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imple classical systems can be so unpredictable, both quantitatively and
qualitatively, that they appear random. If there is a true source of randomness in such
a system, the situation can be even more puzzling. This counterintuitive behavior, rich
with temporal and geometric complexity, is still being uncovered, and has practical
engineering consequences for systems as diverse as electronic oscillators and chemical
reactors. This article develops a simple example system illustrating how classical
systems can exhibit both quantitative and qualitative unpredictability, discusses the
quantitative measures of such unpredictability, and places recent results developed at
APL in context with the history of classical determinism.
INTRODUCTION
In 1820, the French mathematician Pierre-Simon de

Laplace wrote in his Analytical Theory of Probability:

An intellect which at a given instant knew all the
forces acting in nature, and the position of all things
of which the world consists—supposing the said intel-
lect were vast enough to subject these data to analy-
sis—would embrace in the same formula the motions
of the greatest bodies in the universe and those of the
slightest atoms; nothing would be uncertain for it, and
the future, like the past, would be present to its eyes.

This is the doctrine of classical determinism at its most
grandiose. Laplace, having worked for 26 years to suc-
cessfully apply Newton’s mechanics to the entire solar
system, was making the ultimate extrapolation of phys-
ical law, as expressed in terms of differential equations:
a set of such equations describing any system, together
with a corresponding set of initial conditions, resulted
in a complete prescription for determining the state of
the system infinitely far into the future. More concrete-
ly, suppose a particular phsyical system at time t is
described by a state vector u(t), and that the change
in the state vector with time is given by some function
g of the state vector and time; then there is an ordinary
differential equation du(t)/dt = g(u(t), t) describing the
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system. Given an initial condition u(t0), the solution
u(t) passing through u(t0) at time t0 reveals the past
and future of the system merely by “plugging in” the
desired value t.

Of course, Laplace fully realized that this picture
represented an idealization, that there were practical
limits imposed by computational capacity and the
precision of the initial information. (He had to have
realized this, having calculated by hand the predicted
positions of many celestial bodies.) Nevertheless, for
over two centuries something like this conceptual
model was viewed as the triumph of a program begun
by Newton for understanding the universe.

Any introductory physics student now knows that
this picture is wrong. This century’s ascendance of
quantum mechanics, with its probabilistic interpreta-
tion of the wave function and its associated unaskable
questions, doomed the deterministic picture of the
universe. Much less well known is that the classical
picture of determinism contained within itself a bank-
ruptcy that rendered Laplace’s picture useless, indepen-
dent of any true randomness in nature. The limits
imposed by computation and precision are much more
serious than Laplace realized, even for extremely simple
systems, and they destroy in short order the practical
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utility of the deterministic picture, even as an approx-
imation. Because we still use classical descriptions to
model macroscopic systems in many areas of science
and engineering, the failure of classical determinism is
much more than an interesting backwater in philoso-
phy and pure mathematics.

Another French mathematician, Henri Poincaré,
first revealed the problems with classical determinism
around 1890, fully 10 years before the advent of quan-
tum mechanics. The strangeness of Poincaré’s findings1

(now generally referred to as chaos) resulted in a rel-
atively long delay before their generic importance was
widely recognized. As late as 1981, a 750-page history2

of the development of mathematical ideas contained a
whole chapter on classical determinism, which was
followed by a contrasting discussion of probability
theory. Although Poincaré was discussed at length in
the context of topology and celestial mechanics, he was
not even mentioned relative to determinism.

Furthermore, the full ramifications of Poincaré’s
legacy are still being played out today, and some are
quite spectacular. More delightful still (at least for
those with a contrary nature), these most recent devel-
opments seem to have practical consequences in elec-
trical engineering, chemistry, fluid mechanics, and
probably other areas where classical approximations are
still the most useful tools (even though a “correct” but
impossibly complicated quantum description underlies
the phenomena).

To cast the situation as a mystery, classical determin-
ism was widely believed to have been murdered (maybe
even tortured to death) by quantum mechanics. How-
ever, determinism was actually dead already, having
been diagnosed with a terminal disease 10 years earlier
by Poincaré. Having participated in a very late autopsy,
I would like to describe some of the findings; the dan-
gerous pathogens are still viable!*

I will illustrate how classical systems can be nonde-
terminstic for practical purposes using very simple one-
particle systems like those analyzed in first-year under-
graduate physics. Along the way, I will explain two
quantifiable measures of classical nondeterminism, one
that relates to quantitative predictability (how well you

* In reviewing this article, James Franson pointed out that classical
dynamics may have its revenge on quantum mechanics anyway.
Quantum chaos, an active field of research, is the study of the
dynamics of classically chaotic systems as they are scaled down to
sizes comparable to the de Broglie wavelength, where quantum
effects become important. So far, such wave-mechanical systems
have not been shown to exhibit chaos (which might not be
surprising, given that the Schrödinger equation is linear). This
creates a problem, because under the correspondence principle,
quantum mechanics should be able to replicate all of classical
mechanics in the limit as Planck’s constant " goes to zero. Some
physicists maintain that this discrepancy points to a fundamental
flaw in the current formulation of quantum mechanics. Unfortu-
nately, Joseph Ford, noted provocateur and one of the main
proponents of this viewpoint, passed away in February 1995; it now
seems less likely that this controversy will soon be resolved.
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can predict, with specified precision, the exact system
state), and one that relates to qualitative predictability
(how well you can predict gross outcomes, where more
than one outcome is possible). We will see how these
measures indicate the failure of classical determinism,
first in systems that have “only” chaos, and then in
systems exhibiting the more serious (and more recently
discovered) form of indeterminacy called riddled basins
of attraction. Finally, I will discuss some practical areas
where the recently discovered sorts of nondeterminism
show up. (I hesitate to call these areas applications,
because you don’t really want to see this behavior in
a practical system.)

DEVELOPING AN EXAMPLE

The Simplest Case
Let’s begin with a very simple system, a single unit-

mass particle, and very simple physics, Newton’s second
law. (The system actually won’t ever get much more
complicated in this article, but the resulting behavior
certainly will!) For a unit-mass particle moving in one
dimension (coordinated by x), Newton’s second law is

F x t ,i
i

=∑ ˙̇( ) (1)

or, the sum of the forces Fi gives the acceleration of the
particle. (Newton’s original “dot” notation denotes
derivatives with respect to time.) Two forces act on
the particle in this simplest example system: a small
frictional force − gẋ  opposite (assuming g > 0) and
proportional to the particle velocity ẋ  and a force
2dV(x)/dx due to a scalar potential V(x) = x2; this is
a simple potential well, as shown in Fig. 1. (Inciden-
tally, the formulation of forces in terms of scalar
potential functions is another of Laplace’s legacies to
physics.) Thus, the second-order differential equation
describing the motion of the particle in its potential
energy well is

˙̇ ( ) ˙( ) ( )x t + x t + x t = .g 2 0 (2)

This linear equation of motion is so simple that it can
be solved analytically, so the deterministic nature of the
solution is manifest:
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THE END OF CLASSICAL DETERMINISM
One of Poincaré’s innovations in analyzing dynam-
ical systems was to consider the evolution of system
trajectories in the space of possible initial conditions,
what is now called phase space. In the case of Eq. 2,
the phase space is coordinated by x(t) and ẋ(t), because
one needs to specify both a starting position and a
starting velocity to determine a particular instance of
Eq. 3. Several sample trajectories, specific instances of
Eq. 3 starting from different initial conditions, are
shown in Fig. 2. Note that none of the trajectories
cross. This nonintersection is true in general, and
corresponds to the fact that the solution to Eq. 2 pass-
ing through any given initial condition is unique.
Crossed trajectories would mean that the system was
indeterminate: a given initial condition (the one at the
point of intersection) could have two possible out-
comes. Such indeterminacy is contrary to our classical
physical intuition; nature “knows what to do” with any
given setup. Further, note that the two trajectories
shown in red start from nearby initial conditions. The
dots along the trajectories show positions at successive,
equally spaced instants in time. The neighboring tra-
jectories “track” one another closely in both time and
phase space.

The extent to which nearby trajectories track one
another is one of the most important practical proper-
ties of a dynamical system. It governs how predictable
the system is. There is a rigorous way to quantify this
property, using quantities called Lyapunov exponents
(see the boxed insert). Basically, the sign of the largest
Lyapunov exponent describes whether neighboring
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Figure 1. The simple quadratic potential for the single-particle
dynamical system of Eq. 2. The system’s attractor lies at the bottom
of the well.
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trajectories converge or diverge. A negative exponent
indicates convergence and good predictability. The
convergence of trajectories in Fig. 2 is therefore con-
sistent with the Lyapunov exponents for Eq. 2, which
are both 2g/2.

Finally, note that all the trajectories of Eq. 2 end up
at the origin of phase space, because the friction even-
tually dissipates any initial potential and kinetic energy,
leaving the particle sitting at the bottom of the well.
This may seem so obvious that using Lyapunov expo-
nents to quantify predictability is drastic overkill, but
this isn’t true for later examples. This simple outcome
does point to another important concept, however, that
of an “attractor.” An attractor is simply a set in phase
space, invariant under the equations of motion, that is
a large-time limit for a positive fraction of initial con-
ditions in phase space. (There has actually been a lot of
controversy over the definition of the apparently simple
concept of an attractor, which is yet another indication
of the subtleties uncovered by Poincaré. The definition
given here is a paraphrase of one presciently proposed
by mathematician John Milnor.3) One can see at once
from Eq. 3 that ( , ˙ )x x= =0 0  is invariant under Eq. 2;
i.e., a system trajectory started at ( , ˙ )x x= =0 0  and
evolved forward under Eq. 2 stays put. Further, because
everything in phase space ends up at the origin, the
second condition is also satisfied, and the origin is in-
deed an attractor—specifically, a stable fixed point.
Because the concept of qualitative predictability will
also be of interest, we will now generalize our example
system to include the possibility of distinct outcomes.

Figure 2. Typical phase-space trajectories of the dynamical sys-
tem given by Eq. 2, which converge on the attractor at the origin.
Nearby trajectories (red) stay nearby for all time.
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LYAPUNOV EXPONENTS
The relative stability of typical trajectories in a dynamical

system is measured in terms of a spectrum of numbers called
Lyapunov exponents, named after the Russian engineer Alex-
ander M. Lyapunov. He was the first to consider that stability of
solutions to differential equations could be a more subtle question
than whether or not the trajectory tends to become infinite (as
we usually mean for linear systems). A system has as many
Lyapunov exponents as there are dimensions in its phase space.

Geometrically, the Lyapunov exponents for an m-
dimensional system can be interpreted as follows: Given an
initial infinitesimal m-sphere of radius dr, for very large time t,
the image of the sphere under the equations of motion will be
an m-ellipsoid (at some other absolute location in phase space)
with semimajor axes of the order of dr exp(hit), i = 1,2, . . . ,m,
where the hi are the Lyapunov exponents. This is illustrated for
m = 2 in the accompanying drawing.

This set of numbers is a characteristic of the system as a
whole, and is independent of the typical initial condition
chosen as the center of the m-sphere. Clearly, if all of the
Lyapunov exponents are less than zero, nearby initial conditions
all converge on one another, and small errors in specifying
initial conditions decrease in importance with time. On the
other hand, if any of the Lyapunov exponents is positive, then
infinitesimally nearby initial conditions diverge from one an-
other exponentially fast; errors in initial conditions will grow
with time. This condition, known as sensitive dependence on
initial conditions, is one of the few universally agreed-upon
conditions defining chaos.

Lyapunov exponents can be considered generalizations of the
eigenvalues of steady-state and limit-cycle solutions to differen-
tial equations. The eigenvalues of a limit cycle characterize the
rate at which nearby trajectories converge or diverge from the
cycle. The Lyapunov exponents do the same thing, but for
arbitrary trajectories, not just the special ones that are periodic.

Calculation of Lyapunov exponents involves (for nonlinear
systems) numerical integration of the underlying differential
equations of motion, together with their associated equations
of variation. The equations of variation govern how the tangent
bundle attached to a system trajectory evolves with time. For
an m-dimensional system of ordinary differential equations, cal-
culation of Lyapunov exponents requires the integration of an
(m2 1 1)-dimensional system (the m original equations, togeth-
er with m additional equations of variation for each of m tan-
gent vectors), together with occasional Gram–Schmidt or-
thonormalization for numerical conditioning.

t

u (0)

dr exp (h1t)

dr exp (h2t)

u (t )dr
Adding Another Outcome Introduces
Nonlinearity

We will now work with a slightly more complicated
system having a two-well potential V(x) = (1 2 x2)2

(see Fig. 3). Again using Eq. 1 as a starting point, the
equation of motion for this system is given by

˙̇( ) ˙( ) ( ) ( ) .x t + x t + 4x t x t3g − =4 0 (4)

The price of this generalization is considerable. We
now have a nonlinear differential equation without an
analytical solution, although extending the discussion
of the simpler Eq. 2 gives us some information. We still
have a two-dimensional phase space coordinated by x
and ẋ , still have friction in the system, and have no
source of energy except that carried by the initial
conditions, so we can expect attractors at stable fixed
points. (Less obviously, the Lyapunov exponents are
still both 2g/2. Generalizing our two examples, one
might expect that the sum of the Lyapunov exponents
has some relation to the dissipative, or energy loss,
properties of the system. This is, in fact, true in gen-
eral.) In this case, though, there are two stable fixed
points (and one unstable fixed point) at the critical
points of the scalar potential. Thus, we can expect
some initial conditions to reach their limit on the
attractor at  (x = 21, ẋ = 0) while others end up at the
other attractor at (x = 1, ẋ = 0). Confining our atten-
tion for the moment to the section in phase space
ẋ = 0, it is pretty easy to see how things will divide up.
Any particle starting to the right of x = 0 and to the
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Figure 3. The more complicated potential for the single-particle
dynamical system, Eq. 4, which has two attractors located at the
stable fixed points.
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THE END OF CLASSICAL DETERMINISM
left of some position depending on g ends up falling to
the right attractor. (For g large enough, the system is
drastically overdamped; that position is x = ∞.) There
is then an interval still farther to the right where the
particle has enough initial potential energy to make it
over the central barrier once. Particles starting in this
region will end up on the left attractor. An interval still
farther to the right includes particles with enough
energy to make it over the central barrier twice, ending
up on the right attractor. So we envision an alternating
set of starting intervals where the particle ends up on
one of the two attractors. The situation to the left of
the central barrier is symmetrical.

Allowing for nonzero initial velocity complicates
things only a little more. Consider an initial condition
just at the boundary between two of the intervals just
discussed. That boundary represents an initial position
where the particle has just enough potential energy to
come to rest at the top of the central barrier, on the
unstable fixed point at x = 0. Any nonzero velocity (i.e.,
higher energy) at the same starting location tends to
push the particle over the top of the barrier and send
it to the other attractor. Thus, the boundary between
regions going to different attractors should be concave
toward smaller initial positions. Figure 4 gives a map
of the central region of phase space, color coded ac-
cording to where the trajectory starting at a given
initial condition ends up. A cut along ẋ = 0 shows the
alternating intervals, together with the predicted cur-
vature of the boundaries. Considered in the full phase
space, the set of initial conditions going to a given

Figure 4. Basins of attraction in the phase space of Eq. 4. Initial
conditions are color-coded according to their eventual destination.
Initial conditions colored yellow tend to the attractor in the right well
of the potential; those colored blue tend to the attractor in the left
well. The attractors are indicated by small black crosses. There is
a simple boundary between the basins of attraction.
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attractor is called the “basin of attraction” for the
specified attractor. The boundary between the two
basins of attraction in Fig. 4 is itself a trajectory of
Eq. 4, an atypical trajectory that ends on the unstable
fixed point at the top of the barrier between the po-
tential wells. Such an unstable equilibrium is frequently
dismissed as physically irrelevant, as the probability of
seeing it in a randomly initialized experiment is exactly
zero. However, the whole behavior of the system in
phase space is really organized around this atypical
trajectory. This is another general property of dynam-
ical systems.

To consider qualitative determinism, we must focus
on the complexity of the boundary between basins of
attraction. The basic question is: do two initial condi-
tions started close together go to the same, or to dif-
ferent, attractors? We can quantify the answer to this
question using a quantity called the uncertainty expo-
nent (see the boxed insert). In this context, “uncertain-
ty” refers to the fraction of pairs of randomly placed
initial conditions that go to different attractors. Basi-
cally, the uncertainty exponent says how the uncertain-
ty increases with the separation between the pairs of
initial conditions. For the simple curvilinear boundary
exhibited in the phase space of Eq. 4, the uncertainty
exponent is 1. Thus the uncertainty goes up linearly
with the separation between pairs of initial conditions.
This is the answer we expect from our classical physical
intuition: if you increase the accuracy of initial condi-
tion placement by a factor of 10, you expect a factor
of 10 decrease in the uncertainty. But in general, it isn’t
necessarily so!

Adding a Forcing Term Creates Chaos
We now further generalize our example system,

adding a periodic forcing term of strength f and fre-
quency f to the sum in Eq. 1, so the equation of motion
becomes

˙̇ ( ) ˙( ) ( ) ( ) sinx t + x t + x t x t = f t .g f4 43 − (5)

This is now a driven oscillator, similar to those
studied in introductory differential equations courses,
except, of course, that it is nonlinear, and so does not
admit solutions that can be worked out with pencil and
paper by students (or professors). If Eq. 5 were linear,
we would expect the solution x(t), after some initial
transient, to be sinusoidal with the same frequency f
as the forcing term; only the amplitude would need to
be calculated. First-order consideration of the nonlin-
earity might suggest additional complications, such as
a periodic solution with more than one frequency com-
ponent. Indeed, periodic solutions of all periods
T = 2mp/f, m = 1,2,3, . . . are possible for Eq. 5, but we
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Basin of attractor A Basin of attractor B

Basin boundary

“Certain” pair of
initial conditions

“Uncertain” pair of
initial conditions

UNCERTAINTY EXPONENTS
One of the problems in describing the complexity of a

boundary between different basins of attraction is knowing
when you are on the boundary. As discussed in the text, a point
is on the boundary between basins if a system trajectory starting
there never gets to either of the corresponding attractors. This
is clearly not a constructive definition that would allow com-
putation in a finite time.

An alternative approach is based on the idea that two
system trajectories ending up at different attractors must have
started on different sides of the boundary between basins. This
procedure provides fuzzy information about the location of the
boundary, but if repeated many times, it can provide good
information about the complexity of the boundary. Imagine the
following procedure. Two initial conditions, separated by a
distance e, are followed until they have arrived at definite
outcomes. If each member of the pair goes to a different attrac-
tor, we call the pair uncertain. If many such pairs are randomly
placed in a phase-space volume containing some piece of the
boundary, a certain fraction f(e) of pairs, depending on the
value of e, will be uncertain; we call f(e) the uncertainty. (Since
a boundary occupies zero phase-space volume, there is zero
probability that a randomly placed initial condition will fall on
the boundary). The uncertainty should decrease with e; this is
clearly what one expects intuitively. In fact, f(e) (or at least its
envelope) is proportional to ea; a is called the uncertainty
exponent. For simple boundaries of the sort that we are used
to drawing, a = 1, as in the accompanying drawing. If the
boundary is very complicated, it is possible for a to have values
less than one.

The preceding description, while not one that most of us
are familiar with, has the advantage that it is constructive. Pairs
of initial conditions can be randomly chosen and numerically
evolved forward using a computer. Estimating a value of f(e)
for a set of such ensembles at a decreasing sequence of e values
allows a to be determined to a specified statistical confidence.
This approach was introduced by McDonald et al.4 The

uncertainty exponent has several desirable properties. First, it
describes a property of the system with practical implications:
the reliability with which a given outcome can be guaranteed,
given a specified precision in placing initial conditions. Sec-
ond, it allows determination of the fractal dimension of the
basin boundary, since for a phase space of dimension D, and
a basin boundary of dimension d, D = d 1 a.
will focus on an even more fascinating type of behavior,
one with no periodicity at all: chaos. For a positive-
measure set of the parameters g, f, and f, the power
spectral density of x(t) will be broadband. A time series
of x(t) (see Fig. 5) looks like a sinusoid at the driving
frequency f, with random modulation.

We now face a complication in representing the
results in phase space. If one just displays the solution
to Eq. 5 in the ẋ vs. x plane as before, the curve so
generated would cross itself. As discussed earlier, such
intersections are impossible in phase space, so the phase
space must have a higher dimension than two. The
complication results from the explicit time dependence
in Eq. 5. The phase space formalism requires us to
describe systems as autonomous sets of ordinary differ-
ential equations. One can do that with a cheap trick,
which immediately shows us the phase space needed.
Equation 5 can be equivalently rewritten in canonical
form as
338 JOH
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Here, we see explicitly that there are three coupled,
autonomous, first-order ordinary differential equations,
which require three initial conditions to specify the
future evolution of the system.

Visualizing a three-dimensional phase space filled
with continuous curves is difficult, advances in com-
puter graphics notwithstanding. To avoid that problem,
we can use a technique developed by Poincaré himself,
now known as the Poincaré surface of section. Because
the last equation in Eq. 59 just indicates the monoto-
nous increase in phase of the periodic forcing term, we
can examine the solutions to Eq. 59 only where they
pass through a surface of section z3 = constant. In that
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 4 (1995)



THE END OF CLASSICAL DETERMINISM
two-dimensional section, Eq. 59 reduces to a discrete
mapping, taking a point (x, ẋ ) into another such point
one forcing period later. There is a one-to-one corre-
spondence between points in the surface of section and
one-forcing-period-long pieces of continuous-time tra-
jectory of Eq. 59, so we lose no information by looking
at this lower-dimensional representation of phase
space. This mapping has an intuitive disadvantage,
however: since it is a discrete mapping, trajectories of
the mapping hop from place to (distant) place in the
Poincaré section, and we have to abandon our picture
of smooth curves parameterized by time such as those
in Fig. 2.

Figure 6 shows the two possible qualitatively distinct
outcomes of Eq. 5 for the parameter values g = 0.632,
f = 1.0688, and f = 2.2136, again corresponding to at-
tractors confined to each of the two potential wells.
Now, however, the attractors are not stable fixed
points. The forcing, in a dynamic balance with the
friction, allows for “steady-state” trajectories that are
perpetually in aperiodic motion. The infinite number
of intersections such trajectories have with the
Poincaré section form a set with extremely high geo-
metric complexity, called a fractal. A fractal (see the
boxed insert) is a set with (typically) a noninteger
dimension that exhibits a high degree of self-similarity,
or scale invariance. An attractor having this strange
type of geometry is called a strange attractor. The at-
tractors shown in Fig. 6 do not look very complicated
geometrically, but that is an artifact of the finite res-
olution of the computer-generated picture. In fact, both
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Figure 5. Time series of the state x(t ) from the periodically forced
dynamical system of Eq. 5. Although the underlying forcing fre-
quency is apparent, the time series is aperiodic because Eq. 5 is
chaotic for the parameters specified in the text.
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attractors have a fractal dimension d1 ≈ 1.18. (A sym-
metry in the system of Eq. 5 guarantees that the attrac-
tors will have the same dimension: x x x x,→ − → −, ˙ ˙
and t t→ + p f/ .) This dimension is smaller than that
of an area-filling set (d = 2); in this respect, the attrac-
tors are like the stable fixed points of our earlier, less
general examples. A general feature of systems with
friction is that the long-time-limit motion of the system
will occur on a set of zero phase-space volume.

The system’s spectrum of the Lyapunov exponents
has changed now, too. Motion on either of the attrac-
tors is now characterized by Lyapunov exponents of
h1 = 0.135 and h2 = 20.767. The largest Lyapunov ex-
ponent is now positive, indicating that nearby initial
conditions will diverge from one another exponentially
fast (although only for a while; since the attractors are
finite in extent, the exponential divergence must sat-
urate eventually). Thus, we are now dealing with a
chaotic system. Because of the positive Lyapunov ex-
ponent, we now know that our ability to predict the
detailed evolution of the system is very limited. To be
concrete, let’s make a back-of-the-envelope calculation
of the time over which we can compute the system
trajectory with confidence. Suppose that we can com-
pute with eight decimal digits of precision. Since the
x coordinate for motion on the attractor is of order one,
we can specify initial conditions only to an accuracy
of 1028. An error of that magnitude will grow under the
influence of h1 to order one by t = 136, or only about
50 characteristic oscillations of the system. Thus, after
about 50 oscillations, our original fairly precise

Figure 6. Basins of attraction in the phase space of Eq. 5. Initial
conditions colored yellow tend to the attractor in the right well of the
potential; those colored blue tend to the attractor in the left well.
The strange attractors are shown in black. The boundary between
the basins of attraction is fractal.
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FRACTALS
We normally don’t think of dimensions as something that one

needs to calculate; we learn the dimensions of a few paradigmatic
sets in grade school, and that’s it! In fact, dimension is something
that can be calculated, and there is a reason to do so. The most
constructive approach to calculating the dimension of a set is a
procedure called box-counting. A grid of boxes of side-length e
is overlaid on the set in question and the number N(e) of boxes
containing some of the set is counted. The procedure is repeated
with a series of decreasing values of e. The number N should
increase with e ; in fact, N(e) (or at least its envelope) is pro-
portional to e2d, where d is the box-counting, or fractal, dimen-
sion of the set. Simple calculations confirm that this definition
is consistent with the paradigms we memorized as children. For
example, consider a line segment of length l. Then N(e) ≈ l/e,
so d = 1, as expected. Similarly, for a disk of radius R: N(e) ≈
pR2/e2, so d = 2.

For such simple Euclidean sets as line segments and disks, this
definition of dimension surely represents overkill. However,
there are much more geometrically complex objects than those
we learned about in Euclidean geometry. Consider the construc-
tion of the set C as shown in the drawing. We start with the unit
interval, coordinated by the variable x. At the first step in the
construction, we remove an open set consisting of all points with
x coordinates in the open interval (1/3,2/3). At the second step,
we remove all the points whose x coordinates are in either of the
open intervals (1/9, 2/9) or (7/9, 8/9). At each successive step,
the middle third of any remaining interval is removed, ad infin-
itum. After this procedure, C is not empty, since at least the
endpoints of all the open intervals we removed are left behind.
Thus, C is a set composed of an infinite number of points. We
can make a table of N(e) vs. e for the box-counting procedure:

e N(e)

1 1
1/3 2
1/9 4
: :

(1/3)n 2n

: :

Applying our assumed scaling for the box count N, we see
that d = log2/log3 ≈ 0.631, which is clearly not an integer. Thus,
a geometrically complex collection of points can have a fractal
dimension strictly larger than the topological dimension (which
is zero for a collection of disconnected points) but strictly smaller
than the dimension of the embedding space (which is one for
a line). Such a set is called a fractal. Fractals have been treated
previously in the Technical Digest.5

Fractals also have the property of self-similarity. Appropriate-
ly rescaled parts of the set C look like complete copies of the
original (for example, the part of C with x coordinates in
[0, 1/3], after being blown up by a factor of 3, is a complete copy
of the whole set C. Many natural objects exhibiting some degree
of scale-invariance (like coastlines or vascular networks) are well
approximated by stochastic versions of fractals. Fractals are also
frequently encountered in the context of nonlinear dynamical
systems.

This last context is where one is most frequently confronted
with the apparently self-contradictory nature of fractals. For an
example of the conflict mentioned in the text between metric
and topological measures, again consider the set C. It is easy to
show that C has zero Lebesgue measure (for our purposes here,
arc length); in constructing C, we removed a total arc length
of 1/3 1 2(1/9) 1 4(1/27) 1 . . . = 1. On the other hand, any
point in C can be identified by a semi-infinite string of symbols,
say bn, where n = 0,1,2, . . . and bn [ {R, L}, depending on
whether the point in C is to the left (L) or right (R) of the
interval removed at the nth step in C’s construction. Clearly,
such semi-infinite strings can be put into one-to-one correspon-
dence with the binary fractions in [0, 1] (just replace R by 0 and
L by 1, and prepend the string with a binary point). Thus, in
a metrical sense, the set C has “nothing” in it, although in a
topological sense, C has as many elements as the unit interval!

Finally, it is worth mentioning that some of the fractals
elsewhere in this article, namely the attractors of Eq. 5 and the
boundaries of the basins of attraction of those attractors, are very
similar to C crossed with a line; thus, their dimensions are
between one and two.

Step 0

Step 1

Step 2

Step 3
knowledge of the initial condition has been reduced to
the knowledge that the orbit is “somewhere on the
attractor.” Because the divergence in chaos is exponen-
tially fast, increasing the precision of our computation
does little good: if our computer keeps track of 20
decimal digits, we only get about 120 characteristic
oscillations of predictability. This is certainly unsatis-
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fying, but it is at least reassuring that the knowledge of
the Lyapunov exponent allows setting quantitative lim-
its on predictability. (The reader may wonder what the
meaning of numerically calculated Lyapunov expo-
nents, or indeed of any computer-derived statement
such as that of Fig. 6, can be if the numerical stability
of the system is so poor. This is a subtle question which
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 4 (1995)
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did not have a very satisfactory answer until quite
recently.6 A detailed answer is beyond the scope of this
article, but it turns out that for every computer trajec-
tory, there is a real trajectory of the system starting from
a slightly different initial condition. Thus statistical
questions, at least, can be answered numerically, even
if detailed, specific predictions are impossible. Finally,
let me assure readers that accepting the pictures and
numerical results in this article as accurate representa-
tions of the systems, at least to first order, will not
mislead them.)

Note that, although he did not formulate his answer
in terms of Lyapunov exponents, Poincaré essentially
recognized this lack of long-term predictability in
nonlinear systems at the end of the last century. (Ac-
tually, he was considering problems of orbital mechan-
ics, which, unlike our example, are not dissipative and
therefore do not admit attractors.) Even so simple a
system as we are dealing with in this article could defeat
the analytical intellect envisioned by Laplace, were its
capacities anything less than infinite.

The latest change to our example system has also
complicated the question of qualitative predictability.
The division of phase space into basins of attraction is
much more complicated than the simple boundary that
we saw in Fig. 4. In fact, the boundary between the
basins of attraction for the two attractors is a fractal
also. Because a fractal is so complicated geometrically,
it is hard to tell from a low-resolution picture on which
side of the boundary an initial condition is placed if it
is anywhere near the boundary. This difficulty is reflect-
ed in an uncertainty exponent a that is less than one
for initial conditions near the boundary; in this case
a = 0.85. Thus, if one doubles the accuracy with which
an initial condition is placed near the basin boundary,
the uncertainty over a trajectory’s destination attractor
decreases by less than a factor of two. Fractal basin
boundaries are another relatively recent discovery4 that
eroded the picture of classical determinism, this time
as regards mere qualitative predictability. However, we
can see from Fig. 6 that large areas of phase space
contain no uncertainties over where one ends up. In
particular, most places near the two attractors are
“safe.”

We can compare the division of phase space into
basins of attraction with the familiar notion of conti-
nental drainage. Water poured on the ground east of
the continental divide ends up in the Atlantic Ocean,
whereas water spilled west of the divide flows to the
Pacific. The details of the continental divide are com-
plicated, so that if one is in the mountains of Montana,
it might take considerable trouble to determine which
direction water will flow, although in most places there
is no uncertainty. It is even possible to imagine (say,
in the absence of the Rocky Mountains) that in a few
isolated places (like the coast of British Columbia), the
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 4 (1
continental divide could pass quite close to one of the
possible attractors. Thus, water spilled near the Pacific
Ocean could eventually flow to the Atlantic, although
we would expect this to be an exceptional circum-
stance. The next generalization we make to our exam-
ple system will shatter this picture completely; it will
be as if the continental divide somehow expanded to
come arbitrarily close to everywhere!

A Digression
This peculiar notion of a boundary being almost

everywhere is so strange, especially in a physical con-
text, that I will digress to explain how it arose. Poincaré
discovered chaos and quantitative nondeterminism in
the context of a well-defined question: is the solar
system stable? How this question provided the roots of
modern nonlinear dynamics is the theme of a fascinat-
ing popular book7 that also details an almost unbeliev-
able, and until 1993, successful conspiracy to suppress
the fact that Poincaré’s initial answer was incorrect!

Qualitative determinism fell as a result of not nearly
so direct an assault. Mathematician James Alexander,
while using James A. Yorke’s nonlinear dynamics com-
puter tool kit8 DYNAMICS, noticed something un-
usual: a pair of attractors in a nonlinear system that
appeared to cross. Remembering the uniqueness-
motivated rule that trajectories in phase space cannot
cross, it was hard to see how distinct attractors could
intersect in this way. The basin of each attractor ap-
peared to be riddled with “holes” on an arbitrarily fine
scale; each hole was a piece of the other attractor’s
basin. Thus, the whole phase space appeared to be a
boundary topologically. (In topology, a point is on the
boundary between two sets if any neighborhood of the
point contains points from each of the two sets.) Of
course, one should be skeptical of such a startling
hypothesis if it is based only on computer evidence, and
Alexander could have been forgiven for dismissing the
apparent result as an artifact of the computer. To
Alexander and his collaborators’ credit, however, they
were able to prove that these riddled basins, as they
called them at John Milnor’s suggestion, really existed
in the system.9

Meanwhile, Alexander was explaining his work in
a series of talks at the Dynamics Pizza Lunch (more
formally known as the Montroll Colloquium, a weekly
seminar in nonlinear dynamics sponsored by the
Institute for Physical Sciences and Technology at the
University of Maryland, College Park, and attended by
mathematicians, physicists, and engineers from the
District of Columbia, Delaware, Maryland, and Virgin-
ia). In that informal setting, Alexander’s work caused
enormous controversy, much of it resulting from the
specific mapping in which Alexander made his discov-
ery. He had studied a nonanalytic mapping of the
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complex plane z z c zn + n n1
2= − , where c is a complex-

valued parameter, and the overbar denotes complex
conjugation. In particular, serious concern arose over
whether the lack of smoothness in the mapping had
something to do with the results. If that were indeed
the case, the peculiar results might well have no im-
plications for classical mechanics, where the equations
of motion are typically smooth.

Edward Ott (a physicist at the University of Mary-
land and previously my dissertation advisor) and I at-
tempted to settle this controversy by finding riddled
basins in a system of differential equations of the sort
encountered in classical mechanics. We succeeded late
in 1993.10–13

Increasing Dimensionality Allows Riddled
Basins

A one degree-of-freedom system like Eq. 5, although
it can exhibit such hallmarks of nonlinearity as chaos,
is not very typical of physical systems. In particular,
there are actual topological constraints on the behavior
of dynamical systems in low-dimensional phase spaces,
so we can’t expect to see the whole range of pathology
that nature has to offer in so simple a system. If only
one more degree of freedom is added, the Pandora’s box
of riddled basins appears.

We will still work with a single particle moving
under the influence of three forces: friction, an external
periodic force, and a force due to a scalar potential.
Now, however, we will allow the particle to move in
two spatial dimensions, x and y. As before, Newton’s
second law is

˙̇ ˙ ( ) ˆ sinr r r x= − − ∇ +g fV f t , (6a)

where r x= ( , ), ˆx y  is the unit vector in the x direction,
and

V x y x sy x p ky( , ) ( ) ( ) .= − + − +1 2 2 2 2 4 (6b)

The potential V now has three adjustable parame-
ters, s, p, and k, that control the behavior of the
particle away from the x axis. The generalization to the
scalar potential V, shown in Fig. 7, is not drastic: in the
large-r limit, it is still a confining quartic energy well.
In fact, the modified V has only one special feature that
is essential for what we are about to find: it has a
reflection symmetry in y. (The x-symmetry previously
noted in the one degree-of-freedom system was not
essential for any of the qualitative behavior discussed
so far.) That symmetry implies a corresponding conser-
vation law. If an initial condition starts on the phase-
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Figure 7. The potential V(x, y) for the dynamical system given by
Eq. 6a. The potential has reflection symmetry in y, so for clarity only
the part in y ≤ 0 is shown. A section along y = 0 is the same as the
potential in Fig. 3.

space surface y y= =˙ ,0  it will remain there; therefore,
the surface is an invariant surface for the dynamical
system. Setting y y= =˙ 0 in Eqs. 6, we see that the
equation of motion for the system is the same as
Eq. 5, and will have the same attractors as Eq. 5, for
initial conditions in the invariant surface. Considering the
larger, four-dimensional Poincaré section coordinated
by x, x, y, y˙ and ˙, the question remains of whether the
attractors of Eq. 5 are attractors in a global sense or not.

We can answer this question by considering the
Lyapunov exponents for Eqs. 6 that result from an
initial condition in the invariant surface. For the par-
ticular parameter choices g = 0.632, f = 1.0688,
f = 2.2136, s = 20.0, p = 0.098, and k = 10.0, the spec-
trum of Lyapunov exponents is, in order from largest to
smallest, h1 = 0.135, h2 = –0.012, h3 = –0.644, and h4 =
–0.767. Two of the Lyapunov exponents, h1 and h4, are
the same as those we found for Eq. 5. They correspond
to the convergence of nearby initial conditions sepa-
rated within the invariant surface. As before, h1 > 0
implies chaos. The other two Lyapunov exponents
must therefore correspond to separations transverse to
the invariant surface, i.e., one initial condition on the
invariant surface and the other infinitesimally off of it.
That these Lyapunov exponents are both negative, in-
dicating convergence rather than divergence, means
there are typical initial conditions off the invariant
plane that are attracted toward it. Therefore, the at-
tractors of Eq. 5 are attractors in the expanded phase
space of Eqs. 6 as well. As it turns out, the potential
of Eq. 6b admits no other attractors besides these two,
so typical initial conditions in the phase space must
eventually end up on one of the two attractors inher-
ited from Eq. 5.

Now for the payoff! If we consider basins of attrac-
tion for these attractors, we find them hopelessly in-
termingled, as shown graphically in Fig. 8. Note, how-
ever, that this picture is different from earlier pictures,
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Figure 8. Basins of attraction in the phase space of Eqs. 6. Initial conditions colored yellow tend to the attractor in the right well of the
potential; those colored blue tend to the attractor in the left well. The projections of the strange attractors are shown in black. (They are
shown “end on” in this figure.) The two basins of attraction riddle each other everywhere. (b) and (c) show blowups of the red-bordered
regions in (a), and (d) shows a blowup of the red-bordered region in (c), illustrating that the riddling persists to arbitrarily fine scales and
is arbitrarily close to the attractors.
in that a two-dimensional picture cannot completely
represent a four-dimensional phase space; the figure
represents only a slice through the phase space. You will
have to take my word that all sections look qualitative-
ly the same (or write your own computer program to
verify it). Each basin riddles the other on arbitrarily
fine scales. If a given initial condition is destined for
the attractor in x > 0, any phase-space ball surrounding
it will have a positive fraction of its interior attracted
to the other attractor, no matter how small the ball is. The
uncertainty exponent for this system is around 1022, so
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small that it is extremely difficult to measure precisely.
The engineering implication of such a small uncertainty
exponent is that if one could increase the reliability of
initial condition placement by 10 orders of magnitude,
the uncertainty in eventual outcomes would only go
down by 25%! Before the discovery of riddled basins,
I doubt that there was such a paradigm of engineering
futility.

As just discussed, the entire phase space meets the
topological definition of a boundary, yet at the same
time, 100% of the volume of phase space is attracted
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to one of the two attractors. (The conflict between
topological and metrical senses of “the whole thing” is
one of the most confusing aspects of nonlinear dynam-
ics. Although the set of initial conditions going to one
of the two attractors has full Lebesque measure in the
phase space, the set of initial conditions that never end
up on one of the two attractors is dense in phase space,
and uncountably infinite!) A particularly striking spe-
cial case can be singled out: an initial condition can
be arbitrarily close to one of the attractors and still end
up going to the other attractor eventually. Returning
to our continental drainage example, this switch to the
other attractor corresponds to water spilled anywhere
along the Atlantic coast having a positive probability
of finding a path to flow all the way across the con-
tinent to the Pacific. This is not what we have come
to expect from Newtonian mechanics.

RIDDLED BASINS OF ATTRACTION
AND ON–OFF INTERMITTENCY

What are the observable implications of finding
riddled basins in a physical system? Although the
underlying equations of motion for a system like
Eqs. 6 are deterministic, strictly speaking, the riddled
geometry of its basin structure, coupled with unavoid-
able errors in initial conditions, renders it effectively
nondeterministic, and in the worst possible way. Due
to measurement errors, simple prediction of the qual-
itative outcome of even a perfectly modeled experi-
ment would be impossible. Even the reproducibility of
apparently identical trials (in reality, each starting at
imperceptibly differing initial conditions) is problem-
atical. Riddled basins can occur in many slightly dif-
ferent guises, such as a nonriddled basin riddling an-
other basin, mutually riddled basins (as in the previous
example; this case is called intermingled basins), and
one or more nonriddled basins riddling one or more
other basins, depending on the number of possible
qualitatively distinct outcomes in the system. This
plethora of possibilities can make recognizing what is
going wrong with an apparently unreliable system very
difficult.

The unavoidability of noise in practical applications
makes the situation still more complicated. Returning
to our example of Eqs. 6, imagine what would happen
if a stochastic term were added to the equations of
motion. An initial condition destined (in the deter-
ministic system) for the attractor in x > 0 might appear
to converge to the invariant surface’s nonnegative side.
Actually, the noise would keep the trajectory away from
the attractor; but we already know that there is a
positive-measure set of initial conditions arbitrarily
near the invariant plane that lead to the other attrac-
tor. The noise-driven system must eventually hit one
of these, and switch to the other attractor. The noisy
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picture thus includes an infinite sequence of arbitrarily
long transients (very possibly longer than the practical
waiting time in a physical experiment).

Actually, intermittent switching between attractors
has been known in nonlinear systems for some time,14

including the case where the intermittency is exclu-
sively due to noise.15,16 However, systems with riddled
basins are closely related to systems capable of a par-
ticularly interesting type of intermittency, called
on–off intermittency. To see this, we return to the
deterministic Eqs. 6, at the very slightly different pa-
rameter value p = 0.1. At this parameter value, the
Lyapunov exponent spectrum undergoes a qualitative
change for trajectories on the invariant manifold:
h1 = 0.135, h2 = 0.004, h3 = 20.636, and h4 = 20.767.
Now there are two positive Lyapunov exponents. As
before, we can see that the Lyapunov exponents cor-
responding to separations of initial conditions within
the invariant plane are unchanged. However, one of
the exponents corresponding to transverse separations
is now positive, so the attractors of Eq. 5 can no longer
be global attractors of Eqs. 6 in the whole phase space.
The chaotic attractors of Eq. 5 have become chaotic
repellers!

The typical behavior we expect from an initial
condition is now the same as the noisy scenario dis-
cussed previously: a sequence of close approaches to the
invariant plane, with potential switching between the
regions of the repellers in x < 0 and x > 0. Typical time
series from Eqs. 6 in this parameter regime are shown
in Fig. 9. The time series for y(t) makes the name
“on–off intermittency” clear: the scalar y alternates
between epochs of apparent quiescence (when the
chaotic oscillations are so near the invariant plane as
to be undetectable at the displayed resolution) and
bursts into a larger region of phase space. This, too, is
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Figure 9. Time series for the states x(t) and y(t) of Eqs. 6 in a
slightly different parameter regime than that for Fig. 8. Both x(t) and
y(t) are strongly intermittent and chaotic. However, the time series
y(t) has long epochs where the oscillations are too small to observe
(the “off” phase), separated by bursts of larger-scale activity (the
“on” phase).
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something we don’t expect from Newtonian physics—
a system that appears to be sitting there doing nothing
for an arbitrarily long period of time that suddenly
bursts into activity.

As it turns out, on–off intermittency has been in-
dependently rediscovered many times.17–19 While lis-
tening to James F. Heagy, a Naval Research Laboratory
colleague, give a Pizza Lunch seminar on the effects of
noise on on–off intermittency,20 Ott and I recognized
that the analytical techniques he was using were very
similar to those we were applying to the riddled basins
problem. It soon became clear that riddled basins and
on–off intermittency were different aspects of the same
bifurcation in dynamical systems possessing an invari-
ant surface (and therefore, a symmetry). We christened
this situation a blowout bifurcation21 because in either
the hysteretic (riddled basins) or nonhysteretic (on–off
intermittency) cases, the feature of interest is the
possibility of orbits very near the invariant surface
being “blown out” away from the surface to a different
region of phase space.

Again, the multiple phenomena associated with
riddled basins can occur in various combinations, de-
pending on the underlying phase-space structure of the
system in question, as well as on the relative strength
of noise in the system, the precision with which param-
eters can be set and measurements made, and so on.
Such a complicated situation makes analysis of these
problems difficult, especially in an experiment where
the entire system state may not be directly measurable.
As a result, several collaborators in the area have
worked out a number of diagnostics for these phenom-
ena which can be applied in different experimental
situations. We have worked out, for both noisy and
deterministic cases, statistical measures of the basins of
attraction, parametric scaling relations, geometric tests
to be applied to time series, and scaling relations for
power spectra of dynamical systems.22–24 As a result,
there is now a rather complete theoretical understand-
ing of both riddled basins and on–off intermittency.

WHERE TO LOOK FOR RIDDLED
BASINS

The key requirement for the occurrence of a blowout
bifurcation (and therefore either riddled basins of at-
traction or on–off intermittency) is that the dynamical
system must possess an invariant surface containing a
chaotic set. To contain a chaotic set the surface must
be at least two-dimensional for a Poincaré section, or
three-dimensional for a continuous-time system (this is
a consequence of the Poincaré–Bendixon theorem
from the theory of ordinary differential equations). The
overall dimension of the phase space must be at least
one more than the invariant surface. Thus, a system of
coupled, first-order differential equations must have at
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 4 (19
least four equations to exhibit these exotic dynamical
behaviors (for example, Eqs. 6, written in canonical
autonomous form, would have five first-order ordinary
differential equations). This is not much of a restriction
in the universe of classical systems.

The requirement for an invariant surface, however,
is more restrictive. Typically, the system must possess
some type of symmetry. (For example, Eqs. 6 have even
symmetry in y.) Thus, riddled basins are by no means
as ubiquitous a phenomenon in nonlinear systems as
mere chaos (and a good thing, too, or the apparently
nondeterministic behavior described previously would
certainly have impeded the development of the scien-
tific method). However, various symmetries are very
common in physics and engineering, and the require-
ments for riddled basins are by no means so restrictive
that they can be considered unnatural.

In fact, Ott and I predicted that the symmetry
underlying the synchronization of coupled nonlinear
oscillators would be a particularly fruitful area to ex-
plore for riddled basins.21 Recently, many investigators
have been interested in the behavior of synchronized,
chaotic electronic oscillators as a basis for covert com-
munications.25 (Because chaotic systems generate
broadband waveforms, they offer good opportunities to
hide information. This is particularly appealing since
it is fairly difficult to engineer high-power oscillators
that behave in a linear fashion, anyway. Such systems
have been under active development in several estab-
lishments.26) For example, consider two identical
m-dimensional (m > 2) oscillators that are diffusively
coupled:

˙ ( ) ( ) ,
˙ ( ) ( ) .

u F u u u

u F u u u
1 1 2 1

2 2 1 2

= + −
= + −





D

D
(7)

The condition of synchronization (u1 = u2) repre-
sents an invariant surface for the system. The stability
of that surface (i.e., whether a blowout bifurcation
results in riddled basins or on–off intermittency) is
determined by the details of the system, and by the
coupling constant D. Riddled basins would further
require multiple chaotic modes of oscillation for each
oscillator. Either type of pathology would ruin the
candidate system for communications purposes (since
a departure from the invariant surface corresponds to
a loss of the synchronization underlying the commu-
nications scheme).

Gratifyingly, our prediction was verified experimen-
tally in both variations. Peter Ashwin, Jorge Buescu,
and Ian Stewart at the University of Warwick con-
firmed that blowout bifurcations resulting in on–off
intermittency could occur in coupled oscillators.27

Heagy, Thomas Carrol, and Louis Pecora at the Naval
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Research Laboratory experimentally demonstrated rid-
dled basins of attraction in a similar circuit.28 These
experiments prove that the actual engineering of prac-
tical systems must account for seemingly esoteric pa-
thologies of dynamical systems. Given that fundamen-
tal research is often questioned as to its relevance and
applicability in practise, perhaps I can be forgiven for
harboring a certain perverse delight in this setback for
engineering colleagues.

In fact, experimental interest in riddled basins has
exploded. Groups are working on this problem in the
context of electronic oscillators, mechanical oscilla-
tors, simulation reliability, aerodynamic simulations,
convective fluid systems, and reaction–diffusion sys-
tems. The last two areas might seem surprising, since
until now I have discussed only finite-dimensional dy-
namical systems (and low-dimensional ones at that),
whereas spatially distributed systems (described by
partial, rather than ordinary differential equations) are
intrinsically infinite-dimensional. However, they are
rather natural generalizations of the diffusively coupled
oscillators discussed previously (and we have predicted
that riddled basins should be found in reaction–
diffusion systems of a particular type21). This points to
one of the most scientifically tantalizing aspects of the
field of chaos: whether or not the complicated temporal
behavior and geometric complexity so characteristic of
low-dimensional nonlinear problems can contribute to
the understanding of heretofore intractable problems of
fluid mechanics, such as turbulence. That question is
too broad and controversial to address in this article.

CONCLUSION
We have seen that extremely simple dynamical

systems can behave in ways very much at odds with our
intuition about the deterministic nature of classical
physics, and furthermore that these exotic behaviors
have some practical significance. It seems strange that
so much could still be unknown about Newtonian
mechanics more than 300 years after publication of the
Principia; indeed, it took more than a century to answer
the specific question posed to Poincaré about the solar
system’s stability.29 This unexpected richness in classi-
cal dynamics provides at least one answer to the con-
troversy surrounding the utility of the past 20 years’
explosion of interest in chaos.30–31 At a minimum,
recent discoveries in nonlinear dynamics continue to
expand the list of diagnostics for extreme intractability
in practical systems.
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