
Distributed Vertical Model Integration 

Robert R. Lutz 

E Sistent financial pressures within the Department of Defense have sparked 
increasing interest in the promise of software reuse as a mechanism to achieve greater 
efficiency in developing and applying models and simulations to support the systems 
acquisition process. A perpetual obstacle to the widespread proliferation of reusable 
software code within 000 is that most existing, older-technology ("legacy") models are 
extremely difficult to reuse within more modem software architectures without 
significant redesign. This article reports results of an experiment demonstrating the 
utility of distributed computing environments as a means to reuse detailed software 
representations of system- or subsystem-level hardware components through direct 
access from less detailed (higher-order) models. 

INTRODUCTION 
Applying modeling and simulation (M&S) tech­

niques to gain information about the behavior of spe­
cific systems in a complex operating environment 
requires that systems be represented at varying degrees 
of detail, or levels of resolution. An application's objec­
tives will drive the degree to which simulated represen­
tations of systems (and the environment in which they 
operate) are aggregated. For example, during the engi­
neering development of a system acquisition program, 
high-resolution computerized models of actual hardware 
systems are frequently used to study, evaluate, and test 
the system's sensitivity to simulated representations of 
physical stimuli. In contrast, determining system re­
quirements and exploring early system concepts nor­
mally require highly aggregated abstractions of the 
conceptual designs to be "played out" in an operational 
context where numerous systems interact. 

In his early work, B. P. Zeigler, l who was a pioneer 
in addressing the need for integrated software environ­
ments to support multiple levels of model resolution, 
promoted the concept of a "model hierarchy." The 
hierarchy was based on the premise that practical sim­
ulation tools can be abstracted from highly complex 
models, called base models, that account for all possible 
behaviors of actual systems. These tools, called lumped 
models, are constructed from base models by grouping 
model components, aggregating variables, and simpli­
fying interactions among components. In later works, 
Zeigler2,3 expanded his model hierarchy paradigm to 
include an entire hierarchy of levels at which models 
can be constructed, ranging from the purely behavioral, 
in which the model claims to represent only the 
observed input and output behavior of the system, to 
highly detailed structural models. Integral to the 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 187 



R. R. LUTZ 

paradigm is the support of an M&S environ­
ment, in which the model hierarchy resides, to 
facilitate the composition of new models from 
existing reusable components. These compo­
nents can then be reassembled into numerous 
new combinations for various study objectives. 
Note that modular, hierarchical model con­
struction does not result directly in a lumped 
model. Features to facilitate the aggregation of 
lower-level models are required within such an 
environment to support transitions between 
levels of the model hierarchy. 

Increasing 
aggregation 

THE HIERARCHICAL MODEL 
PARADIGM 

Increasing 
resolution 

Level m 
Mission 

Level II 
Platform 

Level I 
Engineering component 

and technique Today, several alternative definitions are 
used to specify categories for different levels of 
modeling hierarchies. The most common par­
adigm in DoD is the four-level modeling hier­
archy. Figure 1 shows the conventional 
modeling pyramid for categorizing levels of 
system analysis. Each level of the pyramid is 
defined as follows: 4 

Figure 1. Hierarchy for modeling and simulation analysis commonly used in 
000. Because of the relationship between models at sequential levels, it is 
generally feasible to aggregate output data from models at one level to provide 
input for models at the next higher level. 

Level I -E ngineering Component and Technique . Level 
I models support analysis of individual subsystems or 
techniques in the presence of a single-threat weapon 
system element. Examples include models of sensors, 
countermeasures, weapon delivery systems, or other 
detailed engineering subsystems or components. 

Level II-Platform. Level II models support analysis 
of integrated weapons systems, including associated tac­
tics and doctrine when the system is engaged with one 
or more threats. This level introduces a thorough plat­
form simulation with a complete representation of all 
pertinent onboard guidance, communications, sensor, 
and other avionics systems. 

Level III-Mission. Level III models support mission 
effectiveness and force survivability analysis of friendly 
forces composed of multiple platforms opposing threat 
forces (called "many-on-many" simulations). This level 
expands the scope of associated tactics and doctrine to 
two-sided, action-reaction analysis. 

Level IV-Campaign . Level IV models support the 
incorporation of command, control, communications, 
and intelligence (C3I) contributions of multimission 
joint-service operations against a combined threat force. 

Fundamental to this hierarchical modeling paradigm 
is that each level of the hierarchy above Level I amal­
gamates the capabilities represented by the systems and 
platforms at the next lower level. For example, integrated 
weapons systems represented at the resolution of 
Level II consist of individual subsystem components 
represented by Level I models. Similarly, military cam­
paigns (Level IV) combine several missions (Level III) 
across the joint services. This structure is similar to 

Zeigler's paradigm. However, true modular, hierarchi­
cal modeling environments, in which models at h igher 
levels in the pyramid are constructed from reusable 
components at lower levels of the pyramid, are rare 
within DoD. A notable exception is the Air Force­
sponsored Joint Modeling and Simulation System 
(J-MASS) Program, in which automated computer­
aided systems engineering (CASE) tools are provided 
within an integrated M&S framework to control the 
construction of higher-level entities from lower-level 
components. Even so, the present J-MASS environ­
ment does not directly facilitate the transition from one 
level of model resolution to another. 

Because of the relationship between models at se­
quential levels of a model hierarchy, it is generally 
feasible to aggregate output data from models at one 
level to provide input for models at the next h igher 
level. For instance, the engineering-level subsystem 
performance parameters obtained during Level I anal­
ysis can be aggregated to provide input characteristics 
for a Level II integrated weapons system. T he platform­
level effectiveness data obtained during a Level II 
analysis can then provide input for a Level III multi­
platform, mission-level analysis. Consequently, the rel­
ative effects of low-level engineering modifications on 
individual subsystems or components can be mapped to 
much h igher-level operational effectiveness issues 
through proper application of this methodology. The 
process of capturing the results of analysis performed 
with low-level, high-resolut ion models in more aggre­
gated higher-level models is known as vertical model 
integration. 

188 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 



Vertical Model Integration 

Two primary methods are used to integrate models 
vertically within a model hierarchy. In the first method, 
the output of a model at one level is passed to the input 
of a higher-level model. Although widely practiced, 
this approach presents several potential problems. First, 
since data formats are rarely consistent between models 
at different levels, data transfer generally requires 
manual translation, which introduces a potential 
source of error. The process of aggregating data upward 
through the model hierarchy is also largely manual. 
Since it depends heavily on the technical expertise and 
judgment of the analyst, the potential for error is high. 
Finally, because this method is highly resource­
intensive, particularly in terms of personnel, the asso­
ciated costs are substantial. Efforts to minimize costs by 
using shortcuts can introduce additional potential 
sources of error. The common thread through all of 
these problems is a general lack of software tools to 
automate the transfer of data throughout the model 
hierarchy. 

In the second method for vertical model integration, 
called a "software zoom," lower-level models are accessed 
directly from higher-level models.s Narrowly interpreted, 
the technique refers to the ability to incorporate high­
resolution sub models as subroutines within a higher­
level model. The technique is much broader, however; 
it refers to selective injection of detailed system repre­
sentations into a simulation at the phases of a pre­
defined scenario considered most sensitive to individual 
system performance. The software zoom technique 
exploits the coexistence of both coarse and detailed 
representations of simulated entities or systems within 
the same simulation environment. On the basis of 
either predefined scripts or direct intervention by the 
operator, the simulation controller "toggles" between 
high- and low-resolution modes for specific systems of 
interest. The user can focus computing resources on 
generating or collecting high-resolution performance 
data about systems of interest while allowing coarser 
representations of less critical systems or of the same 
system at less crucial times. The result is large increases 
in computing efficiency, allowing the analyst to capture 
the effects of low-level modifications to existing sub­
systems (or introduction of new subsystem concepts) on 
large-scale, force-on-force encounters within the same 
simulation. 

Legacy Model Integration 

Most existing high-resolution system models are 
stand-alone simulations funded by individual sponsors 
to support specific applications. These older models are 
known as legacy models. Ongoing proof-of-concept ex­
ercises on reuse and integration of these models show 
that the major disadvantage of the software zoom 
technique is the extensive amount of labor required to 

01 TRIBUTEOVERTICALMOOELINTEGRATION 

integrate existing high-resolution representations of 
existing systems into the framework of higher-level 
engagement- or mission-level models. Because legacy 
models were extensively designed and implemented 
according to older (in some cases obsolete) structural 
standards, their integration into existing higher-level 
simulations is generally quite complicated. As a result, 
the resources required to rehost legacy models written 
in different languages and resident on different types of 
hardware can rival the cost of starting from scratch. 

Modem simulation architectures routinely support 
the premise of a software zoom by providing features to 
configure simulations from entities represented at 
several different levels of resolution. This structure is 
strongly supported by the object-oriented paradigm, 
since specific objects can be defined at several levels of 
resolution and accessed within a simulation according 
to a common message interface (polymorphism). How­
ever, experience with treating legacy models as low­
level objects within a simulation architecture is much 
more limited. Apart from the obvious (but expensive) 
option of completely redesigning the software of the 
legacy model into an object-oriented format, efforts to 
date on integration techniques for legacy models have 
focused largely on the use of interface shells ("wrappers") 
to encapsulate legacy models in an object-like structure. 
The wrapper provides a mechanism to connect the 
legacy model to other objects in the simulation system. 

One of the best examples of the use of wrappers is 
the Navy-sponsored Capabilities Assessment, Simula­
tion, and Evaluation System (CASES).6 An automated 
decision-support system, CASES supports the develop­
ment and analysis of exercise, contingency, and war 
plans for the Pacific Fleet Command Center. An over­
view of the CASES architecture is shown in Fig. 2. 
Evaluation of campaign-level issues in CASES is based 
on four warfare-area-specific legacy models (strike, ship 
defense, antisubmarine warfare, and logistics) and a 
specialized simulation controller for scheduling and 
invoking simulation events. The foundation of the 
CASES architecture is the Cronus distributed comput­
ing environment (DCE) developed by BBN Systems 
and Technologies of Cambridge, Massachusetts.7 Cronus 
is a network-transparent, host-independent (heteroge­
neous) interprocess communication facility for distrib­
uted computing based on an object-oriented design 
paradigm. It uses a client-server implementation tech­
nique to emulate active software objects by means of 
the traditional process and memory models of computer 
systems. A server (also called an object manager) 
defines and manages objects of one or more distinct 
data types. The Cronus kernel locates objects and trans­
mits operation invocations from clients to servers 
(Fig. 3). The Cronus DCE also contains automated 
tools for rapidly integrating existing legacy code. These 
tools greatly simplify the process of wrapping legacy 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 189 



R. R. LUTZ 

Display Man-machine interface 

Simulation 

rSll Pop-up 
Lj.tJ windows 

LISP 
program 

Map ~ 
windows 4.lJ 

Setup 

Cronus manager 

Other processes 

Other systems 

Cronus operations 

~ Other operations 

Connection 
to other sites 

Figure 2. Software architecture of the Capabilities, Assessment, Simulation, and Evaluation System (CASES), an automated decision 
support system that provides interface shells (wrappers) to encapsulate existing legacy models in an object-like structure. (GOTS is 
government off-the-shelf software; LISP is the programming language used by the session manager; and NACM, CLEAR, IUSS, THOR, 
THREAT, and ASBAT are legacy models wrapped for incorporation in the higher-level simulation.) 

models. Legacy models do not have to be rehosted, 
because models written in different languages and run­
ning on different machine types and operating systems 
can be accessed and invoked directly from a remote 
simulation controller. This approach represents the state 
of the art in legacy model integration within the Navy. 

The CASES program proved that Cronus represents 
a viable technology for integrating legacy models, but 
the application of distributed computing technology to 
vertical model integration remains largely unexplored. 
Although CASES successfully demonstrated the feasi­
bility of linking, invoking, and controlling disparate 
legacy model within an integrated simulation environ­
ment, no attempt was made to invoke lower-level 
models directly from higher-level models. The lack of 
this capability for capturing the impact of individual 
low-level subsystem modifications on large-scale, force­
on-force encounters is considered a significant deficiency 
in the use of M&S within the DoD acquisition com­
munity. This article investigates an approach to the 
deficiency, extending lessons learned from experiments 
in legacy model integration to the concept of distrib­
uted vertical model integration. 

EXPERIMENTAL OBJECTIVE: 
VERTICAL LEGACY MODEL 
INTEGRATION 

The purpose of our experiment was to enhance the 
distributed computing technology demonstrated in the 
CASES program (Cronus DCE) to capture the effects 
of low-level model results within a higher-level model. 
The higher-level model chosen for this experiment was 
Suppressor (version 5.2), an event-stepped digital sim­
ulation model used to model multisided conflicts in­
volving air, ground, naval, and space-based systems at 
the mission level of detail (Level III).8 Suppressor is an 
established, relatively mature tool for examining the 
integrated effects of various weapon system, ensors, 
tactics, command and control structures, susceptibili­
ties, and countermeasures. Configuration control of the 
Suppressor model is currently supplied by Science 
Applications International Corporation personnel at 
the Electronic Combat Simulation Research Laboratory, 
Wright-Patterson Air Force Base, Dayton, Ohio. The 
modular structure of the Suppressor software architec­
ture made this high-level model an especially attractive 

190 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 



Local area network 

Host 

Figure 3. Architecture of the Cronus distributed computing envi­
ronment. Cronus is a network-transparent, host-independent 
interprocess communication facility for distributed computing based 
on an object-oriented paradigm. 

choice to demonstrate the vertical integration of lower­
level model effects. 

The lower-level model chosen for this experiment 
was the Advanced Low Altitude Radar Model 
(ALARM91). ALARM91 is a high-resolution digital 
computer simulation designed to evaluate the perfor­
mance of a ground-based radar system against a single 
airborne target vehicle (a one-on-one simulation).9 
This model supports radar subsystem analysis at reso­
lution Level 1. Target detection calculations within 
ALARM91 are based on common signal-to-noise radar 
range equations derived by established experts in radar 
theory. The model also captures effects of atmosphere, 
terrain masking, clutter, multipath radar returns, and 
jamming. It is one of several models under the control 
of the Air Force SurvivabilityNulnerability Informa­
tion Analysis Center (SURVIAC) for configuration 
control and dissemination. 

The processing of a radar sensing event in the 
Suppressor model consists of several steps. Factors such 
as target status (dead or alive), radar Doppler limits, 
terrain masking, sensor azimuth/elevation limitations, 
and signal-to-noise level are all considered in deter­
mining target detectability. The inherent Suppressor 

DISTRIBUTED VERTICAL MODEL INTEGRATION 

methodology for determining the signal-to-noise level 
of a target is similar to, but less detailed than, the 
procedures used inALARM91. Since this methodology 
is largely contained within a single Suppressor module, 
our objective was to develop the capability to selective­
ly toggle between the current Suppressor radar module 
and the more detailed ALARM91 model based on 
changing conditions during execution. Specifying 
these toggle conditions, calibrating the individual radar 
system databases, and implementing the resources 
required to remotely access the ALARM91 model over 
a heterogeneous network were the main technical 
challenges of the project. 

RESOURCES 
The Laboratory's Strike Warfare Laboratory was 

chosen to conduct the experiment. Preparations in­
volved defining and establishing a hardware and soft­
ware configuration that could adequately demonstrate 
the utility of heterogeneous DCEs in vertical legacy 
model integration. The main requirement of the selected 
hardware and software configuration was that Suppres­
sor and ALARM91 be hosted on dissimilar hardware 
and operating systems on different local area networks. 
The configuration chosen is shown in Fig. 4. A VAX­
Station 3100 (node 1) running the VAXNMS oper­
ating system was the ALARM91 host. An Apollo 
DN10000 (node 2) utilizing the Berkeley UNIX (BSD 
4.3) environment under the Apollo Domain operating 
system was the host for Suppressor. Each machine 
shown in Fig. 4 was a node on one of two different local 
area networks interconnected through a gateway (node 
3). Also required in this configuration were the Cronus 
DCE, installed on both host computers, and Wollon­
gong Pathway software, installed on the VAX comput­
ers, to support transmission control protocol/Internet 
protocol (TCP/IP) communication. 

METHODS 
Several steps were required to meet experimental 

objectives. A Cronus object manager for the ALARM91 
model and a Cronus client routine for the Suppressor 
model were developed. We also calibrated the static 
radar data in the two models to minimize discontinuities 
during transitions between high- and low-resolution 
modes, devised control logic to manage the high-low 
resolution transitions, and tested parallel processing 
capability to enhance execution speed. The following 
paragraphs describe each step in detail. 

Step 1: Develop Object Manager for 
ALARM91 Model 

An object manager in Cronus is a process that 
defines and manages objects of one or more distinct 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 191 



R. R. LUTZ 

communication issues be­
tween the ALARM91 
applications code (written 
in Fortran77) and the 
ALARM91 object manager 
(generated in C). 

Macintosh II Macintosh II Apollo 
DN10000 VAX 3100 

Apollo 
DN10000 

Apollo 
DN4000 

Printer 

Apollo 
DN4000 

Macintosh 
Quadras 

and printers 

II • 
Token ring for the 

Apollo domain 

Step 2: Develop 
Cronus Client Routine 
for Suppressor Model 

Reception 
area Figure 4. Network architecture at the APL Strike Warfare Laboratory 

used for the experiment. A VAXStation 3100 (node 1) running the VAX! 
VMS operating system was the host for the ALARM91 software, and an 
Apollo DN1 0000 (node 2) utilizing the Berkeley UNIX environment under 
the Apollo Domain operating system was the host for the Suppressor 
software. Each machine was a node on one of two local area networks 
interconnected through a gateway at node 3. 

A client in the Cronus 
environment is an applica­
tion program that requests 
services from an object 
manager. The construction 
of a client program was re­
quired to create an inter­
face "bridge" from the 
Suppressor model to the 
ALARM91 model. This 
program, developed as a C 
language subroutine called 
from Suppressor, provided 

data types. The object data type in this case was the 
radar system represented by the ALARM91 model. The 
specification of the ALARM91 data type consisted of 
three distinct operations: a CREATE operation to 
create the ALARM91 object during Suppressor initial­
ization, a RUN operation to invoke the ALARM91 
object directly from the Suppressor model, and a 
DELETE operation to remove the ALARM91 object 
at the end of a Suppressor run. Included within the 
specification of the RUN operation was the dynamic 
interface information required by the ALARM91 ob­
ject to define the ensor-target geometry at the time 
of the ensing opportunity. The interface information 
included target latitude, longitude, altitude, velocity, 
pitch, roll, and heading. The Suppressor-ALARM91 
interface also required the specification of the data file 
that the ALARM91 object should use (on its host 
machine) to define and configure the radar system of 
interest. The data file contained static data: numerous 
radar parameters, uch as beamwidth, transmitter power, 
and pulse width, which did not change during a 
simulation run. 

Once the ALARM91 data type was defined, tools 
embedded within the Cronus environment automati­
cally generated the ALARM91 object manager shell. 
Finally, the ALARM91 code was manually inserted 
into the RUN operation shell to produce the desired 
functionality for that operation. This task required us 
to restructure the ALARM91 top-level (main) routine 
into a subroutine and also to resolve cross-language 

the proper operation invo­
cations to both create and 

delete ALARM91 objects and to invoke the 
ALARM91 model with interface information provided 
by the core Suppressor model. During creation of the 
object manager shell, Cronus automatically provided 
the required format for the operation invocation re­
quests in a machine-generated file. This routine was 
compiled separately and linked with the Suppressor 
object code prior to execution. 

Step 3: Calibrate Databases 

To avoid or minimize discontinuities in simulated 
radar performance during transition between low- and 
high-resolution modes, an effort was made to calibrate 
the static radar data in the ALARM91 and Suppressor 
models. Generally, databases defined at different resolu­
tion levels can best be calibrated through the develop­
ment of a disciplined "bottom-up" mapping methodology 
to build aggregated data sets for high-level models 
directly from the high-resolution, engineering-level 
data of lower-level models. Although defining and im­
plementing this methodology would be critical for most 
practical vertical integration applications, the proce­
dure was applied in a limited fashion for thi experi­
ment. We simplified calibration by use of an existing 
parameter in the Suppres or radar data set to automat­
ically calibrate simulated radar system to a specific 
detection range. Suppressor u e the value of this 
parameter to adjust the radar receiver noise value (de­
fined in the input) to correspond to the desired range 

192 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 



performance when evaluating the radar range equation. 
Thus, in addition to "aligning" other radar database 
parameters wherever possible, adequate correlation 
between Suppressor radar performance and the 
ALARM91 model was readily achieved through off­
line execution of the ALARM91 model to obtain the 
appropriate value definition for this parameter. 

Step 4: Develop Required Control Logic for 
High-Low Resolution Transitions 

An important element of the software zoom concept 
is the capability to selectively interject high-resolution 
system representations into a simulation only during 
critical phases of the mission. In this experiment, crit­
ical mission phases were specified by introducing three 
new parameters in the radar receiver capabilities sec­
tion of the Suppressor type database. These parameters 
stipulated the times at which high-resolution mode 
should begin and end during the simulation and indi­
cated a range beyond which high-resolution mode was 
not required. Although most practical applications will 
require a much broader et of transition criteria, the 
intent here was simply to establish a baseline logic 
framework that could easily be expanded to include the 
requirements of diverse users. 

Besides the required database modifications already 
described, a new software routine was developed within 
the Suppressor model specifically to control transitions 
between high- and low-resolution modes. The purpose 
of the routine was to set a high-low resolution toggle 
switch based on the current simulation time and the 
range from the sensor to the target at the time of the 
Suppressor sensing opportunity. If the outcome of this 
routine specified that the sensing opportunity required 
no high-resolution data, the control logic for processing 
radar sensing events within Suppressor was invoked. If 
the sensing opportunity did require high-resolution 
data, control was passed to a specialized submodule to 
construct the required ALARM91 interface informa­
tion for the Cronus client routine. The client program 
then assumed control of the invocation of the 
ALARM91 model over the distributed network (via 
Cronus) and routed the result of the high­
resolution radar sensing event back to the Suppressor 
model for standard (resolution-independent) processing. 

Step 5: Implement Parallel Processing Capability 
to Enhance Execution Speed 

Although the first four steps established the desired 
Suppressor/ALARM91 distributed processing capability, 
the application resulted in inefficient utilization of 
computing resources. The software structure of the 
Suppressor model was not designed to take advantage 

DlSTRIBUTEDVERTICAL MODEL INTEGRATION 

of current parallel processing technology. Because the 
flow of control during Suppressor (sensor) event pro­
cessing was entirely serial, the Suppressor model always 
had to wait for the ALARM91 model to return the 
outcome of a high-resolution sensing opportunity be­
fore any further processing within the Suppressor model 
could take place. The purely serial approach to sensor 
processing always kept one of the two host machines 
idle during a simulation run. 

Although the inherent computing inefficiency was 
not significant for this experiment, other potential 
applications may require at least rudimentary parallel 
processing capability if the technology is to be consid­
ered practical. Fortunately, Cronus provides a mechanism, 
called a "Future," to support concurrent operations. 
When a remote operation is called using Futures, the 
interface to the operation is largely identical to the 
standard invocation. However, instead of waiting for 
the remote operation to finish, a value (called the 
Future) is immediately returned to the calling client as 
a pointer to the results of this operation. At an appro­
priate time later in the calling program, a "Claim" 
operation uses this pointer value to retrieve the results 
of the remote operation. Thus, the calling program is 
free to process other routines in parallel with the re­
mote call until the results of that operation are needed.7 

The simplified diagram in Fig. 5 illustrates the ap­
plication of Futures in our experiment. The top-level 
logic branch is based on whether this is the initial 
sensing opportunity for the particular sensor-target 
pair. If so, the decision of whether to invoke the current 
Suppressor radar routine or the ALARM91 model (via 
Cronus) over the distributed network depends on the 
outcome of the high-low resolution transition routine 
described in Step 4. After sensor processing, the deci­
sion logic determines whether to start a Future for the 
next sensing opportunity for this sensor-target pair. 
The decision is based both on simulation time and on 
a spatial projection of the target position at the next 
scheduled sensing opportunity. If the decision is to start 
a Future (that is, high-resolution mode is required), 
then the required interface information is constructed, 
the Cronus client executes the request, and the Future 
pointer value is stored in the Suppressor sensor-target 
buffer. This step preprocesses the next high-resolution 
sensing event for this sensor-target pair on a different 
machine so that the outcome of the sensing event is 
immediately available to the Suppressor model when 
simulation time "catches up" to the time of the project­
ed sensing opportunity. 

If this is not the first sensing opportunity for the 
sensor-target pair, a check is immediately performed to 
determine if a Future was started for the pair during the 
last sensing opportunity. If not, the implication is that 
high-resolution mode is not required. In this case, the 

JOHNS HOPKI S APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 193 



R. R. LUTZ 

y 

Invoke 
low-resolution 

model 

Continue 
normal 

Suppressor 
processing 

N 

Claim 
results 

Start 
Mure 

N 

Invoke 
low-resolution 

model 

TESTING 
Testing our implementation of 

the software zoom concept was sup­
ported by the definition and imple­
mentation of a limited surface-to­
air engagement scenario. Several 
elements of the scenario, such as 
the size of the opposing forces and 
engagement geometries, were varied 
during the testing to exercise key 
elements of the methodology. The 
primary emphasis in the testing 
phase was to validate the high-low 
resolution transition software, as­
sure the accuracy of the Suppressor­
ALARM91 interface, and verify 
the correctness of the Cronus 
Future facility and supporting con­
trollogic. Although the testing was 
not as formal or exhaustive as 
would be required for more practi­
cal applications, all major facets of 
the methodology were successfully 
demonstrated during this phase. 

An additional area of testing we 
performed involved comparing the 
detection results of the Suppressor 
and ALARM91 radar models at 
high-low resolution transltlOn 
points. Although model results 

Figure 5. Simplified diagram of the logic for the transitions between high- and low-resolution 
analysis in the Suppressor program. 

were found to be highly correlated, 
introducing additional higher­
order effects in high-resolution mode 
(i.e., terrain, propagation) could 

current Suppressor radar routine is invoked to deter­
mine the outcome of the sensing event, and the deci­
sion logic to determine whether to start a Future for the 
next sensing opportunity is executed. If a Future was 
started at the last sensing opportunity for this sensor­
target pair, the pointer value in the sensor-target buffer 
is used to claim the results. A check (based on condi­
tions within the simulated environment) is then per­
formed to determine if the target has performed any 
dynamic maneuvers since the last sensing opportunity. 
If so, the results claimed from the prior Future are 
invalidated, because the spatial state projection of the 
target was built according to preexisting flight plans. In 
this case, the ALARM91 model must be reinvoked for 
the sensing opportunity based on the new target state 
information. If the target has not maneuvered dynam­
ically since the last sensing event, the Future logic for the 
next scheduled sensing opportunity is executed, and 
standard processing of the detection results within 
Suppressor continues. 

readily produce potentially significant discontinuities 
during high-low resolution transitions. Such discontinu­
ities could then invalidate previous reactive events in the 
simulation that were based on low-resolution results. This 
undesirable consequence of the software zoom technique 
needs additional study, and may eventually represent an 
entirely new aspect of the verification, validation, and 
accreditation (W &A) process. 

CONCLUSIONS 
The distributed vertical model integration method­

ology described has considerable potential value to the 
DoD systems acquisition process. The technique offers 
a highly efficient method of leveraging the enormous 
financial investment in high-resolution system and 
subsystem software models to capture the effects 
of new systems (or modifications to existing systems) 
on large-scale, force-on-force encounters. This tech­
nique is particularly beneficial in the near term: the 

194 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 



integration of low-level system repre­
sentations into higher-level models 
offers a technically sound interim 
solution until object-oriented simula­
tion environments are developed that 
can directly support software zoom 
through multilayered object hierarchies. 

Although this experiment was not a 
real-time application , the technique 
can be readily applied to support the 
throughput requirements of individual 
nodes in a distributed real-time ex­
ercise. For example, consider the ficti­
tious real-time application depicted in 
Fig. 6. In this exercise, several distributed 
simulation nodes, each node represent­
ing unique players within the simula­
tion, operate within a virtual battlefield 
via a predefined communication proto­
col (i.e., Distributed Interactive Simu­
lation). Suppose the objective of the 
exercise is to evaluate the impact of a 

Node 1 

Aircraft 
carrier 

Node 2 

F-14 

• • • • • • 

NodeN 

Frigate 

DISTRlBUTED VERTICAL MODEL INTEGRATION 

NodeK 

F-18 

Cronus 
link to 

remote 
processor 

Radar 

RWR 

Software 
zoom 

High­
resorution 

RWR 

new F-18 radar warning receiver 
(R WR) system on operational effective­
ness. Although a high-resolution soft­
ware representation of the R WR system 
is required to adequately evaluate the 
relative utility of the RWR hardware in 
this environment, integrating the high­
resolution RWR software representation 

Figure 6. Fictitious application of the software zoom concept to a real-time exercise 
involving, among other participants, an aircraft carrier, a frigate, an F-14, and an F-18. 
Systems shown on the F-18 are part of the high-level model; the Cronus link is allowing 
the analyst to take a higher-resolution look at the radar warning receiver (RWR). 

into the F-18 simulator degrades performance of the 
F-18 host processor to less than real-time. The resolu­
tion requirements on the R WR representation can be 
relaxed, but an alternate approach would be to host the 
RWR software on a remote processor, accessed directly 
from the F-18 simulator (via Cronus) when require­
ments dictate. Besides the obvious benefit of reestab­
lishing real-time performance through off-loading 
processor-intensive functions onto remote hardware 
resources, the insertion of high-resolution system rep­
resentations into the simulation may be constrained to 
those critical mission phases in the scenario that drive 
the hardware performance evaluation. Although this 
example illustrates the utility of this technique for a 
single system or single node application, supporting 
hardware resources could be dedicated to any number 
of individual systems. Via the Cronus DCE, any node 
on the distributed network can then access these high­
resolution system representations as needed. 

SUMMARY 
Relating the impact of low-level subsystem modi­

fications to overall force effectiveness represents a 

major unsolved problem within the DoD acquisition 
community. Distributed computing environments can 
be used to link detailed software methodologies in 
existing legacy software to the simulation framework of 
higher-order models, offering a viable technical 
approach and potential solution to this problem. Al­
though practical issues remain concerning the applica­
tion of this technique within a structured analytical 
methodology, our experiment successfully demonstrated 
a point of departure from which a more complete 
methodology can be developed to address broad classes 
of potential applications in support of the DoD 
acquisition process. 

REFERENCES 

1 Zeigler, B. P., Theory of Modeling and Simulation, John Wiley & Sons, New 
York, pp. 27-49 (1976). 

ZZeigler, B. P., Multifaceted Modeling and Discrete Event Simulation, Academic 
Press, Orlando, FL (1984). 

3 Zeigler, B. P., and Oren, T. I., "Multifaceted, Multiparadigm Modeling 
Perspectives: Tools for the 90's," in 1986 Winter Simul. Conf. Pmc., pp. 708-
711 (1986). 

4 Department of the Air Force, Air Force Electronic Combat Test Process Guide, 
AF Pamphlet 58-5, Washington, DC (1992) . 

5 Sisti, A E , Large-Scale Battlefield Simulation Using a Multi-Level Model 
Integration Methodology, RL-TR-92-69, Rome Air Development Center, 
Rome, NY (1992) . 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 195 



R. R. LUTZ 

6Capabilities Assessment , Simulation and Evaluation System (CASES) System/ 
Segment Design Document, NOSC Technical Memorandum SD-295, Naval 
Ocean Systems Center, an Diego, CA (1992). 

7 Berets, J. c., Cherniack, ., and Sands, R. M., Introduction to CRONUS, 
Rev . 3.0, Report 6986, BB Systems and Technologies, Cambridge, MA 
(1993). 

8SUPPRESSOR Release 5.2 User's Guide; Volume 1: Installation and Use, 
Avionics Directorate, WL/ AA W A, W right-Patterson Air Force Base, 
Dayton, OH (1992). 

9 Software User's Manual for the Advanced Low Altitude Radar Model 
(ALARM91), Avionics Directorate, WL/AAWA, Wright-Patterson Air 
Force Base, Dayton, OH (1992). 

THE AUTHOR 

196 

ROBERT R. LUTZ is a member of the Senior Professional Staff of APL's 
Naval Warfare Analysis Department. He received a B.S. degree in applied 
mathematics in 1978 and an M.S. degree in operations research in 1980, 
both from the State University of New Yark at Stony Brook. He has 
worked on various aspects of systems engineering, software engineering, 
and operations research. Since joining APL in 1992, Mr. Lutz has 
specialized in the design, development, and implementation of military 
computer simulations and modeling architectures. Mr. Lutz serves as a 
technical advisor to the Director of the Naval Modeling and Simulation 
Technical Support Office. His e-mail address is Robert.Lutz@jhuapl.edu. 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 


