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Wavelet transforms have recently emerged as a mathematical tool for
multiresolution decomposition of signals. They have potential applications in many
areas of signal processing that require variable time–frequency localization. The
continuous wavelet transform is presented here, and its frequency resolution is derived
analytically and shown to depend exclusively on one parameter that should be carefully
selected in constructing a variable resolution time–frequency distribution for a given
signal. Several examples of application to synthetic and real data are shown.
(Keywords: Continuous wavelets, Time–frequency analysis, Signal processing.)
TIME–FREQUENCY DECOMPOSITION
OF SIGNALS AND IMPLEMENTATION
OF MORLET WAVELET TRANSFORM

In most signal processing applications, we are inter-
ested in constructing a transformation that represents
signal features simultaneously in time t and frequency
f. Standard Fourier analysis decomposes signals into
frequency components but does not provide a time
history of when the frequencies actually occur. When
the frequency content of a signal is time-varying, the
Fourier transform S(f) of a signal s(t),
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is incapable of capturing any local time variations and
so would not be suitable for the analysis of nonstation-
ary signals. A partial solution to this problem was pro-
vided by Gabor,1 who in 1946 described the short-time
Fourier transform in which a fixed-duration window
over the time function extracts all the frequency con-
tent in that time interval. Denoting the window func-
tion by w(t) and its midpoint position by t, the Gabor
transform is given by
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Gabor actually used a Gaussian window, but in general
any window function can be used. The transformation
can be thought of as an expansion in terms of basis
functions, which are generated by modulation, and by
translation of the window w(t), where f and t are the
modulation and translation parameters, respectively.

The main problem with the Gabor transform is that
the fixed-duration window function is accompanied by
a fixed frequency resolution. Thus, this transform allows
only a fixed time–frequency resolution. Furthermore,
let us define the time width and the frequency width
of the window function by st and sf, respectively:
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where W(f ) is the Fourier transform of the window
function. It is well known (the uncertainty principle)
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CONTINUOUS WAVELET TRANSFORM
that stsf $ (2p)–1, with the minimum achieved for a
Gaussian window function. Increasing t simply amounts
to translating the window (also known as the mother
function) in time while its spread is kept fixed. Sim-
ilarly, as the modulation parameter f increases, the
transform translates in frequency, retaining a constant
width. Thus, the resolution cells in the time–frequency
plane have dimensions st and sf, which are fixed for
all t and f. Figure 1 shows the constant-resolution cells
for the short-time Fourier transform in which a sliding
time window is centered at integral multiples of t and
the transforms are evaluated at bin frequencies centered
at integral multiples of f0.

The wavelet transform, on the other hand, is based
on a set of basis functions formed by dilation (as op-
posed to modulation) and translation of a prototype
mother function c(t). The dilation of the mother func-
tion produces short-duration, high-frequency and long-
duration, low-frequency functions. These basis func-
tions are clearly better suited for representing short
bursts of high-frequency or long-duration slowly vary-
ing signals. Mathematically, if C(f) is the Fourier trans-
form of the mother function c(t), then the dilated (and
normalized) function 1/ /a t a( ) ( )c will have a afC( )
as its Fourier transform, where a is the scale parameter.
Thus, a contraction in time results in an expansion in
frequency and vice versa. This procedure of dilating and
translating is analogous to constant Q filters in which
the ratio of the root-mean-square bandwidth to center
frequency of all dilated functions is a constant; i.e., each
dilated wavelet will have a spread in the frequency
domain equal to (sf/a) and a center frequency of (f0/
a), which will have a constant ratio of (sf/f0) for all the
dilated functions.

The continuous wavelet transform of a signal s(t) is
then defined by

Figure 1. Resolution cells for the fixed-duration, time-window,
short-time Fourier transform.
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where a > 0. Mother wavelet functions of interest are
bandpass filters that are oscillatory in the time domain.
Thus, for large values of a, the basis function becomes
a stretched version of the mother wavelet, i.e., a low-
frequency function, whereas for small values of a, the
basis function is a contracted version of the mother
wavelet, which is a short-duration, high-frequency
function. Parameter b defines a translation of the wave-
let and provides for time localization.

The transformation is invertible2 if and only if the
following admissibility condition holds:
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which implies that the DC component C(0) must van-
ish. Thus, c(t) is a bandpass signal that should decay
sufficiently fast to provide good time resolution. The
Parseval relation for the wavelet transform is
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The orthonormal wavelet transform preserves energy
between the different scales, which are parametrized by
a, in the sense that
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The Morlet wavelet3 is a good example of a mother
function for the construction of the continuous wavelet
transform.4 It is defined by
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Its Fourier transform is
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which satisfies the admissibility condition C(0) = 0.
With this choice of mother function, the continuous
wavelet transform upon time discretization t = nDT,
where DT is the sampling time in seconds, becomes
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We choose a number of octaves and voices within each
octave. Denoting the product of the number of octaves
and the number of voices by M, we use ak = 2k/V, where
V is the number of voices and 1 # k # M. We further
discretize the translation parameter b and finally obtain
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where 1 # k # M, –∞  # l # ∞ , and fs is the sampling
frequency in hertz. Although this equation represents
a discretization of the dilation and the translation pa-
rameters, it is not the discrete wavelet transform.5 The
latter is defined by a fixed set of coefficients that rep-
resent the bandpass signal at all scales (see the boxed
insert on this page).

The dilation operation for the wavelet transform
also divides the time–frequency plane into resolution
cells, analogous to the division of the time–frequency
plane by the operation of modulation for the short-time
Fourier. The difference in the two sets of operations is
that whereas the resolution cells have fixed values for
the short-time Fourier transform (fixed duration of the
time window), the resolution cells for the wavelet
transform have variable lengths, depending on the scale
parameter a. The relationship between a and f is ob-
tained by calculating an exact expression for the re-
sponse to a sinusoid. Letting s(t) = exp(2ipft) be the
signal, and then using Eqs. 4 and 8,
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This response is peaked at a = f0/f, and so frequency and
scale are related by f = f0/a. The frequency resolution
cells are, therefore, centered at f0/a for each scale value
a. Now, if the original mother wavelet has a frequency
136 JOH
width and a time width denoted by sf and st, respec-
tively, the dilated wavelet at scale a has a frequency
width and time width equal to sf/a and ast, respectively.
Thus, the wavelet transform provides a variable resolu-
tion in the time–frequency plane, as shown in Fig. 2.

Furthermore, the preceding response indicates that
the spread in the frequency domain for the dilated

DISCRETE WAVELET TRANSFORM VS.
THE CONTINUOUS WAVELET TRANSFORM

The signal transform computed in the article is the con-
tinuous wavelet transform (CWT), even though a discrete-
time formulation is used. This formulation differs, however,
from the discrete wavelet transform (DWT). In the article,
time has been discretized to correspond with the sampling
of the physical signals, and the summation form follows
directly from the Riemann sum approximation to the inte-
gral in the CWT definition. The CWT displays the distri-
bution of signal amplitude and phase in two variables, time
and scale. The DWT, on the other hand, plays a role similar
to Fourier series coefficients. One can create a set of basis
functions from a mother wavelet by rescaling the wavelet
over octaves (powers of 2) and translating the wavelet over
discrete, scale-dependent time steps. The DWT computes
the coefficients of a signal with respect to this basis. Thus,
in effect, it acts as a rectangular array of filters centered
about specific times and scales (frequencies). Although
these coefficients can provide an approximation to the
CWT, in a way similar to the approximation of a Fourier
transform using a discrete Fourier series, they should more
properly be multiplied by the associated basis functions to
obtain an approximation to the CWT. The DWT is an
important structure to study in its own right, both in the
theory of wavelets and in applications such as signal and
image compression, subband coding, and pattern recogni-
tion. Many features of the DWT make it an attractive tool
for signal processing, such as the existence of Mallat’s linear-
time algorithm to compute the DWT, which is more effi-
cient than the Nlog(N) fast Fourier transform algorithm,
and a generalization of representations in bases to represen-
tations in overdetermined sets of functions, called frames,
in which uniqueness of representation is sacrificed in favor
of more localized influence of coefficients.

Figure 2. Variable length resolution cells for the continuous
wavelet transform.
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CONTINUOUS WAVELET TRANSFORM
Morlet wavelet is equal to 1/pas, and so it is inversely
proportional to s, where s is the time width of the
undilated (scale 1) Morlet mother wavelet. Thus, for
the higher frequencies (smaller scales), the frequency
resolution can be improved by choosing larger values
for s, and for lower frequencies (larger scales), frequency
resolution is improved by choosing smaller values for
s. The frequency f0 must be chosen so as to ensure the
bandpass property of the mother function, which in
practice can be achieved by choosing a value equal to
one-half the sampling frequency of the input discrete
time data. Equation 11 has a simple and fast convolu-
tional implementation using the fast Fourier transform.
Our implementation on an HP-735 workstation com-
putes and displays a 6400 by 120 pixel image for a 6400-
point signal with 10 octaves and 12 voices per octave,
without any subsampling, in approximately 20 s.

WAVELET TIME–FREQUENCY
DISTRIBUTIONS AND COMPARISON
WITH WIGNER DISTRIBUTION

The first example data set is shown in Fig. 3. It
includes a linearly chirped frequency ranging between
2.5 and 15 Hz, added to two short-duration sinusoids
with frequencies of 25 and 52 Hz, respectively. Figure
4 shows the magnitude of the continuous wavelet time–
frequency transform for s = 1(measured in units of the
sampling time). The y axis shows time in seconds, and
the x axis shows the octave numbers. There are five
octaves separated by vertical white lines, and 12 voices
per octave. The minimum and maximum frequencies
within each octave are shown on the top horizontal
axis. Clearly, there is excellent time resolution but very
poor frequency resolution for the chirp and the sinu-
soids. Figure 5 shows the transform computed for
s = 7.5, which produces excellent frequency resolution
for all the signal components while also providing very
good time resolution. Frequency resolution improves

Figure 3. Time series of two short single-frequency signals to-
gether with a linearly chirped signal.
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with decreasing scale (increasing frequency) in agree-
ment with our frequency spread calculation for the
Morlet wavelet. Although this value of s appears to be
an excellent compromise for most of the time–frequen-
cy plane of this specific signal, it does not allow the
determination of the lower end of the chirp’s frequency
range in the fourth and fifth octaves. This problem can
be remedied simply by varying s by some prescribed
rule or in a data adaptive manner. Figure 6 shows the
output when an exponentially decreasing set of values

Figure 4. The continuous wavelet transform of the  example in Fig.
3 for a very narrow mother wavelet.

Figure 5. The continuous wavelet transform of the example in Fig.
3 for a wider mother wavelet.
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Figure 6. The continuous wavelet transform of the example in Fig.
3 for an exponentially varying set of the width parameter.

Figure 7. The time series of a hopped-frequency signal (top) and
its Fourier spectrum (bottom).

for s between 3.5 and 10.0 is used. The minimum
frequency of the chirp, in the fifth octave, is now quite
apparent and measurable.

The second example data set is that of a hopped
frequency pattern. The data and its spectrum are shown
in Fig. 7. The wideband spectrum of these communica-
tion signals makes the task of detecting the individual
frequencies impossible without performing a joint time–
frequency analysis. Figure 8 shows the continuous wave-
let transform of this data with an exponentially decreas-
ing set of values for s between 3.0 and 10.0. The
frequencies are well resolved in time and can be easily
detected to have the values 3, 1, 4, 5, 9, 2, 6, and 5 Hz.
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Figure 8. The continuous wavelet transform of the example in Fig. 7.

Figure 9. The time series of a bowhead whale sound.

Figure 9 shows a bowhead whale sound. The data set
has been analyzed widely using the Wigner distribution
(see the boxed insert on the next page) in which the
complicated chirp signals are well resolved both in time
and frequency. The main difficulty with this nonlinear
procedure is to reduce the interference terms between
the various components of the signal. The continuous
wavelet transform of this same signal over two octaves
spanning the frequencies between 78 and 300 Hz is
shown in Fig. 10. The values of s ranged between 12.0
and 15.0 in this case. The continuous wavelet trans-
form seems to have resolved the components quite well
both in time and frequency. Although the overall res-
olution is only slightly worse than the Wigner distri-
bution, there are no cross terms to be suppressed here,
and the computation time is reduced by at least a factor
of 4.
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CONTINUOUS WAVELET TRANSFORM
CONCLUSION
The continuous wavelet transform, using a Morlet

mother wavelet with frequency parameter f0, and band-
width parameter s, is a good signal analysis tool for
displaying and estimating features in wideband signals
with time-dependent frequency and scale characteristics.
With judicious selection of the wavelet parameters, the
continuous wavelet transform performs well compared
with other methods used for time–frequency represen-
tation, such as the Wigner distribution. The continuous
wavelet transform is, however, less susceptible to false
features due to cross product terms because it is a linear

~

THE WIGNER DISTRIBUTION
The Wigner distribution for a real waveform s(t) is de-

fined by
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where s(t) is the analytic signal whose real part is the orig-
inal waveform and whose imaginary part is the Hilbert
transform of the real part,6 t is time, and f is frequency. An
example of this distribution on the bowhead whale sound
data is shown in the figure in which nonlinear effects appear
in between the well-resolved chirps.

Wigner distribution of the bowhead whale sound data.
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Figure 10. The continuous wavelet transform of the bowhead
whale sound.

function of the signal. As a processing option in a signal
analysis toolbox, it is proving to be quite valuable for
qualitative and quantitative investigations of signal
features, for example, as a preliminary step in the design
of feature detection algorithms.

In this article, we derived analytic expressions relat-
ing the scale at which features occur in the continuous
wavelet transform to the associated, time-localized fre-
quency and the frequency parameter of the Morlet
wavelet. We also derived an analytic expression for the
spread in scale and, hence, frequency in the transform
as a function of the bandwidth parameter. Thus, one
can derive quantitative information about temporal–
local behavior of the signal from features in the surface
and, in an iterative process, refine the mother wavelet
to present the features of interest optimally.
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