed homo-
geneous and stationary, whereas the short-wave portion
varies slowly over the (long) spatial and time scales deter-
mined by properties of the long waves.

Basically, the backscattered field is sampled at a rate high
enough to enable statistically significant estimates of the
radar cross section in a time that is short compared with the
period of the long-wave surface. For microwave radars whose
range cell is on the order of 1 m and long waves whose
wavelength is roughly 15 m or more, this time is about
0.25 s. (Since the field-decorrelation time for microwave
radars is on the order of milliseconds, many independent
samples may be collected over this sample time.) Further-
more, if the radars are coherent, measurements of the
Doppler frequency of the scattered field can provide an
estimate of the line-of-sight velocity of the long-wave sur-
face that can be used to tag the cross-section measurements
according to long-wave phase position.

Researchers at APL19 have recently collected coherent
microwave data of the type described here for comparison
with predictions from an approximate time-dependent
scattering model.20 Using this model and a surface descrip-
tion similar to that previously outlined, we have been able
to compute not only the time series of the cross section and
Doppler spectrum of the (backscattered) electric field,21 but
also statistics of the field amplitude and phase.19,22,23 The
key assumption in these calculations is that the local (at a
particular long-wave phase position) behavior of the short-
scale surface waves can be described by a local (short-wave)
spectrum with no higher-order terms. The higher-order
moments arise entirely from modulation of the local spectrum
as a function of long-wave phase position. An important
objective of future work will be to couple the time-dependent
surface description outlined here with the BMIA scattering
technique. This will enable us to extend the calculations to
high-incidence-angle regimes where the accuracy of more
approximate methods is expected to decrease.
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Figure 5. Calculation of the ensemble-averaged, normalized ra-
dar cross section from random realizations of the Bjerkaas–Riedel
sea spectrum with a 10-m/s wind. The radar wavelength is 3 cm,
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and the beam is incident at 85° (near grazing).
be seen that for the choice of wavelength, wind speed,
and incidence angle, the sea is a diffuse scatterer. The
scattered power is greatest near the specular direction,
but broadly distributed over all scattering angles,
including the backscatter (us < 0) directions. The
backscatter component (us = –ui = –85°) characterizes
the received signal strength for imaging radars or a
source of noise for target detection and tracking.

When we compare Figs. 3 and 5, we see that at low
grazing angle the moderately rough ocean scatters very
differently from the Gaussian rough surface. This is
primarily due to tilt, shadowing, and curvature effects
of waves that are large compared with the radar’s 3-cm
wavelength. These effects vary randomly among real-
izations. The diffuse result shown in Fig. 5 is obtained
after ensemble-averaging over the realizations or, equiv-
alently, after time-averaging the radar return from a fixed
97) 213
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Figure 6. Calculation of the ensemble-averaged, normalized back-
scatter cross section from random realizations of the Bjerkaas–
Riedel spectrum. The results are shown as a function of wind speed
for near-normal (15°), moderate (40°), and near-grazing (80°)
incidence angles.

footprint on the sea surface. The ocean surface realiza-
tions used for Fig. 5 have an rms height about 3 times
larger than the Gaussian surfaces used for Fig. 3. Most
of the excess wave energy is in the longer waves (with
large correlation length), which are not present in the
Gaussian rough surfaces. Thus, rough surfaces with
Gaussian spectra poorly approximate sea surface scattering.

In Fig. 6, the radar backscatter cross section is shown
as a function of wind speed for three incidence angles.
At near-grazing incidence (ui = 80°), the cross section
strongly increases with wind speed because of both
increasing small-scale roughness on the surface and a
broader distribution of surface slopes (larger tilts). In-
terestingly, at near-normal incidence (15°) the cross
section is nearly independent of wind speed, an effect
that has been observed experimentally.24 We have also
verified that at even higher incidence angles, where the
backscatter is mostly due to specular reflection, the
cross section decreases with wind speed, as one expects
from the broader distribution of surface slopes. Figure
6 also gives some information on the incidence angle
dependence of radar backscatter. At a 10-m/s wind, for
example, the cross section increases by 2 orders of mag-
nitude, from 80° to 40° incidence. The cross section
increases at a similar rate until about 20° and then
levels off approaching normal incidence.

To further quantify the performance of our BMIA
code, we list in Table 1 the computational parameters
for calculations similar to those shown in Fig. 5 but
using ui = 40°. With a surface length of 2.7 m, wave-
length of 3 cm, and sampling rate of 20 points per
wavelength, the problem requires N = 1800 samples.
Column 1 lists various bandwidths b for the strong
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SUMMARY
With its exceptional computational efficiency, the

BMIA is a powerful new tool for surface scattering
simulation, enabling the solution of large-scale prob-
lems that were previously unapproachable. This new
capability is particularly promising for the study of dif-
fuse radar scatter from the ocean, a long-standing prob-
lem of great interest to APL, its sponsors, and radar and
remote sensing researchers. Simulations were shown of
10-GHz radar scatter from a model ocean surface, at
various incidence angles and wind speeds. The calcu-
lations confirm our physical intuition in several cases,
and in general enable us to quantify order-of-magnitude
effects that are of fundamental importance to several
Laboratory programs, including a model for low-grazing-
angle radar propagation over the ocean (the Troposphere
Electromagnetic Parabolic Equation Routine model).

Significant progress has been made in sea-scatter
modeling, although substantial challenges remain. For
example, the current model is valid only for Dirichlet
boundary conditions, or the equivalent of a horizontally
polarized electric field incident on a perfectly conduct-
ing surface. Although this is considered a reasonable
approximation for horizontal polarized sea scatter, the
perfect conductivity assumption is generally inadequate

Table 1. Computational performance of the BMIA code for
calculations similar to those in Fig. 5.

Energy
Computer Memory conservation

Bandwidth time (min) (MB) index

401 (5.9, 7.0) (14.0, 6.0) (1.0001, 1.0001)
801 (12.1, 10.8) (28.0, 6.5) (0.9998, 0.9998)

1001 (16.7, 12.9) (35.0, 7.0) (0.9999, 0.9999)
Note: Pairs in parentheses represent single-grid calculations on the
left and multigrid calculations on the right.

interaction matrix. As the bandwidth increases, the
computational efficiency of the banded matrix method
decreases. At b = 401, for example, a single-grid calcu-
lation on one realization of the surface requires 14 MB
of memory and 5.9 computing min. The multigrid
method reduces the memory requirement to 6 MB, but
the extra overhead increases computing time slightly.
As b increases, substantial reductions are achieved in
both time and memory. For completeness, Table 1 in-
cludes the calculated energy conservation index defined
in the previous section. In each case, energy is con-
served to four decimal places.
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)



for vertical polarization at radar frequencies. As a re-
sult, a lossy surface will have to be introduced.

In addition to polarization and surface conductivity
effects, a full three-dimensional scattering model is also
a high priority. Such a model will incorporate scattering
contributions into and out of the plane of incidence and
will also remove the restriction of cylindrical surface
roughness. Given the enormous computational com-
plexity of the radar/ocean surface problem, direct nu-
merical simulations in three dimensions have not been
considered possible until very recently. Because of its
efficiency, the banded matrix approach we have devel-
oped may be especially well-suited to this challenging
problem.

Finally, as the capability of the simulation is
expanded, improved calculations will also require more
refined hydrodynamic modeling of the ocean surface.
Ocean hydrodynamics is itself an active area of re-
search, with much left to be learned. We are currently
developing a two-scale decomposition of the ocean sur-
face in which the longer waves are propagated determin-
istically and contribute a time-dependent mean tilt to
the small-scale random surface realization. Methods for
coupling the large and small scales (see the insert, Ocean
Surface Hydrodynamics) are also being considered.
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