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athematical techniques are presented for modeling electromagnetic propaga-
tion over an irregular boundary. The techniques are aimed at upgrading the Applied
Physics Laboratory’s Tropospheric Electromagnetic Parabolic Equation Routine (TEM-
PER) model for radar propagation over terrain. The physical domain with an irregular
boundary is mapped to a rectangular domain, where a numerical solution can be
generated by the same approach used in TEMPER. This new method is applied to
several model terrain problems and shown to be accurate and practical for a reasonable
range of surface slopes. Interesting results are discussed for the shadowing of radar by
terrain obstacles and the detection of low-flying targets over mountainous terrain.
(Keywords: Electromagnetics, Ground clutter, Parabolic equation, Propagation, Rough
boundaries.)

M

INTRODUCTION
The propagation of radar waves at low grazing angles

over terrain is a critical area for numerical modeling
and performance prediction. A principal goal is esti-
mating ground clutter, or surface backscatter, an
obvious impediment to target detection. In addition,
diffuse reflection from the ground can alter the coher-
ent interference between the direct and reflected
beams, adding additional uncertainty to the radar’s
coverage pattern. These terrain effects become even
more pronounced when coupled with atmospheric re-
fraction. The inhomogeneity of the atmosphere, which
often takes the form of horizontally stratified density
layers, can redirect radar energy such that repeated
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interaction with the ground occurs. The Theater Sys-
tems Development Group of APL’s Air Defense
Systems Department has developed the computational
model TEMPER (Tropospheric Electromagnetic Para-
bolic Equation Routine) to better understand and
predict the effect of such environmental factors on
radar system performance.

TEMPER has been under development at APL since
the early 1980s. The first objective was to accurately
calculate electromagnetic propagation over the sea in
complicated refractive environments.1–5 TEMPER is
currently used extensively on several Navy programs to
provide propagation calculations for radar system de-
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sign studies, posttest reconstruction, and in situ ship-
board environmental assessment. Although TEMPER
is mature and well established as a predictor of prop-
agation over the sea, the Navy’s current emphasis on
littoral operations results in a need for accurate prop-
agation calculations over irregular terrain as well. This
article describes recent efforts to develop algorithms to
address this need.

The Parabolic Wave Equation (PE) was first derived
in the 1940s by Fock,6 but analytical solutions were
developed only for problems involving unrealistically
simple refractive conditions. In 1973, Hardin and Tap-
pert introduced an efficient numerical approach for
solving the PE called the Fourier/split-step algorithm.7

This algorithm was used primarily for underwater prop-
agation until 1981, at which time Harvey Ko and col-
leagues in APL’s Submarine Technology Department
(STD) modified an acoustic model to address electro-
magnetic propagation in the troposphere.1 The new
model was called the Electromagnetic Parabolic Equa-
tion (EMPE).

In 1984, Dan Dockery, then in the Fleet Systems
Department, working with the STD developers and
members of the APL Research Center, began modifi-
cations to expand EMPE’s capabilities as a radar prop-
agation prediction tool.2–5 These upgrades included in-
corporation of an impedance boundary condition, a
rough surface model, and flexible antenna pattern al-
gorithms; increased numerical efficiency and robustness
were also achieved. Eventually, the model was renamed
TEMPER to avoid confusion with the original program.
An extensive experimental campaign was also under-
taken between 1984 and 1989 to validate EMPE/TEM-
PER using calibrated propagation data collected in
measured refractive conditions.2,3 These tests estab-
lished the accuracy of the PE Fourier/split-step ap-
proach for predicting radar propagation over the sea in
complicated, range-varying, refractive environments.

At present, however, TEMPER is limited in its
ability to rigorously account for irregular terrain. Ac-
curate numerical solutions can only be guaranteed
when propagating over mean smooth surfaces, such as
a flat plane or spherical Earth. An approximate tech-
nique, described in the next section, was previously
introduced to account for arbitrary changes in surface
slope. However, this technique introduces nonquanti-
fiable errors into the solution. This article describes
techniques for rigorously incorporating an irregular
boundary into the TEMPER model. A principal re-
quirement is that the new technique allows one to
retain the Fourier/split-step numerical approach. We
emphasize that the terrain under consideration con-
tains roughness features or slope variations on scales
that are much larger than the typical radar wavelength
l (centimeters to meters). The effect of fine-scale
roughness that is comparable to or smaller than the
280 JOH
wavelength is particularly important to propagation
over the ocean surface and to certain types of terrain
as well (a related problem is scattering from ground
cover/foliage). Alternative techniques have been de-
veloped to account for such features,4 and they are not
discussed here.

REVIEW OF PARABOLIC WAVE
EQUATION AND FOURIER/SPLIT-
STEP SOLUTION

TEMPER is based on the PE, an approximation to
the reduced wave (or Helmholtz) equation, where it is
assumed that the wave energy propagates predominant-
ly in the forward or horizontal direction. This approx-
imation has been found to work quite well for modeling
low-grazing-angle radar propagation. The principal
advantage of the PE approach is numerical efficiency.
By neglecting backscattered wave energy and restrict-
ing propagation to small angles with respect to the
horizon, highly optimized numerical methods can be
employed to rapidly calculate propagation over tens or
even hundreds of kilometers in range. Altitudes are
generally limited to a few kilometers above the Earth’s
surface. The PE approach is also well suited to incor-
porating atmospheric refraction. Rigorous solution over
a large-scale irregular boundary has previously been
considered a limitation of the PE method.

For this article, we consider a scalar form of the
Helmholtz wave equation, corresponding to one com-
ponent of a vector electric (or magnetic) field. Further-
more, we assume azimuthal homogeneity of the atmo-
sphere and terrain, so that solutions are generated in
a two-dimensional (range x vs. altitude z) slice. Under
these assumptions, the Helmholtz equation for the field
f has the form
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where k = 2p/l is the wavenumber of the field and n
is the index of refraction. It is important to emphasize
that all of the effects of atmospheric refraction are
incorporated into n, and furthermore, the boundary
mapping methods discussed in the next section result
in modification to n only. This is critical to the ap-
proach, since it allows us to account for both atmo-
spheric and terrain effects through the standard meth-
ods used to solve Eq. 1.

To obtain the parabolic form of the wave equation,
we first assume that the field f propagates as time-
harmonic (eiwt), cylindrical (two-dimensional) waves of
the form f( , ) ( , ) / ,(k r)x z u x z e ri= ⋅  where r is the dis-
tance from the source in the two-dimensional space.
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The function u(x,z) can be regarded as the slowly
varying (in space) envelope of the propagating wave
field. Our objective is a wave equation for u in which
the traveling wave dependence is factored out of the
problem. By substituting u into Eq. 1 and dropping a
term containing ∂2u(x, z)/∂x2 (the paraxial approxima-
tion), we arrive at such a form,
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The paraxial approximation used to derive Eq. 2 as-
sumes that the propagation is nearly horizontal, and
that gradients in the horizontal direction are small
compared with the vertical. For a complete develop-
ment of this equation, the reader is referred to Ref. 4.
Equation 2 is a parabolic partial differential equation
that can be solved as an initial value problem. A start-
ing field, u(z), is specified for an initial x, and the
solution is marched forward in range. The marching
method is highly efficient numerically, particularly
since the range and altitude stepping can be decoupled
using the Fourier/split-step method. In this approach,
the altitude coordinate z is paired with a Fourier trans-
form variable p. The approximate solution at range step
x 1 dx is given by
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where F and F 21 are the forward and inverse Fourier
transforms in (z, p) space and m = n2 2 1. The expo-
nential form of the operators in Eq. 3 can be understood
by considering Eq. 2 as a first-order linear differential
equation in x, with a corresponding exponential solu-
tion. A solution such as Eq. 3 assumes m is very small
compared with one. The smallness of m allows for the
expansion of an exponential operator, which can be
carried out in different ways.8 We show Eq. 3 as one
such example. These expansions must be applied cau-
tiously when using boundary mapping methods such as
those discussed in the next section. The modified m
may no longer be small, particularly when the surface
has large slopes or small radii of curvature.

As mentioned previously, u(x, z) is the envelope
function or amplitude for one component of a vector
field. The standard approach is to decompose the elec-
tric field into a component that is perpendicular to the
(x, z) plane of incidence (horizontal polarization or H-
pol), and a component that is parallel to the plane of
incidence (vertical polarization or V-pol). For a perfect-
ly conducting and flat surface at z = 0, the H-pol field
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1
satisfies Dirichlet’s boundary condition [u(x, 0) = 0],
whereas the V-pol field satisfies Neumann’s boundary
condition [∂u(x, 0)/∂z = 0]. These boundary conditions
are satisfied exactly by using either sine (Dirichlet or
H-pol) or cosine (Neumann or V-pol) transforms in Eq.
3. For nonflat surfaces, the z derivative becomes a
normal derivative, which couples both x and z. In that
case, satisfying the boundary condition is considerably
more involved. An approach discussed in the next
section is to map the irregular surface via coordinate
transformation to a space in which the surface is locally
flat, so that a similar splitting of cosine and sine trans-
forms may be employed. We emphasize that once so-
lutions are obtained for the orthogonal H and V po-
larizations, the solution for any linear polarization state
may be obtained by simple linear combination.

The preceding discussion considers the solution of
the PE over surfaces that are flat or that may be made
flat by simple coordinate transformation. Although the
following section considers more general boundaries of
nonzero slope, the current TEMPER code uses an ap-
proximate technique for such boundaries that may be
mentioned here. The terrain is approximated by a se-
quence of up and down stair steps. At each down step,
the solution for the field at the new step is zero padded
down to the level of the dropped terrain. At each up
step, the field is trimmed off or zeroed below the level
of the new (raised) terrain. This technique, called
terrain blocking or masking, essentially approximates
the terrain by a series of knife edges and can only be
used for horizontal polarization over perfect conduc-
tors. Figure 1 shows a sample calculation generated by
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Figure 1.  A sample calculation of the two-way propagation factor
over digitally sampled terrain using the terrain masking approxima-
tion (f =11 GHz, V-pol). The color bar shows the mapping of field
intensity. A value of 0 dB indicates the intensity that would be
obtained in the absence of any terrain boundary or atmospheric
refraction.
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TEMPER with the terrain masking algorithm. The
terrain is an actual digitized sample from a mountainous
coastal region, and it represents the type of problem we
wish to solve accurately using newly developed tech-
niques. Later in the article, we compare a similar result
to a more rigorous solution generated with these tech-
niques.

TERRAIN MAPPING METHODS FOR
IRREGULAR BOUNDARIES

As shown in the previous section, electromagnetic
propagation is determined by solving the Helmholtz
equation (Eq. 1) on a two-dimensional region S repre-
senting a vertical (x, z) plane above the surface of the
Earth. When the Earth’s surface is undulating, as for a
regular train of waves on the sea, or has large-scale
roughness, as for specific terrain features, the physical
region S will have an irregular lower boundary. Our
computations, however, must be carried out on a rect-
angular region R with a straight lower boundary.

The central theme of this article is how to map the
physical domain S to the computational domain R. All
of the maps we use have the important property that
the Helmholtz equation (Eq. 1) on S is still a Helmholtz
equation in the coordinates of R. The only modifica-
tion is to the refractive index n. Thus, terrain effects
as well as atmospheric effects are all accounted for in
the nature of n, and the same PE Fourier/split-step
method can be retained.

Let us now examine the mappings, see how they
modify n, and determine how well they work. The
mappings we look at are global conformal maps, piece-
wise conformal maps, continuous shift maps, piecewise
linear shift maps, and wide-angle piecewise linear shift
maps. We test them on a variety of simple domains,
which are assumed to be over perfectly conducting
surfaces at horizontal polarization (Dirichlet bound-
ary). The test domains are sketched in Fig. 2. We use
simple domains and boundary conditions to isolate the
effects of the geometry.

Global Conformal Maps
The first type of mapping we use

is global conformal mapping. If w =
w(j) is a conformal map from R to
S, the index of refraction n is sim-
ply multiplied by |w9|, the mod-
ulus of the derivative of the map-
ping function. As long as |w9|
does not differ too far from unity,
the angle limitations on the para-
bolic approximation (m << 1) are
satisfied, and the map works quite
well in the numerical method. An
illustration of a global conformal

j

R

Figure 3.  An example
to the physical doma
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(a) Periodic surface
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Figure 2.  Various model terrain profiles. The following mapping
methods were used for the profile shown in the corresponding part
of the figure: (a) global conformal; (b) global conformal, exact
solution; (c) global conformal, piecewise linear shift; (d) piecewise
conformal, continuous shift; (e) piecewise conformal; (f) continu-
ous shift, piecewise linear shift; (g) piecewise linear shift, wide-
angle piecewise linear shift.

map is shown in Fig. 3. In this problem, the physical
domain S, which is bounded by a curved ramp, is
mapped to the rectangular computational domain. The
distortion introduced by the mapping to the area of the
rectangular cells is a measure of |w9|.

The global conformal mapping method is applied to
a regular train of waves on the sea, as shown in Fig. 2a.
For an ocean wavelength of 344 m and amplitude of
4 m, the waves have sufficiently gentle slopes that the
requirement on |w9| is met. This surface is illuminated
by a 25.6-MHz broadband antenna placed so high (5.3
km) that it simulates a plane wave at the surface. The
result is Bragg scattering,9 which is a superposition of
plane waves at angles determined by the grating law
(see Fig. 4).

v = v(j)

v

S

 of a conformal map [w = w(j)] from the computational domain R (left)
in S (right).
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Although conformal maps can be easily found for
the steps and ramps shown in Figs. 2b and 2c, the
gradients in such mappings are so steep that |w9|
becomes too large, and the angle restrictions on the
parabolic equation are violated. The step problem can
actually be solved exactly by a simple trick. The prob-
lem is solved on two rectangular regions. The PE prop-
agates from left to right in the first rectangle, starting
from the given antenna pattern [the initial value u(0,
z9)]. To continue from the first rectangle to the second,
the field is padded at the bottom with as many zeros
as correspond to the height of the step, and the same
number of points are trimmed off the top. This shifted
field is then used as the starting field for the second
rectangle, and the field is again propagated to the right.
This method gives the true solution for the step prob-
lem, which we are able to use as a benchmark to test
other terrain mapping methods. The case of a 3-GHz
antenna at 50 m above the surface and a 100-m step
at 10 km from the antenna is shown in Fig. 5. Field
strength in decibels is color plotted. The ramp problems
of Figs. 2c and 2d have been solved by conformal map-
ping and compared with Fig. 5. When the width D of
the ramp is moderately small, the solution is essentially
the same as that for the step. What we do is use a
mapping method on a ramp problem and decrease D
until the method fails. Failure can be seen (in plots like
Fig. 5) when the diffraction no longer goes smoothly
over the top edge of the ramp. The onset of failure is
detected when the locations of the nulls in horizontal
cuts through the field begin to move away from their
correct location. This condition tells us the limitation
on the terrain slopes that the method can handle
correctly.
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Figure 4. Propagation over a train of ocean waves calculated by
the global conformal mapping method (f = 25.6 MHz, H-pol). The
result shows the onset of Bragg scattering from the periodic
surface.
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Piecewise Conformal Maps
The next type of mapping used is piecewise confor-

mal mapping. The physical region is broken up into a
number of separate pieces, each of which is mapped to
its own rectangular computational region. The comput-
ed field must be handed off from each computational
region to the next one by using a forward map, an
interpolation, and an inverse map. Again, the index of
refraction n is simply multiplied by |w9|, but w differs
from region to region. Dozier10 previously used a piece-
wise conformal map that takes rectangular strips to
strips with straight, angled ends. These maps use elliptic
integrals and are computationally intensive. We used
a simpler map of the form w = log(c + eibz), where the
parameters c and b adjust the shape of the map. This
map takes rectangular strips to strips with S-curve ends
and has the advantage that its inverse is of the same
form. We used this map for the curved ramp of Fig. 2d.
The gradients in this mapping are much more gradual
than in the global conformal maps, and we are able to
use S-curves of height 100 m and widths down to 1 km
before the method begins to fail. These dimensions
correspond to a slope of 1:10 or about 5.7°. Again, the
overall result is very similar to the step problem of Fig.
5. We also considered the curved pyramid problem of
Fig. 2e by piecewise conformal maps. On a sample
problem, the results were found to be accurate for
pyramid slopes as large as about 6.5°, which is appar-
ently the limit of the piecewise conformal mapping
approach.
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Figure 5. Propagation over a 100-m step calculated exactly by the
superposition of two rectangular domains (f = 3 GHz, H-pol). A
deep shadowing of the field is observed behind the step in the
range of 10–30 km. This result is used as a benchmark for the
various terrain mapping methods.
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Continuous Shift Maps
The next mapping considered, the continuous linear

shift, was first introduced by Beilis and Tappert.11

Given a surface profile described by a function z = T(x),
the problem may be mapped to the rectangular domain
R by the continuous coordinate transformation

x9 = x, z9 = z 2 T(x) . (4)

Beilis and Tappert also showed that by replacing the
amplitude function u(x, z) with u x z ei x z( , ) ,( , )′ ′ ′ ′u  and by
making an appropriate choice for the function u, then
a modified PE of the form of Eq. 2 can be derived. In
the modified PE, the refractivity term becomes
m n z d T dx= − − ′ ′2 2 21 2 / ,  that is, the index of refrac-
tion is modified by a new term proportional to the rate
of change of slope of the surface. The shift map is
particularly attractive for our application, since the
exact same method used in TEMPER for the solution
of the PE may be employed. Moreover, for the Dirichlet
boundary, the only required addition to the TEMPER
algorithm is the modification of the refractive index.
The shift map is also mathematically rigorous in that
no additional approximations are made beyond those
that are required in the derivation of the PE.

The shift map was first tested on the ramp of Fig.
2c.12 The result compares well with Fig. 5, which gives
a measure of confidence in the numerical accuracy of
the approach. A new problem considered with the shift
map is the straight-sided pyramid of Fig. 2g. A sample
result is shown in Fig. 6. In this example, an H-pol 3-
GHz antenna is located 30.5 m above the ground. The
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Figure 6. Propagation over a 229 m 3 20 km pyramid calculated
by the piecewise linear shift map (f = 3 GHz, H-pol). Note the strong
reflections off the front face of the pyramid and the diffraction of the
field by the vertex.
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pyramid begins 10 km downrange of the antenna and
has a base dimension of 20 km and a height of 229 m.

We also applied the shift map to the sinuson of Fig.
2f, a continuously curved profile having an analytical
and continuously differentiable representation for T(x).
Propagation over the sinuson is illustrated in Fig. 7. The
sinuson has a base dimension of 20 km and a height of
229 m, so that its overall physical dimensions are com-
parable to the sharply peaked pyramid shown in Fig. 6.
An important difference between these two results is
the shadowing of the incident field behind the model
terrain obstacle. Over the smoothly curved sinuson, the
shadowing is very nearly geometric; that is, the field
strength is significantly reduced behind the obstacle,
and the shadow zone follows a roughly geometric form
bounded by a line joining the antenna with the peak
of the obstacle. In the pyramid problem, significantly
greater field strengths are observed behind the obstacle.
The elevated field strengths extend well into the geo-
metric shadow zone. The important difference between
the two problems is the sharp peak of the pyramid,
which acts as a diffraction wedge. When propagating
over sharp corners or edges, geometrical optics is a poor
approximation. As Fig. 6 shows, the problem can be
diffraction dominated.

The sharp contrast between Figs. 6 and 7 is signif-
icant for propagation modeling over terrain. In partic-
ular, the shadowing of the radar is strongly dependent
on both the height and the peakedness, or radius of
curvature, of the terrain. When working with sampled
terrain data, the curvature information may not be
available. It is therefore critical to know whether ac-
curate propagation predictions can be based solely on
terrain elevation samples, and if so, how finely the
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Figure 7.  Propagation over a 229 m 3 20 km sinuson profile
calculated by the piecewise linear shift map (f = 3 GHz, H-pol). The
shadow region, behind the terrain obstacle, is markedly different
than in Fig. 6.
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terrain must be sampled to minimize modeling errors.
For example, surface-based radar detection of low-fly-
ing targets in the shadow zone may be hampered by low
signal-to-noise ratios. Under such conditions, a differ-
ence of perhaps 5–10 dB in signal strength could de-
termine if a target is detectable at all.

Piecewise Linear Shift Maps
To examine modeling with sampled terrain, we have

developed an adaptation of the continuous shift map
that we call the piecewise linear shift map. The terrain
is represented by connected piecewise linear segments,
as might be obtained by joining terrain elevation sam-
ples by straight lines. The piecewise linear shift map
tracks the change in surface slope discretely at each
segment boundary, as opposed to the continuous inte-
gration of the rate of change of slope in the shift map
algorithm. This method was tested over a piecewise
linear representation of the sinuson profile of Fig. 7. For
example, a sample result used eight linear segments to
span the 20-km-long terrain obstacle, so that the ele-
vation samples were separated by 2.5 km. The PE code
was run with a range step (Dx9) of 100 m, which is small
compared with the surface sampling. As might be ex-
pected, the shadow zone was intermediate in size to Fig.
6 (the sharp peak) and Fig. 7 (the smoothly curved
sinuson). Again, this result is due to the intermediate
peakedness of the sampled sinuson. The sharp peak may
be removed either by interpolating the samples and
returning to a continuously curved representation of
the surface (T99 Þ 0), or by retaining the piecewise
linear representation but sampling on a finer scale.
Since the piecewise linear approach has several advan-
tages, including simplicity, we also examined the prob-
lem with various sampling rates. A simulation using a
rate of 1 surface sample every 10 range steps was found
to be virtually indistinguishable from the exact result
(Fig. 7). This finding confirms the utility of the piece-
wise linear approach for sampled terrain. However, the
accuracy will depend strongly on a sufficient sampling
interval to represent the actual curvature of the terrain.

When using a continuously curved representation of
the surface, perhaps through interpolation or curve
fitting of the terrain data, integration rules must be used
that are appropriate for the curvature of the surface.
Specifically, Eq. 3 shows m is integrated over range in
the left-hand exponential term. In many cases, a simple
approximation such as the trapezoid rule may be used.
However, the shift-map algorithm introduces the term
T99 into m. If the surface is sharply curved on the scale
of the range step (Dx), the trapezoid rule can introduce
a sizable error. Higher-order integration rules, such
as Gaussian quadrature, may overcome this problem.
In some cases, a smaller range step may be required.
Another possibility is an adaptive range-stepping
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (19
algorithm where Dx is dynamically determined on the
basis of an appropriate error criterion.

Wide-Angle Piecewise Linear Shift Maps
As mentioned previously, many approximate Fouri-

er/split-step solutions to the PE can be derived on the
basis of expansions of an exponential operator. The
simplest form, shown in Eq. 3, is referred to as the
narrow-angle result, since it is the most strongly limited
in the acceptable range of propagation angles about the
horizontal. More robust wide-angle forms8 have been
derived and used in TEMPER for propagation over a
rectangular domain. Recently, we developed a new
wide-angle version of the piecewise linear shift map.
This improved algorithm was tested on the straight-
sided pyramid (Fig. 2g) and found to give acceptable
results for D as small as about 1 km, corresponding to
surface slopes as large as 12.9°. The wide-angle piece-
wise linear shift map has therefore been identified as
the most robust mapping method studied in terms of
allowable surface slope, and it is most straightforward
to employ within the TEMPER algorithm. We remark
that a larger transform size was needed for smaller D to
avoid a grating lobe error at the vertex of the pyramid.

Now that we have reviewed the shift map algorithm,
it is interesting to compare this more rigorous technique
with the terrain masking algorithm discussed in the
previous section. An example is shown in Fig. 8. Both
results assume Dirichlet boundary conditions, which
are required for the terrain masking approximation.
Although the two results appear similar, some impor-
tant differences exist. In the shift map solution, there
are strong reflections of the incident field off of the
front faces of the pyramids. Terrain masking ignores
reflections entirely; the weak fields radiating from the
front faces of the pyramids result from approximating
the terrain by a series of knife-edge diffractors. The two
results also differ in signal strength in the troughs
between pyramids, particularly in the latter two. Dif-
ferences as large as 5–10 dB can be observed deep in
the troughs.

Computing Requirements
The results shown in this article typically require

several minutes of computing time to generate on a
late-model desktop workstation. The most detailed
simulations (large transform size and small range step)
require on the order of 1 h. The time requirement for
a typical personal computer is longer, but still practical.
Since the calculations are two-dimensional, the mem-
ory requirement is quite reasonable. The calculated
field on the two-dimensional grid occupies most of the
required memory; however, in most cases, only a small
fraction of the calculated values needs to be retained
for analysis and display.
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Finally, our more recent work on this problem has
focused on polarization dependence and (finite) surface
electrical parameters. A special technique called the
mixed Fourier transform has been developed at APL for
the TEMPER code.4,5 This technique, based on the
Leontovich boundary condition (which couples the
field and its normal derivative on the surface), intro-
duces both finite surface conductivity and horizontal/
vertical polarization dependence. As mentioned earlier,
a tilted boundary couples range and altitude gradients
when taking the normal derivative of the field. In that
case, the solution of the Leontovich boundary condi-
tion in the PE is considerably more involved than over
a rectangular domain. We have taken two approaches
to this problem as part of the shift map. First, a com-
plete mathematical solution has been developed that
will be reported in a later publication. A second ap-
proach is to approximate the new boundary condition
under the assumption of small surface slope. This
method has been tested for both polarizations on var-
ious problems, including the actual terrain sample
shown in Fig. 1. One of the preliminary findings is that

Figure 8.  A comparison of (a) the terrain masking approximation
to (b) the piecewise linear shift map, on a model problem.
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for a reasonable range of ground permittivity and con-
ductivity values, propagation at H-pol is weakly depen-
dent on the electrical parameters. At higher radar fre-
quencies (3–30 GHz) and typical ground electrical
parameters, the H-pol and V-pol results also tend to be
quite similar. At lower (HF) frequencies (3–30 MHz),
V-pol propagation becomes strongly dependent on the
electrical properties. In this range, surface wave effects,
which are included in the mixed Fourier transform
approach, become important. More extensive calcula-
tions of HF propagation and ground effects are current-
ly under way.

SUMMARY
We have analyzed several techniques for solving the

PE over an irregular boundary. The mathematically
rigorous approach is to map the irregular domain to a
rectangular domain, where well-established numerical
methods can be used. The mapping methods are ap-
plied to radar propagation modeling over terrain. By
analysis of several model terrain profiles, we have iden-
tified the wide-angle piecewise linear shift as the most
robust mapping in terms of the allowable range of
surface slopes. This mapping should be useful for a wide
range of practical terrain problems. A full solution has
been developed incorporating polarization dependence
and finite surface electrical parameters. The numerical
methodology is similar to that used in the TEMPER
propagation model and therefore will be a straightfor-
ward addition to TEMPER.

In the future, we plan to combine the terrain map-
ping method with fine-scale roughness effects such as
vegetation scatter, and with the varying electrical prop-
erties of different soil and vegetation types as well as
snow/ice cover. An overriding goal is a high-fidelity
predictive model for radar ground clutter. Given the
important contribution of both atmospheric refraction
and surface interaction, the PE with surface mapping
appears to be an excellent approach for such a model.
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