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Quantitative Grading of Tissue and Nuclei in Prostate
Cancer for Prognosis Prediction

William A. Christens-Barry and Alan W. Partin

rostate cancer is evidenced by profound histological, cellular, and nuclear changes
in the organization of the prostate. Histological assessment of prostate tissue taken from
surgically removed tumors has traditionally relied on visual pathological interpretation.
The principal classification scheme used in visual pathology of the prostate, Gleason
grading, has proven successful in characterizing the state of disease but has had limited
prognostic value. We are conducting studies that aim to provide quantitative measures
of disease state to improve prognosis prediction. Our findings show that the orienta-
tional distribution of tumor cells, often assumed to be isotropic, can play a significant
role in statistical studies of intranuclear DNA organization. Inclusion of anatomical
factors in the selection of reference frames for measurements of intranuclear DNA can
improve the statistical power of cytometric studies and may provide a unifying
framework for relating histological, morphometric, and intranuclear descriptions of
prostate tumors.
(Keywords: Image cytometry, Prostate histology, Texture analysis.)
THE PROSTATE: AGING AND
NEOPLASTIC DISEASES

Throughout childhood and adolescence, the pros-
tate, central to many urologic functions in men, grows
because of continuous cell proliferation. During early
adulthood, cell proliferation comes into balance with
normal cell death, and prostate size stabilizes. The
walnut-shaped prostate (Fig. 1) maintains a constant
(about 3-cm) length throughout early adulthood and
the middle years. The bulk of the prostate is organized
into glands that consist of central luminal regions into
which a surrounding layer of epithelial cells secrete
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fluids that add to the ejaculate. The glands, in turn, are
connected by a ductal system that collects the glandular
secretions and carries them toward the urethra. This
system looks somewhat like a cluster of grapes joined
by a branched system of stems. The tissue between the
epithelial glands is surrounded by stroma that gives the
prostate its structural strength.

During the sixth and seventh decades of life, 60 to
70% of men experience benign prostatic growth or
neoplasia. This resumption of growth, although usually
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benign, can cause moderate levels of annoyance and
discomfort (e.g., irritative or obstructive voiding symp-
toms) in some men. Others may experience more sig-
nificant consequences leading to pronounced urinary
problems and infection or benign prostatic hyperplasia.
This condition is not itself life threatening and can be
managed through a range of pharmaceutical and surgi-
cal approaches.

A different, more troubling prospect faced by many
men in their 60s and 70s is the development of ade-
nocarcinoma of the prostate (CaP), or prostate cancer,
the single most frequent form of cancer in men, affect-
ing nearly one in nine. During 1997, about 370,000
men in the United States will be diagnosed with CaP;
of these, 44,000 are expected to die from this disease.
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Figure 1. Anatomy of the male reproductive system. Glands within the prostate produce
secretions that are collected by a ductal system and added to seminal fluid. (Reprinted from
Walsh, P. C., and Worthington, J. F.,The Prostate: A Guide for Men and the Women Who
Love Them, p. 9, The Johns Hopkins University Press, Baltimore, MD, 1995, by permission.)
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QUANTITATIVE GRADING FOR CaP PROGNOSIS PREDICTION

CaP causes death principally by
metastasizing, that is, the primary
tumor expands and spreads to dis-
tant (secondary) sites. DNA pro-
vides the genetic program that de-
fines all the proteins that are
synthesized within cells and ulti-
mately regulates the processes by
which this synthesis takes place.
Specific genes (proto-oncogenes
and oncogenes) have been impli-
cated in the “transformation” of
cells to a state of hyperproliferation
(cancer), which disrupts the co-
operation among cells of an organ
or tissue. Highly invasive cells (me-
tastases) can break away from the
tumor site and be carried by the
lymphatic or circulatory systems to
distant organs. Metastasis is the
most troubling aspect of cancers be-
cause localized treatment or surgi-
cal removal of a primary tumor is
frequently inadequate to prevent
the formation of secondary tumors
elsewhere in the body. To date, no
complete cure for advanced CaP is
available, and because the disease is
often fatal, an urgent need exists to
improve diagnosis, prognosis pre-
diction, and disease outcome.

Our understanding of the factors
that play a role in the etiology of
prostate cancer or its evolution
from a localized malignancy to a
life-threatening metastatic disease
is not clear. Clinical research arises
from the need to diagnose cancer,
to define (or “stage”) the status of
neoplastic disease in a patient at a
given time, to predict the likely

osis” of the disease, and finally to
ts that have a high probability of

ent at a given stage.
 APL’s Milton S. Eisenhower Re-
ology Development Center recently
rom the National Cancer Institute to
 group of scientists and physicians in
of Urology at the Johns Hopkins
ns (JHMI). The effort is focused on

 of cytometric markers that correlate
ognosis. In particular, optical micros-
ll nuclei has indicated that measure-
 shape (nuclear morphometry) and
the distribution of histone protein/
(known as chromatin) within the
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nucleus can be used to characterize the disease state and
predict its progression. We are applying these tech-
niques of image cytometry and quantitative analysis to
problems of nuclear shape, chromatin DNA distribu-
tion, and histology of both the normal prostate and
prostate cancer. Our broad goal is to improve patient
outcome by developing accurate assessment techniques
for use in clinical disease management.

LABORATORY INVESTIGATIONS
Our current studies mainly concentrate on under-

standing and describing two structural aspects of pros-
tate cancer: (1) the characterization of tissue architec-
ture and organ function and (2) a statistical description
of nuclear chromatin DNA in normal and diseased
prostate tissue. A quantitative description of these
structures can help us predict prognoses so that appro-
priate curative measures can be selected for individual
patients.

Pathological Grading of Prostate Tissue

The most reliable basis for establishing appropriate
follow-up therapy for CaP is provided by the visual
appearance of tissue specimens. Of several pathological
grading schemes, Gleason grading1 is the most clinically
useful (Fig. 2). Gleason grading can accurately predict
prognosis using only the visual assessment of thin sec-
tions of tissue that have been stained and fixed follow-
ing removal of the prostate (radical prostatectomy) or
from biopsy material. However, training pathologists to
achieve reproducible Gleason grading is difficult, and
numerous studies have shown an undesirable level of
inter- and intra-observer variability (see Epstein2 for a
lucid explanation of the use of Gleason grading in
prostate pathology). We are developing quantitative
descriptors of tissue organization that can be used to
augment Gleason grading with an objective algorithmic
technique amenable to automation.

The histopathological hallmark of CaP is the ab-
sence or diminution of well-formed glands, which is
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apparent in the varying size, shape, and spatial organi-
zation of the glandular lumina. These lumina serve as
collection areas for the secretions of epithelial cells
organized around the interior margins of the gland.
In addition, with progression of CaP, the secretory cells
themselves become disordered and fail to form glands.

For our study, surgically removed tumors were sec-
tioned to a 4-mm thickness and stained with hematox-
ylin and eosin (H&E), which are used to provide con-
trast between cytoplasmic and nuclear components,
respectively. Brightfield images of these sections at
magnifications of 10, 20, and 403 were digitized using
a red/green/blue color model. Digital image processing
allows segmentation of glandular lumina (using color
spectrum content, statistical properties of the luminal
color image, and Sobel and Laplacian-of-Gaussian fil-
tering), cells (based on identification of cell mem-
branes), and nuclei (using local contrast and color
spectrum content).

Analysis of the stained tissue sections was based on
three measures: (1) histopathological order (e.g., the
glandular luminal area, perimeter, and the number and
form factor), which describes the overall shape of each
gland and the organization of the prostate into discrete
glandular regions; (2) Voronoi analysis and Delaunay
tessellation neighbor analysis (Fig. 3), which character-
ize the effective use of gland volume; (3) and neighbor-
hood graphs based on the distribution of epithelial
and stromal cell nuclei, which describe the proximity
of secretory cells to the ductal system. Our recent
work indicates that increasing Gleason grade correlates
with

• Decreasing quantitative measures of order in prostate
tissue, based on a model that relates glandular func-
tionality to the size and shape of the lumina

• Broadening of the distribution of luminal areas as
measured by the coefficient of variation (COV) of
this distribution3

• Decreasing organization of secretory cells around the
luminal perimeter as measured by the density of
nuclei per length of the luminal boundary
Figure 2.  Gleason grading, the most reliable visual assessment scheme for grading tumors, is based on the histological appearance of
prostate tissue. Each region of a specimen is assigned a Gleason grade from 1 to 5, with higher grades corresponding to worsening stages
of cancer. A Gleason score (2–10) is then formed based on the sum of the two most predominant grades. Shown are hematoxylin- and
eosin-stained sections with Gleason grades (left to right) 1 through 3 (at 103) and 4 and 5 (at 203). Reduced organization of cells (identified
by dark nuclei) into functional glands and decreasing size and order of glandular lumina (white regions) are apparent at higher Gleason
grades. Panel-to-panel color differences reflect typical staining variability.

1 2 3 4 5
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DNA Image Cytometry
After much long-term research, staff at the JHMI

Brady Urological Institute have combined Gleason grad-
ing with intranuclear DNA descriptors to create a model
with great predictive power in classifying cells according
to their disease state.4–6 Because Feulgen staining of
nuclei is stoichiometric with DNA content, we have
recorded high-magnification (403) images of Feulgen-
stained tissue (Fig. 4). These images are used for statis-
tical analysis of DNA in individual nuclei to study
prognosis prediction after surgery.

In an effort to relate nuclear chromatin distribution
to CaP prognosis, we are using a statistical image pro-
cessing technique (see the boxed insert) broadly
applied in remote sensing to statistically analyze the

(c) (d)

(b)(a)

Figure 3.  Identification of Voronoi cells and Delaunay tessellations from H&E-stained
prostate tissue. (a) Image indicating cell nuclei (dark dots), cytoplasm (gray), and luminal
region (white). (b) Segmented and thresholded image showing locations of cell nuclei.
(c) Voronoi cell diagram of nuclei. (d) Delaunay graph constructed from Voronoi cells; edges
within lumen (red) are subsequently removed using a mask based on the luminal region in
Fig. 3a. Analysis of the distribution of Voronoi cell sizes and Delaunay tessellation edge
lengths can be used to evaluate the organization of prostate tissue into functional glands.
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Figure 4.  Feulgen-st
shown as dark, ovoid
variation of the intens
DNA condensation a
plane.
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“textural” content of an image.
Statistical texture is a visual prop-
erty that describes characteristic
statistical features of an object or
region that may lack well-defined
structural definition. In remote
sensing applications, texture meth-
ods are used to distinguish crops or
sea states on the basis of second-
order statistics. Alternatively, sub-
regions of an image with differing
structural details but with station-
ary statistical properties can be as-
signed to a common class based on
their measured textures.

 For our application we used
data acquired from Feulgen-stained
tissue blocks taken from patient tu-
mors removed during radical pros-
tatectomy surgery by Patrick C.
Walsh at the Johns Hopkins Hos-
pital. Several innovations have
improved our ability to retrospec-
tively predict patient prognosis.

Laboratory Frames of Reference

The a priori assumption that
nuclei are rotationally random is
often used to justify the use of a
common laboratory frame in which
to construct co-occurrence matri-
ces for all nuclei from a given tu-
mor. Using such an approach, the
distribution of values of a feature
that is measured for the set of nu-
clei will, in general, be broad, even
if all the nuclei are identical. The
variance of the distribution of fea-
ture values has been found in many

20   mm

ained thin section (403) in which nuclei are
 structures of varying eccentricity. The spatial
ity within a nucleus is a measure of chromatin
nd the concentration projected onto the x–y
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CO-OCCURRENCE MATRICES AND MARKOV
TEXTURE FEATURES

A statistical description of the image is often the most
powerful approach to segmentation and classification. This
is especially true for images that lack exact structural exem-
plars, for example, sea surfaces or forests from aerial images.
Here, no two regions or images are alike, yet the human eye
can easily classify such regions by their statistical properties
or textures. The co-occurrence matrix describes the second-
order statistics of pixel pairs comprising an image or region.
For such an image, many different co-occurrence matrices
can be constructed, each differing in the spatial relationship
of the pixel pairs that are used to construct it.7 Thus, a
particular co-occurrence matrix has a pair of parameters
(a, b) describing this spatial relationship. For a given pair
(a, b), each element Pab(i, j) of the co-occurrence matrix
describes the joint probability that a pixel pair having gray
scale values of i and j is separated by distances a and b in
the x and y directions, respectively. For an image with a
dynamic range of N (i.e., the intensities in the image range
from 0 to N – 1), the co-occurrence matrix for a parameter
pair (a, b) is constructed according to the following steps.

1. An N 3 N matrix is constructed, with all elements
Pab(i, j) = 0.

2. For a pixel pair I (x, y) = i and I (x + a, y + b) = j, add 1 to
Pab(i, j) and 1 to Pab(j, i).

3. Repeat step 2 for all pixel pairs I(x, y) and I(x + a, y + b).
4. Divide Pab by an integer equal to twice the number of pixel

pairs used in steps 2 and 3.

Several points regarding the co-occurrence matrix con-
structed in this manner should be noted. Because both
Pab(i, j) and Pab(j, i) are incremented for each pixel pair
meeting the separation criterion, the co-occurrence matrix
is symmetric about the main diagonal. Division by twice the
number of pixel pairs is just a normalization, so that the final

matrix contains probabilities rather than pixel pair counts.
An alternative definition of the co-occurrence matrix main-
tains each pixel pair as a directionally ordered pair: only
element Pab(i, j) is incremented for the pixel pair I (x, y) = i,
and I (x + a, y + b) = j. This little-used definition produces
a co-occurrence matrix that is asymmetric about the main
diagonal and is mathematically preferable since each ele-
ment of the matrix is independent. Thus, the asymmetric
definition preserves greater directional information about
the underlying image. Moreover, the symmetric matrix can
be recovered from the asymmetric form if desired.

The co-occurrence matrix can be large, in that it is
indexed on the different gray scales present in an image. For
an image with 8 bits of dynamic range, the co-occurrence
matrix will be 256 3 256. Because use of a matrix of this
size is often computationally intractable (several features
require eigenvector calculation), it is often expeditious to
perform a dynamic range reduction via a histogram equal-
ization procedure. Last year we developed an iterative
bifurcation procedure for dynamic range reduction with
equalization that uses a maximum entropy method to im-
prove upon traditional cumulative distribution function
procedures.8

To characterize an image by its co-occurrence matrix,
numerous quantitative features have been defined. For ex-
ample, consider the values of the entries of a co-occurrence
matrix: if the values along or near the main diagonal are
large, one can conclude that pixel values vary slowly relative
to the separation (a, b); if the values in the matrix are all
roughly equal, then the image it describes has a random
structure. If the second moment of the matrix about the
main diagonal is large, the image it describes has large
amounts of high contrast. Other commonly used features
include correlation, contrast, entropy, sum moments, and
difference moments.
studies to correlate with disease state and prognosis
better than the mean values of these features. Yet, there
has been no systematic examination of the features’
orientational dependence. In addition, the degree to
which the variance of features with good predictive
power arises from the underlying spatial distribution of
DNA in the nucleus—rather than from the rotational
arrangement of cells in the tissue—has not been ad-
dressed. We have examined these issues in recent lab-
oratory experiments.

Numerical and Optical Distributions
of Identical Nuclei

Feature variance that arises in a population of iden-
tical nuclei with varying orientations is demonstrated
in Fig. 5. This population of nuclei is composed of
duplicates of a single nucleus placed at angular incre-
ments of 30°. The COVs of several Markov textural
features are graphed as a function of angle in Fig. 6; the
variation in phase and amplitude for several such fea-
tures is evident.
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Because numerical rotation of an array can cause
small interpolation errors,9 we designed an optical
experiment that avoids this effect. A Feulgen-stained
slide was mounted at several different rotational angles
on the microscope stage (Fig. 7) by our collaborators
at UroCor, Inc. A fixed set of 16 nuclei was randomly
selected for imaging and digitization at angles ranging
from 0 to 180° using angular intervals of 30° (yielding
112 images). To understand the role of anatomical
orientation, all 7 orientations of a specific nucleus were
pooled (nuclear groups, GN); to examine how variance
arises in heterogeneous groups as a result of the choice
of a common reference frame, all 16 nuclei at a specific
orientation (e.g., at 60°) were pooled (rotational
groups, GR).

Analysis was carried out separately for each of the
16 nuclear and 7 rotational groups. The variance ob-
served among nuclear groups, measured by pool COVs,
was typically less than that found for rotational groups;
the mean value of COV(GN)/COV(GR) for all features
was approximately 0.27, but for some features it was
comparable in size, COV(GN)/COV(GR) > 0.7, to that
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)
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Figure 6.  Values of the coefficient of variation (COV) of textural
features as a function of angle for an ensemble of nonidentical
nuclei: angular second moment (◆), contrast (■), overlapping
correlation and difference moment (★), and inverse difference
moment (●). Note that the changes in amplitude and phase with
angle are similar for some features but different for others. Two
factors contribute to the ensemble COV: (1) angular distribution of
the nuclei in the tissue and (2) internal differences in chromatin
texture.

of the 16 nuclei at a single rotational angle that con-
stitutes a rotational group. Thus, the variance of a
group of nuclei measured at a single rotational angle
can be partially accounted for by variation in angular
orientations when the nuclei all have the same internal
chromatin distribution. Consequently, the rotational

u

x axis

Figure 5.  An ensemble of nuclei that is numerically generated by
replication of a single nucleus and distributed at angular intervals
of 30°. Measurements of textural features can be made using a
fixed laboratory frame for all nuclei (x axis) or using a body-
centered frame (based on the angle u) for each nucleus. Statistics
of pooled data for all nuclei in the ensemble vary with the use of a
laboratory frame or the choice of different local (body-centered)
reference frames.
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Figure 7. Diagram of orientations used in digitizing images of a
Feulgen-stained tumor thin section mounted on a rotating micro-
scope stage.

position of tissue on a slide must be controlled if results
are to be compared among studies, and operators must
agree on a standard method of orienting pathology
slides on the microscope stage.

Body-Centered Reference Frames

We next examined the relationship between funda-
mental morphometric features (e.g., angular orienta-
tion of the major axis of the best-fitting ellipse to a
nucleus) and measurements of chromatin texture.
Using the same set of images, subgroups of nuclei were
selected for a preliminary study. One subgroup (e+)
consisted of nuclei with the highest eccentricities
(e+ > 1.51). For each of these nuclei, the co-occurrence
matrix was calculated along the major axis of the best-
fitting ellipse for that nucleus. A second subgroup (e0)
of nuclei with low eccentricities (e– < 1.10) served as
a control. Because nuclei in the low-eccentricity group
were approximately round, we could not establish the
direction of the elliptical major axis. We therefore
measured co-occurrence matrices for this group in a
common reference frame, arbitrarily selected as the 0°
direction in the laboratory (slide) frame. This tech-
nique corresponds to a traditional method of making
measurements in DNA cytometry and allows both ori-
entational and intranuclear variance to enter into the
group statistics.10

The distribution of the angular second-moment fea-
tures (Fig. 8) is typical of our findings for the 18 Markov
textural features measured. The COV values for each
group were significantly different: 8 features had no
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overlap in values between nuclei in groups e+ and e0,
4 features were partially overlapped with statistically
significant differences in group means, and 6 features
showed no significant difference in the means.

CONCLUSIONS
A broad concern among basic researchers, physi-

cians, oncologists, and pathologists relates to the ab-
sence of a means of comparing the pictures afforded by
the various descriptive techniques to each other. Our
recent observations suggest that the measurements on
the different spatial scales presented in this article
could be related to each other in a hierarchical view.
We are seeking to construct a picture that bridges these
views based on the following observations:

1. Altered activation regimes of single genes implicated
in oncogenesis have been noted to cause widespread
changes in chromatin DNA texture.
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Figure 8.  Variance of the angular second-moment feature in round
nuclei (group e0) arbitrarily measured at 0° and eccentric nuclei
(group e+), each measured in a reference frame defined by the
direction of the elliptical major axis.
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2. Gene alterations resulting in oncogenesis often lead
to altered chromosome copy number, accompanied
by gross changes in nuclear morphology and size.

3. Prognosis models that use Gleason grading, nuclear
shape factors, and Markov textural features prove
more capable than models using any single measure-
ment type alone.

4. The loss of orderly arrangement of epithelial and
basal cells around luminal margins is visually promi-
nent in higher Gleason grade tissues, which exhibit
reduced numbers of effective prostatic glands.

REFERENCES
1Gleason, D. F., Mellinger, G. T., and the VA Cooperative Urological

Research Group, “Prediction of Prognosis for Prostatic Adenocarcinoma by
Combined Histological Grading and Clinical Staging,” Urology 111, 58–64
(1974).

2Epstein, J. I., Prostate Biopsy Interpretation, Raven Press, New York (1989).
3Christens-Barry, W. A., Partin, A. W., and Epstein, J. I., “Quantitative

Analysis of Visual Cues in Gleason Grading in Prostate Cancer,” J. Urol.155,
379a (1996).

4Partin, A. W., Walsh, A. C., Pitcock, R. V., Mohler, J. L., Epstein, J. I., and
Coffey, D. S., “A Comparison of Nuclear Morphometry and Gleason Grade
as a Predictor of Prognosis in Stage A2 Prostate Cancer: A Critical Analysis,”
Urology 142, 1254–1258 (1989).

5Partin, A. W., Steinberg, G. D., Pitcock, R. V., Wu, L., Piantadosi, S., et al.,
“Use of Nuclear Morphometry, Gleason Histologic Scoring, Clinical Stage,
and Age to Predict Disease-Free Survival Among Patients with Prostate
Cancer,” Cancer 70, 161–168 (1992).

6Veltri, R. W., Partin, A. W., Epstein, J. I., Marley, G. M., Miller, M. C., et al.,
“Quantitative Nuclear Morphometry, Markov Texture Descriptors, and DNA
Content Captured on a CAS-200 Image Analysis System, Combined with
PCNA and Her-2-Neu Immunohistochemistry for Prediction of Prostate
Cancer Progression,” J. Cell. Biochem. 19, 249–258 (1994).

7Haralick, R. M., Shanmugan, K., and Dinstein, I., “Textural Features for
Image Classification,” IEEE Trans. Syst. Man. Cyb. 3, 610–621 (1973).

8Chen, M. H., Christens-Barry, W. A., and Partin, A. W., “Characterization
of a Maximum Entropy Histogram Equalization Procedure,” in Proc.
JHU/APL Symposium on Research and Development, Baltimore, MD (Nov
1995).

9Rodenacker, K., “Invariance of Textural Features in Image Cytometry Under
Variation of Size and Pixel Magnitude,” Analyt. Cell. Pathol. 8, 117–133
(1995).

10Irinopoulou, T., Rigaut, J. P., and Benson, M. C., “Toward Objective
Prognostic Grading of Prostatic Carcinoma Using Image Analysis,” Analyt.
Quant. Cytol. Histol. 15, 341–344 (1993).

ACKNOWLEDGMENT: The authors were supported in this work by funding
provided by the National Cancer Institute under SPORE Grant 3P50-CA58236.
THE AUTHORS

WILLIAM A. CHRISTENS-BARRY is a physicist in the Physics, Modeling, and
Applications Group of the Milton S. Eisenhower Research and Technology
Development Center at APL. He received a B.S. in physics from the University
of Delaware in 1979 and a Ph.D. in physics from the University of Alabama at
Birmingham in 1987. After conducting postdoctoral studies at the University of
Alabama Center for Biomolecular Spectroscopy on nucleic acid and protein
crystal structures, Dr. Christens-Barry joined APL in 1988. He has studied optical
properties of tissues, laser surgery techniques, dynamical and organizational
properties of cancer cells, and statistical image processing applications in cancer
research. His e-mail address is William.Christens-Barry@jhuapl.edu.
HNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)



QUANTITATIVE GRADING FOR CaP PROGNOSIS PREDICTION

ALAN W. PARTIN earned his undergraduate degree from the University
of Mississippi in 1983, a Ph.D. from The Johns Hopkins University in 1988, and
an M.D. from the JHU School of Medicine in 1989. Dr. Partin is
an Associate Professor of Urology at the Brady Urological Institute at JHMI. He
has published widely on the value of prostate-specific antigen in the staging
of prostate cancer and computerized analysis of nuclear morphometry in
the prediction of metastatic potential. His e-mail address is apartin@welchlink.
welch.jhu.edu.
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997) 233


