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gain and phase properties of horizontally and vertically oriented cavity 
antennas on cylindrical ground planes are modeled and analyzed. These antennas are 
frequently used on missiles to receive or transmit the signals of interest. Since many 
electronic measurement systems now use the phase of the signals as a sensitive ruler for 
measuring distances and velocities, an accurate understanding of the phase properties 
of cavity antennas is required. 

INTRODUCTION 
Many modem electronic measurement systems are 

now using the phase of electromagnetic signals prop
agated between components of the system as electronic 
rulers for measuring distances and velocities. The Glo
bal Positioning System (GPS) is an important example 
of such a measurement system.1 The GPS is composed 
of 24 satellites that orbit the Earth in a set of six circular 
rings at a nominal radius of 26,559.8 km from the center 
of the Earth. Each satellite radiates a pair of phase
modulated radio frequency (RF) carriers that are re
ceived by the navigation receivers located in the 
vehicles to be navigated. The navigation receivers have 
signal and data processing capabilities that enable them 
to measure the propagation time of the signals received 
from the GPS satellites (and therefore also the range 
or distance of the satellites from the navigation receiv
er), and then calculate the location of the receiver from 
the satellite-to-receiver range measurements and the 
known positions of the satellites. 

The propagation time measurements are taken by using 
delay-locked loops to synchronize receiver-generated, 
time-shifted replicas of the satellite modulation codes 
with the signals received from the satellites. The time 
shifts required to achieve synchronization on each sat
ellite are then measures of the propagation times of the 
signals from each satellite. These measurements typical
ly have noise levels with standard deviations of 0.3-
3.0 m, depending on how the delay-locked loops are 
implemented. Ambiguous satellite-to-receiver range 
measurements with noise levels of only a few millime
ters can also be generated by using phase-locked loops 
to accomplish similar phase lock of receiver-generated 
carriers with the received carriers. These measurements 
are ambiguous because the RF carriers are periodic, and 
every cycle looks like every other cycle. However, if the 
receiver is properly designed and takes full advantage of 
all the information provided by the GPS signals, it is 
possible to resolve the ambiguities (i.e., determine 
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which cycle is the correct cycle) and thereby provide 
unambiguous range measurements with noise levels of 
only a few millimeters. When these phase-derived range 
measurements are used to compute navigation solu
tions, the position estimates obtained have noise levels 
that are typically only a few centimeters. 

The accuracy of the navigated solutions also de
pends on how well the systematic error sources are 
modeled and corrected. The phase pattern of the an
tenna used to receive the GPS signals is one of the 
important sources of systematic error. Navigation pro
grams typically model the range and phase measure
ments as if they were obtained from a zero-size antenna 
located at a point called the "phase center" of the 
antenna. Real antennas, however, do not have zero 
size, and the effective phase center depends on the 
direction of arrival of the incoming signals and is there
fore different for each satellite. To correct for this, the 
phase pattern of the antenna relative to a specified 
reference point in or near the antenna is defined and 
evaluated for all directions of arrival, either by mea
surement or by mathematical modeling.2 This phase 
pattern is then used to adjust the measured range and 
phase data so that they appear to have been obtained 
from an ideal zero-size antenna at the specified refer
ence point. 

When the vehicle being navigated is a missile, the 
cylindrical shape and metallic composition of the mis
sile's body substantially influence the phase behavior 
of whatever type of antenna is used. The antenna of 
choice has traditionally been a micros trip ring antenna 
because it provides approximately spherical coverage 
and is more predictable in phase than other types of 
antenna systems (e.g., two or more summed, and there
fore interfering, sets of cavity antennas). However, 
micros trip ring antennas are physically large and not 
as predictable in phase as they need to be to take full 
advantage of the low-noise-level capability of the 
phase-processing receivers. Therefore, it is currently 
believed that three or more commutated (and therefore 
noninterfering) small antennas such as cavity or mi
crostrip patch antennas would be more suitable. How
ever, these antennas are still influenced by the ground 
plane to which they are attached, and a theoretical 
understanding of what these effects are is needed. The 
results of an investigation into the gain and phase 
properties of horizontally and vertically oriented cavity 
antennas on cylindrical ground planes are presented in 
this paper. It is anticipated that a similar study of the 
properties of microstrip patch antennas on cylindrical 
ground planes will be conducted in the near future. 

THEORY 
Equations defining the RF fields produced by cavity 

antennas mounted on large circular cylinders were 

published in 1955 in the IRE Transactions on Antennas 
and Propagation,3 and are reproduced below. If the cav
ity is horizontal (i.e., its long axis is parallel to the 
circumference of the missile), then the electromagnetic 
field (E field) produced by the cavity is given by the 
following two equations: 

and 

where 

and 

Eo = - jZA Voka(-. 1_J 
sm O 

[ 
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j=r-I, (4) 

(5) 

If the cavity is vertical (i.e., its long side is parallel to 
the axis of the missile), then the E field is given by the 
next two equations: 

Eo=O, (6) 

and 

(7) 
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In these equations, the spherical coordinates of the 
observation point defined in Fig. 1 are represented by 
{R, (), cp }, the radius of the cylinder is represented by a, 
the RF drive voltage across the center of the slot is 
represented by Vo, and the RF wavenumber is repre
sented by k. The function H~2)(x) used in the denom
inator of Eq. 1 is the Hankel function of second kind 
defined as 

H~2) (x) = ] n (x) - jN n (x) , (8) 

where In(x) and Nn(x) are Bessel functions of the first 
and second kind, respectively, and are defined by in
finite series that can be found in standard references.4,5 

The function H~) (x) used in the denominators of Eqs. 
2 and 7 is the derivative of HP)(x) with respect to x, 
and is related to HJ?) (x) and H~~ 1 (x) by the equation: 

H~)(x) = ~ H~)(x) - H~ll (x). (9) 
x 

z 

When Reference 3 was written, the In(x) and Nn(x) 
functions were normally evaluated by laborious inter
polation of printed tables. Now, however, it is quite 
feasible to evaluate them for the exact values of x 
needed for the analytical job at hand using desktop 
computers and finite approximations of the defining 
series. In this article, an algorithm called besselh, 
which is provided in a commercially available analysis 
package called MATLAB, was used to generate HAl)(x), 
which is the complex conjugate of the HA2)(x) func
tions needed in Eqs. 1 and 9. 

MATLAB functions called Hcavity and Vcavity, for 
computing the E fields produced by horizontally and 
vertically oriented cavity antennas, are shown in Figs. 
A and B, respectively, in the boxed insert entitled 
MA TLAB Functions. The CnvrtLin function shown in 
Fig. C converts these complex E-field components into 
arrays that give the equivalent power gain and phase 
of the cavity antennas when measured with an appro
priately oriented, linearly polarized receiving antenna. 
The CnvrtCir function, also shown in Fig. C, converts 
the complex components of the Eo and Ecp fields pro
duced by a horizontal cavity into arrays that give the 

equivalent power gain and phase of 
the cavity when it is measured with a 
left- or right-hand circularly polarized 
(LHCP or RHCP) receiving antenna. 
This operation is accomplished by us
ing either 

Observation 
(10) pOint 

EI{> or 

R 
(11) 

I-------l--- Y to calculate the real and imaginary 
components of the desired circular 
E field, and then converting those 
components into equivalent power gain 
and phase. The CnvrtLin routine uses 
the expression 

Cavity antenna 
(shown in its 

horizontal 
configuration) 

x 

Cylindrical 
ground 
plane 

Figure 1. Definition of the geometry used to analyze the electromagnetic fields 
produced by a cavity antenna on a cylindrical ground plane. 

(12) 

to generate the equivalent power gain 
of the linear field components, Eo or Ecp, 
whereas the CnvrtCir routine uses the 
expression 
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MODELING AND ANALYSIS OF CAVITY ANTENNAS 

MATLAB FUNCTIONS 
Shown in the following figures are MA TLAB functions used to generate complex arrays representing the electromagnetic fields, 

Eo and Ell" produced by horizontally and vertically oriented cavity antennas on cylindrical ground planes. Also shown are functions 
that convert these complex arrays to real arrays representing the gain and phase properties of these antennas. 

function [El,E2l=Hcavity(Theta , Phi , ka) 
% 
% This function calculates the E field produced by a horizontal (circumferentially- oriented) 
% cavity- backed antenna mounted on a long cylinder of radius ' a '. ' El ' and ' E2 ' will be (mxn)
% dimensional arrays giving the Theta and Phi components of the E field at the set of observa
% tion points specified by the m- element column vector 'Theta' and the n - element row vector 
% ' Phi '. The parameter 'ka' must be set equal to 2*pi*f*a / c , where : f=frequency(Hz) and 
% c=speed- of-light . ' a ' and ' c ' must be in consistent units (e . g ., meters & m/ sec) , and ' Theta ' 
% & 'Phi ' must be supplied in units of degrees . 
% 
Ph=pi*Phi / 180 ; B=pi / (2*ka) ; Th=pi*Theta / 180 ; Sth=sin(Th) ; X=ka*Sth ; kasq=ka*ka ; 
Hk=conj(besselh(O,X)) ; Hl=conj (besselh (l , X)) ; Sl=(leO . / (ka*Hk))*ones(l , N) ; S2=zeros(M , N) ; 
Kmax=floor(2*ka) ; M=length(Theta) ; N=length(Phi) ; 
% 
for k=l : Kmax 

Hk=Hl ; Hl=conj (besselh(k+l , X)) ; 
Tl=(j Ak . / Hk)*cos(k*Ph) ; T2 = (j Ak . / ((Hk . / X)-(Hl / k)))*sin(k*Ph) ; 
F=2*ka*cos(k*B) / (kasq- k A2 ) ; Sl=Sl + F*Tl ; S2=S2 + F*T2 ; 

end 
El=((-j. / Sth)*ones(l , N)) . *Sl; E2=( (- j . / (X .* tan(Th)))*ones(l , N)) .* S2 ; 

Figure A. MATLAB routine (Heavity) for generating the real and imaginary components of the E fields, Eo and E"" produced by a 
horizontally oriented cavity antenna on a cylindrical ground plane. 

function Ephi=Vcavity(Theta , Phi , ka) 
% 

% This function calculates the E field produced by a vertical (axially-oriented) cavity-backed 
% antenna mounted on a long cylinder of radius ' a '. 'Ephi' will be a (mxn)-dimensional array 
% giving the E field at the set of observation points specified by the m- element column vector 
% ' Theta ' and the n - element row vector ' Phi '. The parameter ' ka ' must be set equal to 2*pi*f*a / 
% c , where : f=frequency(in Hz) and c=speed-of - light . ' a' and 'c' must be in consistent units 
% (e.g., meters & m/ sec) , and 'Theta' & 'Phi' must be supplied in units of degrees . 
% 
Kmax=floor(2 *ka) ; Ph=pi*Phi / 180 ; N=length(Phi) ; Th=pi*Theta / 180; Sth=sin(Th) ; X=ka*Sth ; 
Hl=conj (besselh(l , X)) ; S=-(leO. / Hl)*ones(l , N) ; 
% 

for k=l:Kmax 
Hk=Hl ; Hl =conj (besselh(k+l , X)) ; T=j Ak . / ((k*Hk . / X)-Hl) ; S=S + 2*T*cos(k*Ph) ; 

end 
Ephi=((cos(O . 5*pi*cos(Th)) . / (X .*Sth))*ones(l,N)) . *S ; 

Figure B. MATLAB routine (Veavity) for generating the real and imaginary components of the E field, E"" produced by a vertically 
oriented cavity antenna on a cylindrical ground plane. 

(13 ) 

to generate the equivalent power gain of the circular 
fields, ELHCP or ERHCP' These expressions produce gain 
values that have the correct shape relative to variations 
in the line-of-sight angles () and <p, but they are incor
rectly biased because the input impedance of the cavity 
as well as the impedance of space at the observation 
point have not been taken into account. This bias 

can be removed through proper adjustment of the Va 
constant. 

The phase values produced by the CnvrtLin and 
CnvrtCir functions are the so-called "partial phase" 
values, obtained by taking the principal two-argument 
arctangent of the real and imaginary parts of whichever 
E field component is of interest. Since the principal 
arctangent is constrained to the range of values be
tween -180° and + 180°, plots of the partial phase 
function along most () or <p cuts have numerous 360° 
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MA TLAB FUNCTIONS (continued) 

function [Gain , Phase] =CnvrtLin(VGMap) 
% 
% This function converts linearly polarized antenna voltage - gain arrays to power-gain & phase 
% form . 

% 

Gain=10*loglO(le-10 + O. S*real (VGMap . *conj (VGMap))) ; Phase=(180 / pi)*angle(VGMap) ; 

function [Gain,Phase]=CnvrtCir(VG1 , VG2,P) 
% 
% This function converts complex 2 - axis antenna voltage-gain arrays to arrays of equivalent 

% power-gain and phase relative to a LHCP or RHCP reference antenna . ' P'={ll-l} for left or 
% right polarization . ' VG1 ' and ' VG2 ' are (m , n)-dimensional arrays of complex voltage gains for 

% the theta and phi components of the E field produced by a horizontal cavity . 
% 

VGCir=O .S* ( (real(VG2)-P*imag(VG1))+j*(imag(VG2)+P*real(VG1))) ; 
Gain=10*log10 (real (VGCir.*conj (VGCir))) ; Phase=(180 / pi)*angle(VGCir) ; 

Figure C. MATLAB routines (CnvrtLin and CnvrtCit) for converting the real and imaginary field values produced by the Heavity and 
Veavity routines to two-dimensional arrays giving the equivalent gain and phase of the cavity antennas. 

function Tph=FrntWrp(Pph) ; 
% 
% This function removes 360-degree discontinuities in the input partial phase map ' Pph ' of an 
% antenna . It first unwraps the theta-sweep at phi=O, and it then unwraps all phi -sweeps (for 
% each theta value), starting at phi=O and sweeping right to phi=180 and left to phi=-178 . 

% 

Tph=Pph; [M , N] =size(Pph) ; I=[2 : M] ; J=[2 : N/ 2] ; K=[N : -l:1+N / 2J ; L=[l , N:- l : 2+N/2] ; 
Tph(I,l)=Tph(I,l)-cumsum(360*floor(0.S+(Tph(I,l)-Tph(I-1(1)) / 360)) ; 
Tph(:,J)=Tph(:,J) - cumsum(360*floor(0 . S+(Tph( :, J)-Tph( :, J-1)) ' / 360))' ; 
Tph( :, K)=Tph(:,K)-cumsum(360*floor(0 . S+(Tph( :, K)-Tph(: , L)) ' / 360)) '; 

function Tph=HHWrp(Pph) ; 
% 
% This function removes 360-degree discontinuities in the input partial phase map ' Pph ' of an 
% antenna . It first unwraps the phi-sweep at theta=O , and it then unwraps all theta-sweeps (for 
% each phi value) , starting at theta=O and sweeping up to theta=180 . A special 360 deg adjust
% ment is then added to the upper center region to correct for unwrapping errors resulting from 
% finite 2 deg sampling . 

% 

Tph=Pph ; [M , N]=size(Pph) ; I=[2 : M] ; J=[2 : N] ; K=[46 : 89] ; L=[47 : 135] ; 
Tph(l,J)=Tph(l,J)-cumsum(360*floor(0 . S+(Tph(l,J)-Tph(l,J-1)) ' / 360)) '; 
Tph(I, : )=Tph(I , : )-cumsum(360*floor(0 .S+ (Tph(I , : )-Tph(I - l , : )) / 360)) ; 
Tph(K,L)=360+Tph(K,L) ; 

Figure D. MATLAB routines (FrntWrp and HHWrp) for removing 3600 discontinuities in the partial phase data produced by the routines 
CnvrtCir and CnvrtLin. 

discontinuities in them. These are removed, to the 
extent possible, with two phase-unwrapping routines 
called FrntWrp and HHWrp, which are shown in Fig. 
D. The phase data obtained from these phase-unwrap
ping operations are usually called "total phase." 

NUMERICAL RESULTS 
Complex arrays representing Eo and E¢, and real 

arrays representing the gain and phase values corre
sponding to these fields, were computed for both hor
izontally and vertically oriented cavity antennas over 
a grid of {O,cp} pairs generated by the sets () = 

{2°, 4°, ... ,178°} and cp = {0°, 2°, ... ,358°}, respec
tively. Three-dimensional perspective plots exhibiting 
the gain and phase properties of these antennas were 
then produced. Figures 2 and 3 show the gain and phase 
of the Eo and E<f' fields generated by a horizontally 
oriented cavity, and Fig. 4 shows a similar pair of plots 
for the E<f' field generated by a vertically oriented 
cavity. 

The gain plots shown in Figs. 2 and 4 exhibit a 
gradual reduction in gain as cp increases from 0° to 180°. 
This is contrary to what a simple line-of-sight model 
predicts, viz., a sudden loss of gain at cp = 90° due to 
the loss of visibility at that angle. Figure 2 shows that 
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Figure 2. Gain (a) and phase (b) of a horizontal cavity using a 
vertically polarized reference antenna located at azimuth angle cp 
and elevation angle () relative to the cylinder coordinate frame. 

the horizontal cavity has nearly constant gain in the 
vicinity of cp = 0° as () varies from 0° to 180°. On the 
other hand, Fig. 4 shows that the gain of the vertical 
cavity in the same vicinity varies considerably as () 
varies from 0° to 180°, with maximum gain occurring 
at () = 90° and gain nulls occurring at () = 0° and 
() = 180° (the nose and tail directions, respectively). 
Both orientations of the cavity show some "up and 
down" rippling of the gain pattern as cp approaches 
180°, although the effect is more pronounced for the 
vertical cavity than for the horizontal cavity. This 
effect is due to interference between the wave propa
gating around the cylinder in the pOSltlve-cp 
direction and the wave propagating around the cylin
der in the negative-cp direction. The gain pattern 
shown in Fig. 3 for the cp component of the field 
generated by a horizontal cavity is substantially differ
ent in character from the other two cases. In this case, 
the gain has infinitely deep nulls at cp = 0°, cp = 180°, 
and () = 180° and relatively constant gain elsewhere. 

The phase patterns shown in Fig. 2 for the E() field 
generated by a horizontal cavity and in Fig. 4 for the 
Ecp field generated by a vertical cavity were obtained 
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Figure 3. Gain (a) and phase (b) of a horizontal cavity using a 
horizontally polarized reference antenna located at azimuth angle 
cp and elevation angle () relative to the cylinder coordinate frame. 

by applying the FrntWrp routine to the partial phase 
arrays pertaining to these two fields. The phase patterns 
are remarkably similar in shape; both of them show a 
positive peak at {() = 90°, cp = 0°}, a negative peak at 
{() = 90°, cp = 180°}, and a difference between them of 
:::::3000°. In addition, they are both quite smooth rel
ative to variations in () and cp at all points except those 
that are near cp = 180°. At those points, a contouring 
effect is evident where the phase holds relatively 
constant at several different plateau levels. The pla
teaus are separated by regions of rapid change in which 
the phase shifts up or down by approximately 180°. It 
can also be shown that the regions of rapid phase 
change are the regions where the gain plots have deep 
nulls. The phase pattern shown in Fig. 3 for the 
cp component of the field generated by a horizontal 
cavity was obtained by applying a different unwrapping 
routine (viz., HHWrp) to the partial phase array per
taining to that field. This phase pattern is generally 
similar in shape to the phase patterns shown in Figs. 
2 and 4, but there are instantaneous 180° "cliffs" at 
cp = 0°, cp = 180°, and () = 180° (the same points at 
which the gain nulls occur), and a different unwrapping 
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routine, as well as a little bit of "hand tailoring," was 
required to correctly generate the total phase map for 
this case. 

The gain and phase patterns of a horizontal cavity, 
when observed with an LHCP reference antenna, are 
shown in Fig. 5. The data in this case are obtained by 
(1) applying the CnvrtCir function to the Eo and Ecp 
arrays generated by Hcavity, and then (2) applying 
FrntWrp to the partial phase data to obtain the total 
phase data shown in Fig. 5. A gain null again occurs 
along the () cut at <p = 180°, so a 180° phase cliff is 
observed along this line. In addition, there are two 
short <p-cut segments near the center of the plot where 
the gain is very nearly zero, and the phase changes quite 
rapidly along these two lines as well. 

SIMPLIFIED PHASE MODEL 
Additional insight into the behavior of cavity an

tennas on cylindrical ground planes is obtained by 
examining plots of total phase vs. <p for various () 
angles. Examples of such plots are shown in Fig. 6a for 
the case of Eo produced by a horizontal cavity and Fig. 
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Figure 4. Gain (a) and phase (b) of a vertical cavity using a 
horizontally polarized reference antenna located at azimuth angle 
cp and elevation angle 0 relative to the cylinder coordinate frame. 

6b for the case of Ecp produced by a vertical cavity. 
Note that the curves are basically sinusoidal in the 
regions 0° :::; <p :::; 90° and 270° :::; <p :::; 360° and V
shaped in the region 90° :::; <p :::; 270°. This result sug
gests that a simplified model for the total phase of these 
field components is obtained by multiplying the wave
number k by the difference between the length of the 
shortest path from the antenna to the observation 
point, and R (the distance of the observation point 
from the origin of the coordinate frame). When the 
observation point is visible to the cavity antenna, i.e., 
when 0° :::; <p :::; 90° or 270° :::; <p :::; 360°, this model 
results in the equation 

for the total phase in degrees of the cavity antenna, 
where B is a phase bias term that may be needed. 
However, when the observation point is obscured by 
the cylinder, i.e., when 90° :::; <p :::; 270°, the shortest 
path must be one that does not penetrate the surface 
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Figure 5. Gain (a) and phase (b) of a horizontal cavity using an 
LHCP reference antenna located at azimuth angle cp and elevation 
angle 0 relative to the cylinder coordinate frame. 
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of the metallic cylinder, and therefore consists of a 
spiral segment and a straight-line segment as shown in 
Fig. 7. The spiral starts at cp = 0°, proceeds along the 
surface of the cylinder with an inclination of 90° - (), 
and terminates at cp - 90° (if 90° ::::; cp ::::; 180°) or 
cp + 90° (if 180° ::::; cp ::::; 270°). At this point the short
est path continues as a straight line proceeding from 
the previously defined terminal point of the spiral to 
the observation point. It can be shown that the differ
ence between the length of this path and R approaches 

flp = (7r / 1800 )[900 
- abs( cp -180°) Jasin () (15) 

in the limit as R ~ 00. Therefore, a combined simpli
fied model for the phase of Eo produced by a horizontal 
cavity and/or E<p produced by a vertical cavity is pro
vided by the following equation: 

200 300 

<p (deg) 

MODELING AND ANALYSIS OF CAVITY ANTENNAS 

400 

Figure 6. Total phase of (a) Eo field 
generated by a horizontal cavity, (b) 
Ecp field generated by a vertical cavity, 
(c) Ecp field generated by a horizontal 
cavity, and (d) E LHCP field generated 
by a horizontal cavity. (Red curves: 0 
= 30°, green curves: e = 60°, and blue 
curves: e = 90°.) 

cos cp ~ 0 

cos cp < 0 

(16) 

where the bias B is equal to - 90° for a horizontal cavity 
or +90° for a vertical cavity. 

Construction of a simplified phase model for the E<p 

field produced by a horizontal cavity is somewhat more 
complex. The curves shown in Fig. 6c demonstrate that 
Eq. 15 can still be used, but a single bias value cannot 
be used for all values of () and cpo Instead, different 
values must be used depending on where the point 
representing () and cp falls in the (),cp plane. These values 
are listed in Table 1. Approximation of the total phase 
of the LHCP or RHCP components of the field gen
erated by a horizontal cavity is even more involved. 
The LHCP case is shown in Fig. 6d. An approximation 
that works reasonably well is given by the equation 
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Figure 7. Definition of the shortest path length model when the 
observation point lies in the region 90° ~ cp ~ 270°. 

Table 1. Biasvalues,B,requiredinEq.16toapproximate 
the phase of the E<p field generated by a horizontally 
oriented cavity. 

e \ cp-Regions 

0° :5 e < 90° 

90° < e :5 180° 

0° < cp < 180° 

{
( 180°/ 7r)ka sin 0 cos cp 

1f;(O,cp) = B ± T(O,cp) + -[900 _ abs(cp -180°) ]kasin 0 

(17) 

where for the LHCP case, B = 0° and + T(O,cp) is used, 
and for the RHCP case, B = - 180° and -T(O,cp) is 
used. The conditions for the terms to the right of the 
brace are the same as those given in Eq. 16. The term 
±T(O,cp) models an effect called "twist," which is the 
rotation of the plane of polarization of the E field as 
the observation point is moved from its initial {OO,OO} 
position to its final {O,cp} position. An equation describ
ing this effect can be derived by treating the E field as 
elliptically polarized and solving for the angle between 
the 0 axis and the semimajor axis of this field. This 
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-200 
o 

Figure 8. Three-dimensional perspective plot of the twist effect 
defined by Eqs. 18 and 19. 

procedure generates the following equation for the 
twist effect: 

T(O,cp) = tan , 
- 1 {real [E<p (O,cp )W( O,CP)]} 

real [E(J(O, cp )W(O,cp)] 
(18) 

where 

I 1 ( E2 + E2 J] 
W(O,I") = eXPl-izanglel 9 2 ~ . (19) 

A three-dimensional plot of the twist effect given by 
Eqs. 18 and 19 is shown in Fig. 8. (The function angle 
(z) used in Eq. 19 is defined as tan -1 [imag (z) /real 
(z)].) Notice that cp cuts of the T(O, cp) function have 
jumps of 180° or more at cp = 180°. These jumps result 
in a net buildup in phase of 0° as cp varies from 0° to 

360°. However, when phase-sensitive circuits (such as 
phase-locked loops) process these signals, they are very 
likely to exhibit a one-cycle per tum buildup in phase, 
particularly at 0 close to 0° or 180°, because noise 
effects frequently cause jumps of the opposite sign to 
occur at cp = 180°. 

Residuals between the true phase of the cavity an
tennas and the simplified models defined here are 
shown in Fig. 9. The simplified models are all accurate 
to 10° or better when I cp I ::; 65°. This accuracy dem
onstrates that the cavity antennas are fairly well ap
proximated as point phase centers when the line ,of 
sight to the receiving antenna is well into the unob
scured region of the cylindrical ground plane. However, 
when I cp I > 65°, the magnitude of the residuals in
creases rapidly above the 10° level, typically to 200°-
300°. This increase occurs probably because the "elec
trical radius" of the cylinder as the waves propagate 
around it is not necessarily equal to the physical radius 
of the cylinder. However, additional work is required 
to confirm this speculation. The residuals shown in 
Fig. 9 have rapid, high-amplitude oscillations around 
cp = 180° caused by interference between the waves 
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Figure 9 . Phase errors due to the shortest path length model. (a) Eo field/horizontal 
cavity, (b) E<{J field/vertical cavity, (c) E<{J field/horizontal cavity, (d) E LHCP field/horizontal 
cavity. (Red curves: 8 = 30°, green curves: 8 = 60°, and blue curves: 8 = 75°.) 

MODELING AND A AL Y I OF CAVITY ANTE NAS 

propagating in opposite directions 
around the cylinder. Accurate mod
eling of these oscillations is difficult 
because small changes in a, 8, and 
<p cause big changes in the corre
sponding pha e residual. 

EXPERIMENTAL 
RESULTS 

O ne of APL's responsibilities for 
the Advanced Interceptor T echnol
ogy program was to provide payload 
equipment for a missile to be used 
as a target veh icle for an interceptor 
buil t by the Martin-Marietta Cor
poration. Figure 10 shows the mis
sile and the antenna arrangement. 
The purpose of the payload equip
ment was to enhance the thermal 
signature of the vehicle and provide 
data enabling the miss d istance and 
point of closest approach of the in
terceptor's path past the target to be 
estimated. A system called the Miss 
Distance Measurement System 
(MDMS) was developed to address 
the latter requirement. This system 
has two main subsystems: a two
translator Satrack system for mea
suring the absolute and relative 

Nozzles 
and 

dome 
MS7A1 motor 

Missile 
guidance 

set 
payload tronics matics Signature enhancer 

I 

Aft I Elec- I pneu-I Forward 
antenna 
section 
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Figure 10. Illustration of the target vehicle used for the Advanced Interceptor Technology program. 
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trajectory of each vehicle, and a short-range radar sys
tem called the Mis Distance Indicator System 
(MDIS), located in the target vehicle, for independent
ly measuring the point of closest approach. 

The MDIS uses the shape of the Doppler shift in the 
returned pul es to measure the miss distance between 
the interceptor's trajectory and each of four cavity-type 
antennas on the target vehicle, and it is therefore 
sensitive to the phase characteristics of those antennas. 
The software that proce es the data produced by the 
missile-borne sensor as umes that these antennas can 
be modeled as single-point phase centers. However, 
there were numerous constraints on where the anten
nas could be located, and some of them ended up 
having to be on small ground-plane panels inserted into 
a 3 x 3 array of skin openings behind a deployable door 
(see the enlarged area in Figure 10). 

Uncertainties about the effect of this ground-plane 
arrangement led to concern that the antennas might be 
very poorly approximated as single-point phase centers. 
Therefore, the antennas and ground planes were in
stalled on a mock-up of the aft payload wafer, and the 
gain and pha e properties of the assembly were mea
sured in APL's Antenna and Bore-Sight Test Facility. 
Some results of that te t are shown in Fig. 11. The two 
curves in the gain plot how the gain of the horizontally 
oriented sensor antenna and the vertically oriented 
telemetry antenna at cp = 0° as () varies from 0° to 180°. 
Note that the horizontal cavity has relatively constant 
gain over this range, whereas the gain of the vertical 
cavity varies considerably. The two curves shown in the 
phase plot demonstrate the phase properties of these 
two antennas at () = 90° as cp varies from - 180° to 
+ 180°. Note that these curves do show the sinusoidal 
and V-shaped properties described in the previous sec
tion, and the phase contouring effects are also obvious, 
particularly for the vertically oriented cavity. 

CONCLUSIONS 
The electromagnetic fields produced by horizontally 

and vertically oriented cavity antennas attached to 
cylindrical ground planes are ideally described by Eqs. 
1, 2, and 7. Variou physically measurable effects are 
predicted by these equations: phase behavior consistent 
with a well-defined phase center when the cavity is 
well into the unobscured region of the cylindrical 
ground plane, gradual gain attenuation and V-shaped 
phase vs. cp behavior when the cavity is obscured by the 
cylindrical ground plane, and interference between the 
clockwise and counterclockwise propagating waves 
when the receiving antenna is near the cp = 180° point. 
Simplified phase models based on the single-point 
phase center assumption are correct to within ± 10° of 
electrical phase for all unobscured observation points 
out to cp "" ±65°. At that point the errors begin to grow 
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Figure 11. Experimental gain (a) and phase (b) plots obtained 
from the cavity antennas used in the aft payload wafer section. 

and reach values of more than 100° near cp = 180°. 
However, these approximation errors might be reduced 
with further work on the simplified models. The results 
obtained from this analysis can also be used as a 
reference for comparison with gain and phase data 
obtained from physical antenna systems. This compar
ison was made for the sensor and telemetry antennas 
chosen for the MDIS, which was developed by APL for 
the Advanced Interceptor Technology program. 
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