
The Submarine Combat Information Laboratory and
the Object,oriented Rule,Based Interactive System

Michael D. Dykton and Robert D. Sanders

R ecent advances in a variety of technologies are fueling a revolution in the areas
of simulation, rapid prototyping, and system integration. The APL Submarine
Technology Department is concentrating these technologies into a single facility to
focus them on a wide range of problems. This facility, the Submarine Combat
Information Laboratory, is a flexible, land~based testbed and simulation facility
developed to support Navy and Department of Defense activities. A key component of
this facility is its powerful simulation development environment and stimulation
software, called the Object~oriented Rule~Based Interactive System (ORBIS).

INTRODUCTION
The ship's commanding officer scans the fire control

system displays and orders firing point procedures. Flawless~
ly, the well-trained crew execute their tasks. The skipper
then gives the commands that launch a torpedo toward its
target.

In the past, this scenario was likely to be a drill
aboard a submarine at sea. Today, it could also be the
simulated action taking place in the APL's Submarine
Combat Information laboratory (SCIl).

Significant advances have recently been made in
the areas of high~performance computing and network~
ing, distributed simulation, expert systems, and computer~
visualization technology. These advances offer an
opportunity to revise the paradigms that government
and industry use in system requirement definition,
acquisition, test and evaluation, doctrine development,
and training. The benefits of a revised approach

include reduced costs, more effective products, and
faster development cycles.

The APl Submarine Technology Department
(STD) is incorporating the recent technological ad~
vances in a single departmental facility, the SCIL. The
foundation of the SCIl is a high~fidelity synthetic
environment generated by the Object~oriented Rule~
Based Interactive System (ORBIS). This multifaceted
expert~system simulation tool supplies the development
framework that enables swift prototyping of complex
scenarios, assessment of emerging technologies, and
development of control strategies. ORBIS enables these
tasks to be performed by providing high~powered fea~
tures such as sophisticated reactive rule control structures,
detailed object representations, and dynamic editing
mechanisms. Through the richness of these features,
ORBIS can function in several arenas, including

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 1 (1995) 83

M. D. DYKTON AND R. D. ANDER

Monte Carlo, interactive, and real~time man~in~the~
loop simulations.

This article describe the conceptual development
and the contents of the SCIl, including its physical
facilities, supporting software infrastructure, uses, and
users. Particular attention is given to ORBIS because
it is the underlying simulation engine that stimulates
the SCIl and creates the virtual world in which the
SCIl operates.

THE SCIL CONCEPT
The SCIl is the brainchild of James R. Austin,

former supervisor of APL's STD (personal communica~
tion, J. R. Austin, 28 Feb 1994). The SCIl concept
emerged in the mid~ 1980s, when the STD was engaged
in more than a dozen projects aimed at addressing new
requirements or correcting perceived deficiencies on
U.S. submarines by adding prototype sensors, proces~
sors, and decision aids. The STD faced three general
problems in developing and fielding these systems: (1)
physical space limitations, (2) information flow bottle~
necks, and (3) expensive and time~consuming proto~
type sea~testing. A fact apparent to even a casual visitor
to a submarine i that little space is available for new
systems. An even more difficult issue is handling the
information generated by new systems. Modem control
and sensor systems manipulate massive amounts of
complex data that can quickly overwhelm operators
unless the data are carefully filtered and prioritized. The
solution to these dilemmas is proper system integration.

The third problem listed in the preceding paragraph
stems from the limited availability of resources for
developing and testing new tactics and systems.
Even under the best circumstances,
the resources required for testing at
sea are significant. In an era of de~
clining assets and naval force levels,
new method had to be developed
in response to resource limitations.
One solution to this problem was to
rely more on land~based system
development and testing provided,
of course, that it could be a realistic
and effective substitute for time
at sea.

known as the Combat Information Test and Evaluation
Facility (CITEF).

PHYSICAL FACILITIES
The CITEF consists of an interconnected collection

of laboratorie , equipment rooms, computer rooms, a
briefing area, and other work spaces (Fig. 1). At the
heart of the facility is the SCIl, which is a physical
mockup of a submarine control room (Fig. 2). The SCIl
is ized and laid out to duplicate the control room of
the largest type of u.s. submarine, a Trident~class stra~
tegic ballistic missile submarine (SSBN). Appropriately
scaled and located control console mockups, an arched
panel ceiling, and lighting options create the illusion
of being aboard ship. To add to the realism, some com~
ponents were salvaged from decommissioned U.S. sub~
marines. These components include a periscope stand
and tubes, steering and diving station controls, and
even flashlights and their mounting brackets.

Although we tried to give operators the sense of
being aboard a submarine, our goal was not to create
an exact replica of a control room. In keeping with its
role as a research and development facility, the SCIl
is equipped with a network of modem commercial off~
the~shelf workstations instead of the Mil~Spec computers
currently used in U.S. submarines. To increase the
SCIL's flexibility, provision was made for unbolting sec~
tions of the flexible ceiling so that it could be reconfig~
ured to duplicate the curvature of a submarine with a
smaller~diameter hull, such as a nuclear attack subma~
rine. Likewise, a raised computer room floor was built so
that modular cabinetry and commercial ofrthe~shelf
equipment could be reconfigured to address future needs.

Recognizing the advances made
in key enabling technologies, Austin
conceived a flexible, land~based
development and test facility that
could be used to integrate tactics,
operational procedures, and software
and hardware systems. The facility
that emerged was the SCIl and its
associated work spaces, collectively

Figure 1. APL's Combat Information Test and Evaluation Facility (CITEF). This facility creates
interactive virtual worlds for testing new submarine technologies and tactics.

84 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, UMBER 1 (1995)

Next to the SCIL are an equip­
ment space and the Simulation/
Stimulation Laboratory. These spac­
es house the Defense Simulation
Internet (DSI) networking and en­
cryption electronics. They also
house workstations used to develop
simulation applications, stimulate
the SCIL's consoles, and interface
to the DSI.

SUBMARINE COMBAT INFORMATION LABORATORY

Also adjacent to the SCIL are a
briefing area and the Operations
Center. The briefing area allows an
audience to monitor in real time
the activities of operators in the
SCIL and other CITEF work spac­
es. Such monitoring is possible, in
part, because all of the ClTEF spaces
are linked via Ethernet, color video,
dedicated three-channel voice, and
RS-232 serial connections. The
briefing area is equipped with a pair
of color projectors, viewgraph pro­

Figure 2. The Submarine Combat Information laboratory (SCll). This facility, a mockup of a
submarine control room, creates a sense of being aboard ship. Control console displays enable
operators to interact in the SCll's virtual world.

jectors, and a television monitor. By means of a switch­
ing panel, the audience can view other laboratories
selectively through portable cameras as well as see
actual operator or referee "ground truth" console dis­
plays. The audience can thus monitor all activities
without intruding on an exercise's participants. In ad­
dition to this internal monitoring capability, the brief­
ing area is furnished with DSI video teleconferencing
(VTC) equipment, which permits monitoring and in­
teraction with remote, VTC-equipped DSI sites.

The Operations Center was originally developed as
part of the Critical Sea Test program to address a sep­
arate problem. Scientific investigations aboard research
vessels can be hampered by limited space for equipment
and staff. To overcome this problem, the Operations
Center was constructed to provide real-time data links
between scientists at APL and research vessels at sea,
thus creating a larger pool of researchers and equipment
that could contribute to an experiment. Besides the
work spaces in the Operations Center, other laboratories
and work spaces are available and can be allocated to
projects and equipment as the need arises.

While not a stated goal when the SCIL concept was
conceived, the distributed computer network architec­
ture used in the SCIL has provided a substantial
benefit to the STD in the form of a powerful depart­
mental computer facility. The open architecture that
permits the SCIL to mirror advanced combat systems
and provide a flexible research and development inte­
gration environment has much in common with ded­
icated, advanced, distributed computing facilities. The
virtues of such an approach are many, including scal­
ability, redundancy, reliability, graceful performance

Figure 3. Diagram of the SCll network. Open architecture permits
advanced combat systems to be simulated and provides a flexible
integration environment. (WAl = Warfare Analysis laboratory,
DSI = Defense Simulation Internet. Sparc, IRIS, IPX, Indigo, and
IPC are names of workstations.)

degradation, incremental equipment replacement and
upgrades, and cost-effectiveness. At present, the STD
facility contains both Sun and Silicon Graphics work­
stations, with over 30 central processing units typically
on-line (Fig. 3). Because of the nature of the facility,
however, the number of workstations fluctuates as sub­
networks are dedicated to special tasks and workstations
are installed or removed for field tests or off-site uses.

The STD is not unique in reaping the benefits of
distributed computing. For example, the IBM Watson
Research Center employs a "farm" of more than 50

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 1 (1995) 85

M. D. DYKTON AND R. D. SANDERS

workstations to supply part of its processing capacity. As
reported at a recent conference on high,performance
computing and networking, the new implementation
has reduced the number of IBM mainframes supporting
the Center by 50%.

SOFTWARE INFRASTRUCTURE
The software that supports the SCIL contains four key

elements: (1) the SCIL network server (SCILNET), (2)
control console display software, (3) the SCILNET/
Distributed Interactive Simulation (DIS) protocol trans'
lator, and (4) ORBIS. The SCILNET coordinates
communication among the distributed simulation com'
ponents and acts as a central repository for the state of
a simulation. The network uses a client,server architec,
ture in which each simulation component-the control
consoles, the SCILNET/DIS translator, and ORBIS­
is a client program that communicates only with the
central server program. The server is solely responsible
for distributing messages that need to be broadcast or
multicast to client programs.

The control console display system is the man­
machine interface that permits operators to interact in
the SCIL's virtual world. Its design allows it to be tai,
lored to address a range of problems. Displays vary by
vessel type and configuration and include such func,
tions as maneuvering control, navigation, fire control,
weapons control, countermeasure control, engineering
and ship status, and sensor (e.g., sonar) displays. As
designed, an entire vessel can be controlled by one
person on one workstation or it can be controlled by
many operators each using one workstation to display
one or more ship functions. Displays can be dynamical,
ly allocated during a scenario to address changing sit,
uations or operator preferences. The control consoles
do not have to be used in conjunction with the physical
control room mockup; additional platforms can be
created and controlled from anywhere on the facility's
network. For example, an opponent (such as a KILO,
class diesel submarine) can be crewed in the Simula,
tion/Stimulation laboratory and operated in the same
simulated battle space as the SCIL submarine.

In 1989, elements of the defense community held a
series of workshops to start creating standards in sup'
port of Advanced Distributed Simulations, an effort
aimed at building large, interactive virtual worlds. This
standards support movement is now known as Dis,
tributed Interactive Simulation (DIS). The proposed
objective of DIS " ... is to define an infrastructure for
linking simulation of various types at multiple locations
to create realistic, complex, virtual 'worlds' for the
simulation of highly interactive activities.,,1 This
infrastructure provides interface standards, communi,
cation architectures, management structures, mea,
sures of fidelity, and other elements needed to bond

heterogeneous simulations into unified virtual worlds.
These virtual worlds, also known as synthetic environ,
ments, are intended to support

1. Design and prototyping
2. Education and training
3 . Test and evaluation
4. Emergency preparedness and contingency response
5. Readiness and actual combat situations

The goals of the original SCIl concept show con,
siderable overlap with those of DIS. It was only natural,
then, that the SCIl be adapted to function as part of
the defense community's large,scale synthetic environ,
ment effort to permit it to address a wider range of issues
(see Fig. 4). This adaption was completed in 1993 and
included installation of DSI networking hardware and
development of a SCIlNET/DIS translator and interface.
The current SCILNET/DIS translator and interface
uses a commercial product called VR,Link, developed
by Mak Technologies, which adheres to DIS protocol
version 2.03.

ORBIS
If the SCIl is the heart of the CITEF, ORBIS is its

soul, for it drives the virtual world in which the sim,
ulated submarines, sensors, weapons, countermeasures,
opponents, and other objects exist and operate (Fig. 5).
The depth and richness of the ORBIS environment
endow the SCIL with capabilities for addressing a wide
array of problems.

ORBIS is actually a time,stepped expert system that
manipulates simulated objects on the basis of the state
of the virtual world. It is written in Common Lisp and
runs in an X, Windows (UNIX) environment. ORBIS

• Router/bridge
o Node

Figure 4. Map of the Defense Simulation Internet (DSI).

86 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 1 (1995)

SUBMARINE COMBA T INFORMATION LABORATORY

dictionary variables (i.e., state val­
ues or reaction trip-points), rule or
activity names, and standard con­
structs (e.g., IF, THEN, <, >, =).
Rules are grouped to form rule
bases, which are then combined to
form rule base systems. Reactions
specified in the rules take the form
of rule base system state adjustments
(such as motion goal changes) or
object creations.

Figure 5. The SCll's virtual world. This world is generated by ORBIS, which is a time-stepped
expert system that manipulates simulated objects.

Once the top-level object types,
dependent object types, and rules or
manual controls for an application are
defined, they are used to form object
trees. The trees are assigned an ini­
tial state (such as x, y, and z posi­
tion) and are then grouped to form
a setup, as conceptualized in Fig. 6.
The setup in Fig. 6 represents a pos­
sible scenario in the virtual world
defined by the objects, the rules, and

enables users to create domain-specific synthetic envi­
ronments or applications by providing a set of tools
collectively known as the shell. Included in the shell are
various editors, such as the Rule Editor, Dictionary
Editor, Object Tree Editor, and Setup Editor. These
tools enable developers to create and control, manually
or by rules, the objects that exist in the SelL's virtual
world. After the objects are developed, they can be
exercised in real time using a simulation engine, which
carries out functions such as object state updates and
interpretation of rules or manual instructions.2

As its name indicates, ORBIS uses an object-oriented
approach. This approach has two levels of objects, top­
level and dependent, and their states are represented
by a collection of attributes. Message variables can also
be associated with an object to allow it to base its state
on the state of other objects. The distinction between
top-level and dependent objects is that movements of
dependent objects generally depend on movements of
top-level objects. For example, the position of dependent
objects in a submarine or towed by a submarine depends
on the motion of the top-level submarine object.

ORBIS's name, besides indicating an object-oriented
approach, reflects the presence of rules in applications.
On the basis of expert experience or a priori knowledge,
these rules automatically control the actions of objects
such as torpedoes through the use of a reactive planner
approach.3 This approach takes into account all possi­
ble situations prior to simulation time and establishes
state patterns that will cause reactions when recognized
in the virtual world. The rules are a combination of

the SelL's physical facilities. Includ­
ed with object trees in a setup are

parameters for controlling the setup, such as object re­
moval and end-of-run conditions.

After a setup or scenario is created, it is exercised
by manning the selL and starting a simulation clock.
While time is advancing in the synthetic environment,
object states are updated (for example, their positions
are changed), and rule-based or manual reactions are
stimulated by patterns in the state of the virtual world.
During operation in this interactive mode, a graphical
representation of the virtual world is provided that
includes object positions, motion characteristics, and
rules that have been executed or "fired" for automatically
controlled objects (see Fig. 7). ORBIS can also run in
a background mode that allows collection of Monte

Figure 6. Conceptualized ORBIS setup and object tree structure.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 1 (1995) 87

M. D. DYKTON AND R. D. SANDERS

SPEED DEPTH OR < . COURSE
IItTS) 1FT) lDeg)

------- ------------- --------
5.0
5.0

216.1
200.0

688- 1 MESSAGES
00 .0005 Constant Course Unhl Cont&t:t

270 . 7
50.7

Figure 7. ORB IS graphic display during operation in the interactive mode.

Carlo statistics. This mode can be used for many pur~
poses, such as statistical testing of preliminary tactics
developed manually in the SClL, assessing the utility
of emerging technologies, and sensitivity studies.

An important feature of ORBlS is that objects and
rules created for one virtual world can be used in an~
other. For example, a 688~class submarine object previ~
ously developed for a search scenario can also be used
in a battle~group support application. The ability to

reuse objects and rules permits the ORBIS development
team to create an ever~growing library of objects and
their associated behaviors. The benefits of this ar~
chiving and reuse include faster simulation develop~
ment, reduced development costs, greater flexibility,
and continual enhancement of the ability to address
more complex problems.

Objects in ORBIS
ORBIS objects contained in a setup are actually

instances (copies) of a particular object type and kind.
For example, if there is a submarine object type in an
application, 726 (i.e., the USS Ohio) might be one of
the object kinds associated with that type. Figure 6
shows how these copies could be grouped with rule base
system instances to form object trees. Figure 8 shows an

example of some of the structure that would exist in
a simplified submarine object type definition. The figure
shows that object type definitions include static, dy~
namic, and graphic attributes as well as message vari~

abIes. The state of an object instance in a setup consists
of a list of specific values for each attribute and message
variable in the associated object type definition.

The static attributes in an object type definition are
unique for each object kind and represent a database
of object characteristics such as Max~Speed. For exam~
pIe, the value for the Max~Speed static attribute asso~
cia ted with the kind 726 in Fig. 8 is 12 kt. The static
attribute values associated with each kind can be single
values such as Max~Speed, simple pair~lists (such as
rudder and advance value pairs in the Advance at~
tribute), or even multidimensional lists.

Dynamic attributes, which are not kind~specific,
contain expressions that are evaluated at every time
step using the current state of the virtual world. Expres~
sions can be a simple expression, such as the Time~on~
Constant~Course expression in Fig. 8, or a function
call. In some cases, more than one dynamic attribute
is updated using a single expression, as indicated by the
call to Update~Dynamic~ Variables. In other cases, more
than one expression is associated with a single dynamic
attribute. This feature can be used to specify a different

88 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 1 (1995)

SUBMARINE OBJECT TYPE DEFINITION'

Kinds

Static Attributes
Max-Speed (knots):
Max-Depth (feet):
Advance (degrees, yards) :

Transfer (degrees, yards):

lactical-Diameter (degrees, yards) :

Message Variables
Submarine-Locations (nm, nm):

Dynamic Attributes
Last-Course (degrees):
X, Y, Z, Course, Speed:

(688726)

(688 15)
(688200)
(688
(726
(688
(726
(688
(726

(51500)
(52250)
(51200)
(51800)
(51350)
(52000)

((Object-lYpe Submarine)

(72612)
(726250)
(1 01000)
(1 01500)
(10800)
(101200)
(10900)
(101350)

(Get-From 'sell' 'Course)
(Update-Dynamic-Variables

(15500)
(15750)
(15400)
(15 600)
(15450)
(15675)

(Attributes X V))

SUBMARINE COMBAT INFORMATION LABORATORY

the object type from which to get
messages is submarine, and the at~
tributes to return are X and Y. A list
of these attributes from each sub,
marine object in the setup, not in~
eluding the current object, is
assigned to the message variable
Submarine~ Locations.

A frequently used function in
ORBIS is Get,From, which re'

(nm, nm, feet, degrees, knots) (Get-From ' self' 'X) (Get-From ' self' 'Y) (Get-From 'self' 'Z)
(Get-From ' self' 'Max-Speed) (Get-From 'self' 'Max-Depth)
(Get-From ' self' 'Course) (Get-From ' self' 'Speed)
(Get-From ' self' 'Advance) (Get-from 'self" 'Transfer)
(Get-From ' self' 'lactical-Diameter)

trieves a specified attribute or vari,
able from an object or rule base
system. In Fig. 8, one attribute
source used is the variable *self*,
which refers to the object being up~
dated. A nother source is the
variable *motion~goals~ rule,base*.
This variable is bound to the rule

(Get-From 'environment' 'Environment-Values)
(Get-From ' motion-goals-rule-base' 'Ordered-Dive-Angle)
(Get-From 'motion-goals-rule-base' 'Course-Goal)
(Get-From ' motion-goals-rule-base' 'Speed-Goal)
(Get-From 'motion-goals-rule-base' 'Depth-Goal)
(Get-From ' motion-goals-rule-base' 'Ordered-Rudder)
(Get-From ' motion-goals-rule-base' 'Turn-Side))

Time-on-Constant-Course (hours): If (Get-From ' self' 'Course) = (Get-From ' self' 'Last-Course)
Then (Get-From ' seW'Time-on-Constant-Course) + 'time-step'
Else 0.0

Submarine-CPAs (nm):

Graphic Attributes
Show in Animation:
Color:

(Update-CPAs
(Get-From ' self' 'Submarine-CPAs)
(Get-From ' self' 'Submarine-Locations))

(688 (Yes No)) (726 (Yes No))
(688 (Red Blue BlackYeliow Green))
(726 (Blue Red BlackYeliow Green))

' Indicated values were created solely for the purposes of this example.

base system that controls either the
movement of the object being up~
dated or its associated top' level
object. Figure 9 shows an example
of such a rule base system that

Figure 8. Example of structure in a submarine object type definition. The structure includes
static, dynamic, and graphic attributes as well as message variables.

might be used to control the move~
ment of a submarine object. When
manual controls are in place, this
global variable is bound to a remote
object manager object, which reflects

expression for different subsets of object kinds in a type
defin ition. Note that in the TIme~on~Constant~Course

expression , the Course attribute values from before and
after update are used to determine whether a course
change has occurred. This expression not only points
out how state values from the previous update time can
be used to determine state values for the current update
time, but also how the update order of the object (top
to bottom) is taken into account.

The graphic attributes are used to control the graph~
ical representation of an object in the interactive
display. As indicated in Fig. 8, these attributes might
be used to specify whether or not the object is displayed
graphically in Interactive Mode and, if so, what color
to use. For example, in Fig. 7, if the 688~ 1 object were
not displayed, the green bearing lines would be the only
indication that the object existed. Since these bearings
are part of what the 726~ 1 object is basing its reactions
on, the user could tell whether the 726~ 1 is reacting
correctly on the basis of its sensor inputs as opposed to
ground truth.

Message variables, as indicated previously, contain
values associated with the state of other objects in the
setup. For each object in a setup that matches the
specified type, a list of the indicated attributes is con~

structed. These lists are combined into a larger list and
assigned to the associated message variable. In Fig. 8,

the inputs or goal changes indicated at operator,
controlled consoles.

Rule Bases and Dictionary Variables

Rules are used in O RBIS to recognize patterns in the
state of the virtual world and react to those patterns
automatically. The rules exist in the two~level structure
of the rule base system. In this system, an activity, level
rule recognizes a situation that the associated top~level

object is in and selects an instruction,level rule base to
carry out the appropriate reactions. In Fig. 9, the
activity~level rule base is the Tactics rule base, and the
instruction~ level rule bases are the Constant Course
and Random Maneuver rule bases. T he simplified rule
base system in th is figure might be used to cause a
submarine object to maneuver periodically to a new,
randomly selected course after a random period of time.
This rule base could be modified to account for avoid~
ance of contacts by adding a higher,priority avoidance
rule at the top of the Tactics rule base and an associated
instruction~level rule base. The resultant rule base
system would continue to maneuver randomly unless
avoiding a contact.

Note that rule base systems have different types just
as objects do, and that instances of more than one type
of rule base system can exist in an object tree. For

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 1 (1995) 89

M. D. DYKTON AND R. D. SANDERS

Maneuver Randomly

Tactics Rule Base

Conduct Random Maneuver

Activity
level

IF (Time on Constant Course> Duration Limit) OR
(LastTactic EQUAL Random Maneuver AND NOT Tactic Completed)

THEN lACTIC = Random Maneuver

Stay on Course

IF TRUE
THEN TACTIC = Constant Course

Random Maneuver Rule Base Constant Course Rule Base

Carry Out Random Maneuver Maintain Constant Course

IF TRUE IF TRUE Instruction
level THEN Ordered Course = Random Course AND

Duration Limit = Random Duration
UNTIL Course = Ordered Course

THEN Ordered Course = Ordered Course

THEN Tactic Completed = TRUE

Figure 9. Simplified example of a rule base system, Maneuver Randomly, which could be used to control a submarine object. All except
the standard constructs are shown in boldface.

example, the type of rule base system shown in Fig. 9
is called a motion goals rule base. It is typically dom~
inant in that other types of rule base systems tend to
be dormant until stimulated by a motion goals rule
base, as when a submarine's motion goals rule base flags
the torpedo fire rule base to conduct a torpedo launch.
Because of the dominance of motion goals rule bases,
the fired instruction rules shown in the interactive
display come only from this type of rule base system.
Rules that have fired in instances of other types of rule
base systems can be viewed via the Examine menu of
the interactive display. (Rule base systems also have
names, as indicated by the name Maneuver Randomly
in Fig. 9.)

Rule bases are processed by evaluating rules sequen~
tially from top to bottom until an antecedent (IF part)
is found that evaluates to TRUE. When this rule is
found, it fires, causing an activity to be selected or a
reaction to be carried out. Fo·r example, in Fig. 9, if the
antecedent of the Conduct Random Maneuver rule
evaluates to TRUE, the Random Maneuver tactic will
be selected and the Random Maneuver rule base will
be entered. Note that the antecedent of the last rule
in each rule base usually has an expression of TRUE,
which causes the rule to fire when encountered.

An interesting control construct that can be used in
an ORBIS rule is the UNTIL construct. When an

instruction~level rule base exits a time step because an
UNTIL clause evaluates to FALSE, the same UNTIL
clause will be reevaluated if the same rule base is
entered during the next time step. If this UNTIL clause
evaluates to FALSE, the rule base is exited and no rules
are fired. On the other hand, when the UNTIL clause
finally evaluates to TRUE, the subsequent THEN
clause is carried out. For example, in Fig. 9, when
Course finally equals Ordered Course in the Carry Out
Random Maneuver rule, Tactic Completed will be set
to TRUE. A THEN~UNTIL pair in ORBIS is called
an execution plan, so the reaction specified in an
instruction rule is considered to be a series of one or
more execution plans. Note that an UNTIL TRUE
implicitly exists at the end of a rule that does not end
with an UNTIL clause, thus completing an execu~
tion plan. Therefore, the reaction specified in the
Carry Out Random Maneuver rule consists of two
execution plans.

Rules are created from standard constructs, dictio~
nary variables, and rule or activity names. In the Rule
Editor, a rule is built by clicking on these mouse~
sensitive ingredients (see Fig. 10). The rules shown in
Fig. 9 illustrate how these ingredients are combined; all
except the standard constructs are shown in boldface.
Some of the operations that the standard constructs
can be used to perform include

90 JOHNS HOPKINS APL TECHN ICAL DIGEST, VOLUME 16, NUMBER 1 (1995)

SUBMARINE COMBAT INFORMATION LABORATORY

(Standard
constructs

/ ~
. - / - " / "-
.... Sys ,Cons/..,,""""" ~Base:Tactit::s r'"'-.-

Breal< FUe Comments / Display Search Generate Dictionary Edit Rul .. Rule Base

sGremrthan
<- < s L .. slh"" /

- > - s Equal to

~ True Fal.. Ten
~til Then Chain Then Chain Up A 0
loR NOT (

~ t
~s l og-~~ 11 .. -

~: ~::

Random Maneuver rule. In addi,
tion to their software names, all
dictionary variables have an En,
glish name that is used in the rules
to promote readability. An example
of this feature is when the Carry
Out Random Maneuver rule sets a
course goal. The English name used
in the rule is Ordered Course, but
the actual name of the dictionary
variable is Course,Goal.

EQUAL fA. Number f\r<tan-- Expt--

Random Course Course
Random Duration Duration Limit

Last Tactic

(Settable
Ordered Course
lactic Completed

dictionary Time on Constant Course
variables

--- (Static and dynamic
Random Maneuver (tactic) dictionary variables
Constant Course (tactic)
Conduct Random Maneuver (rule)
Stay on Course (rule)
Carry out Random Maneuver (rule)
Maintain Constant Course (rule)

(Rule and activity
names

~andTactics "'""'-Y-

IF TRUE
THEN Ordered Course = Random Course AND

Duration Limit = Random Duration
(Rule UNTIL Course = Ordered Course

THEN Tactic Completed = TRUE creation
area

Figure 10. The ORBIS Rule Editor, which permits users to build rules_

1. Numeric comparison
2. Assignment
3. Execution plan definition
4. String comparison
5. Functions (such as max, min, cos)
6. Object generation

The construct applied when generating an object is
the Action construct. This construct appears in the rule
when the Generate menu command is selected in the
Rule Editor. Using this construct, a torpedo launch is
represented with the clause Action = Launch Torpedo
in a rule. Since generated objects are actually object
trees, the torpedo that is generated will consist of a top'
level torpedo object, sensor objects, and a motion goals
rule base as specified in an initialization structure at,
tached to the Action clause. Default initial values for
attributes can be overridden using expressions that
reference the state of the virtual world at generation
time. For instance, a generated torpedo will have a
Course,Goal assigned to it on the basis of the current
target solution rather than a default value that is out
of context.

As shown in Fig. 9, each rule or activity has a unique
name in a rule base system. Their uniqueness allows
these names to be referred to in rules, as demonstrated
by the Random Maneuver reference in the Conduct

D

Each rule base system in O RBIS
uses a set of dictionary variables
that act as a blackboard of values
that are available to all of its rule
bases and represent its state. These
dictionary variables can be static,
dynamic, or "settable." Their defi,
nitions can be viewed while in the
Rule Editor by using a mouse and
key combination to reveal the Dic,
tionary Variable Examiner window,
shown in Fig. 11. Static variables
have constant values that generally
change only when assigned a new
value in a rule. An example of this
type of variable is Duration Limit,
which is used in the Carry Out
Random Maneuver rule (see Fig.

9). Dynamic variables have an associated expression
that is evaluated at every time step in the same manner
as dynamic attributes. As in the dynamic attribute case,
multiple dynamic variables can be set within a single
function call or expression (see Active,Bearing,MR in
Fig. 11). A sample dynamic variable is Time on
Constant Course, which might be set using the simple

... Il£1VM .." .. bit

Exit Break
p letlonary Variable Examiner

For Variable: act tve bearing (mr) (ACTlVE-BEARING-MR)

STORED IN FILE - Active

ENGLISH: "active bearing (mr)"

COMMENTS: "Indicates most recent bearing to actNe contact If It exists ."

KEYWORDS-LIST, (ACTIVE)

TYPE , DYNAMI C

INITIAL-VALUE , NIL

UNITS, DEGREES

MUL TlPLE-VALUE - RETURN, (ACTIVE-BEARING-MR T -ACTIVE - BEARING-MR)

FUNCTION-FILE , NIL

EXPRESSION, (IF (GET -FROM ' CONTACT -MANAGER" 'A CTIVE-BEARING)
(VALUES (GET -FROM "CONTACT -MANAGER" 'A CTIVE-BEARING) "TIME")
(VALUES (GET -FROM "MOTION-GOALS-RULE -BASE" ' ACTIVE -BEARING-MR)

(G ET - FROM 'MOTION-GOALS-RULE-BASE" 'T -ACTIVE-BEARING-MR»))

Figure 11. The Dictionary Variable Examiner window,
which allows operators to view the dictionary variables
used in ORBIS's rule base systems_

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 1 (1995) 91

M. D. DYKTON AND R. D. SANDERS

expression Get,From *submarine* Time,on,Constant,
Course. In this expression, *submarine* is a variable
bound to the name of the top' level submarine object to
which this rule base system is attached. This expression
demonstrates how object attribute values can be re,
flected in a rule base system. However, note that there
is a potential delay of one time step associated with this
expression (i.e., the rule base system might be updated
prior to the submarine object). Finally, settable variables
are variables that have an associated expression that is
evaluated only when the variable is referenced in a rule.
This feature reduces computation time when a complex
expression is used.

Simulation Parameters and Setups

An ORBIS application usually has various associat,
ed setups or scenarios, each of which includes an initial
configuration of object trees and a set of simulation
parameters. These setups are created using the Setup
Editor, which has the same graphical appearance as the
interactive display. Adding an object tree in the Setup
Editor requires performance of the following:

1. Selection of object tree components
2. Specification of some initial values such as course,

speed, and location
3. Selection of expressions to use for multiple,expres,

sion dynamic attributes
4. Indication of the desired object tree location

Note that selecting object tree components requires
choosing not only the types of objects or rule base sys,
tems, but also their kinds or names. When creating the
object tree, no restrictions are placed on the object tree
structure except that there must be a top,level object,
and only one rule base system or object of a specific type
can occur in the object tree. This flexibility enables
evaluation of unusual combinations, such as placing U.S.
sensor types on enemy platforms or vice versa.

Besides adding object trees, the Setup Editor is used
to specify pre initialization functions, initialization
functions, time increments, object removal conditions,
end conditions, and measures of effectiveness. A list of
each of these items is defined before entering the Setup
Editor, and then selections from these lists are made
while in the Setup Editor. Pre initialization and initial,
ization functions are evaluated before the simulation
clock is started. The difference between preinitializa'
tion and initialization functions is that the former are
evaluated before, and the latter after, objects and rule
bases are initialized. A pre initialization function might
be used to establish a random seed for a particular
simulation run before random values are assigned to
attributes or dictionary variables. A direct comparison
of runs conducted using the same set of random seeds
would thus be possible. An initialization function, on

the other hand, could be used to place and orient a sub,
marine randomly at the start of a series of simulation runs.

Dynamic,simulation,based time increments are used
to advance time in the synthetic environment. When
a simulation starts, a default time increment, which is
usually large, is applied. However, a different time in,
crement might be used when a significant change in the
situation occurs, such as after an initial detection during
a hostile submarine encounter. Such a time increment
is defined in ORBIS by specifying an expression that
will indicate when a detection has occurred. When this
expression returns TRUE, the associated time incre,
ment is used. If more than one situation, based, time,
increment expression returns TRUE, the smallest
associated time increment is used. For example, the
time increment desired when a torpedo is homing in on
a target would be smaller than the desired postdetection
time increment.

Removal conditions are used to remove object trees
from a simulation. Object trees could be removed for
a variety of reasons. For example, an object might be
removed when it is hit by a torpedo. The torpedo and
anything else in the affected area would also be re'
moved. An object might also be removed when its
lifetime expires, as when a torpedo runs out of fuel. End
conditions are used to end a simulation run, and they
include simulation time constraints (stopping the sim,
ulation at a particular simulation time without regard
to simulation state), and removal of all significant ob,
ject trees (as when both submarines in an engagement
are sunk by torpedoes).

Measures of effectiveness are used to record observa,
tions during simulation runs. These are used during
Monte Carlo background runs to collect data for sta'
tistical analysis. They can also be used during SCIl
simulation runs to collect data for exercise reconstruc'
tion. Examples of the types of data collected during
background runs include closest points of approach and
hits by torpedoes. During SCIl simulation runs, the
tracks of each participant and the associated generated
objects can be logged.

Once a setup is created, it can be edited, copied, and
deleted. Editing a setup involves one of the following:

1. Adding or removing objects
2. Changing initial attribute/variable values
3. Changing the object tree structure
4. Reselecting expressions in multiple, expression

dynamic attributes
5. Changing simulation parameter lists

Objects are added in the same manner as when the
setup was originally created. Removing objects or
changing simulation parameter lists is accomplished by
a simple combination of menu selections and mouse
clicks. Items 2 through 4 listed in the preceding para,
graph are performed using the Object Tree Editor

92 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 1 (1995)

shown in Fig. 12. This display shows the object tree
structure in the upper "tree" window, and information
relating to a selected tree node (object or rule base
system) in the lower "examiner" window. By clicking
on the appropriate category in the examiner window,
the user can change the kind or name of any node in
the tree as well as the initial attribute/variable values,
graphic attribute values, and expression choices of the
node. In the tree window, dependent objects or rule
base systems can be added to or removed from the
object tree.

Quit Dictionary Editor Check Object Tree Add Dependent

~6-1_HuU_"'~YI
726-1-Contact-Managerl

726-1
726-1-Motion-Goals-Rule-Base!

726-1-Torpedo-Firel

II II

Object: 726-1
ATTRIBUTE VALUE{S) CURRENTLY STORED IN SETUP
Type SUBMARINE
Kind 726
F unction Choices NIL
Variables Z -POS - - 0.027978403

X-POS- - 1.2689152
Y -POS- 1.0325298
FORCE- USA
SPEED- 5
COURSE· 4.712389
GENERATABLE-OBJECT - TYPES- {{TORPEDO {(MK-48 2))))

Graphics Parameters No changes from defaults
II II

Figure 12. The Object Tree Editor, which is used to edit objects
contained in a setup. The object tree structure is shown in the
upper "tree" window, and information relating to a selected tree
node is shown in the lower "examiner" window.

The interactive operation of ORBIS setups allows
a user to observe and manipulate the ground truth of
a synthetic environment as it evolves. The graphic
interface and functions used are the same as those used
by the Setup Editor. A significant difference, however,
is that the functions can be applied any time during
a simulation run. This feature allows the user to affect
the behavior within a virtual world by changing object
states or even adding or removing objects. One func,
tion available only during interactive operation is the
ability to monitor variables, attributes, or expressions
during the execution of a setup. Another such function
is the Time Restore feature, which can create an in,
stant replay of elapsed events. (This function is not
currently available during man,in,the, loop SCIL op,
erations.) With these functions, the user can stop the
simulation, restore to an earlier time, edit the setup

SUBMARINE COMBAT INFORMATION LABORATORY

(including attribute values, variable values, and rule
structure), and then restart the simulation from the
restored time. This process, known as dynamic editing,
promotes rapid development of rule base systems in
ORBIS.

ORBIS Application

ORBIS has proved to be a robust tool for creating
interactive synthetic environments that exercise
emerging technologies and tactics. The state informa,
tion it passes to the SCIL consoles creates an authentic
atmosphere that prompts operators to respond realisti,
cally within the synthetic environment. The high level
of fidelity enables advanced technologies and tactics to
be extensively developed, integrated, and tested in the
laboratory, reducing the resources expended for field or
sea tests. ORBIS has also been effective when operated
as a stand, alone simulation development environment
and analyst's tool. Its flexible interactive mode, used for
"what if " investigations, coupled with a background
mode that can generate Monte Carlo statistics, has
proved useful in assessing new technologies and devel,
oping control strategies.

THE USES AND USERS OF THE CITEF
The CITEF was originally developed to support the

activities of the STD's traditional principal sponsors
and programs, such as the SSBN Security Program, the
SSBN Survivability Program, and the SSN Security
Program. CITEF's resources have accordingly been used
in tactics development, advanced sensor concept as'
sessment, exercise and sea' test planning, cost and op,
erational effectiveness assessment, and prototype
system development.

As the CITEF's capabilities have grown, however,
the facility has been used by other sponsors and pro'
grams, primarily the Department of Defense's Ad,
vanced Research Projects Agency (ARPA). The first
ARPA,related effort was the ARPA/Maritime Systems
Technology Office's Maritime Simulation Demonstra,
tion (MSD), which took place in September 1993. The
MSD was the first high,fidelity distributed simulation
of undersea warfare in a major regional contingency
scenario.4 In this demonstration, the SCIL supplied
both U.S. and foreign man,in,the,loop,controlled sub,
marines performing Anti,Submarine Warfare missions.
The MSD was also the first test of the SCIL as a
functioning node on the DSI.

In late 1993, the SCIL also furnished simulated sub,
marines in a strike warfare role for a DIS exercise
sponsored by the ARPA/Advanced Systems Technol,
ogy Office. During the summer of 1994, the SCIL was
the site of a demonstration for the ARPA,sponsored
Ship Systems Automation Program.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 1 (1995) 93

M. D. DYKTON AND R. D. SANDERS

SUMMARY REFERENCES

The SClL and its associated facilities have proved
capable of supporting a wide range of Navy and
Department of Defense activities. The activities in~
elude ORBlS~based Monte Carlo, man~in~the~loop,

and distributed simulations (both internal and DlS~
related); software development; war~gaming; sea~test
planning and support; technology demonstrations; and
system prototype development, integration, and testing.
The success of this facility is due to the effective incor~
poration of key advances in computing, networking, sim~
ulation, expert systems, and visualization technologies.

1 DI [Di tributed Interactive Simulation] Steering Committee, The DIS
Vision: A Map to the Future of Distributed Simulation, Version 1, IST-SP-94-
01, Institute for Simulation and Training, University of Central Florida,
Orlando, FL (1994) .

2 Evan , R. B., and anders, R. D., "ORBIS-A Tool for Simulation
Development," in Proc . 1994 Summer Computer Simulation Conf., San Diego,
CA, Society for Computer Simulation (1994).

3 Cohen, P. R., "Architecture and Strategies for Reasoning Under Uncer­
tainty," in Readings in Uncertain Reasoning, Morgan Kaufman Publisher , Inc.,
Amher t, MA (1990).

4Root, . L. , and Jackson, J. P., ARPA Maritime Simulation Overview, ST D-R-
2289, The John Hopkin Univer ity Applied Physics Laboratory, Laurel, MD
(1993) .

THE AUTHORS

94

MICHAEL D. DYKTON is an APL Senior Staff Physicist pecializing in
operations analysi , tactics development, and computer simulations. He
received a B.S. degree in a tronomy from the University of Maryland in
1979. He worked at the Naval Research Laboratory and EG&G Wa hing­
ton Analytical Services Center before coming to APL. Mr. Dykton joined
APL in 1985 and initially worked as an analyst in submarine operations
analysis and tactic development. Since 1992, he has been the manager of
the Tactical Simulation Project and is re ponsible for overseeing the
development of ORBlS and elements of the SCIl, and for associated
technical investigations. In 1994, he was appointed supervisor of the
System Modeling and Simulation Technologies section .

ROBERT D. SANDERS is an APl Associate Profe ional Staff member
specializing in computer simulations, tactics analysis, and technology
a e sment . . He received a B.S. in computer cience from Tulane
University in 1982 and an M.S. in computer science from The Johns
Hopkins University G.W.e. Whiting School of Engineering in 1992. From
1982 to 1987, he served in the Navy's nuclear ubmarine community,
leaving as a lieutenant. Mr. Sanders then worked a a ubcontractor at the
David Taylor Research Center, where he developed and verified thre holds
for the Trident submarine monitoring subsystem. In 1991, he joined the
Advanced Combat Systems Development Group at APl and i currently
involved in a variety of ORBlS-based simulation efforts.

