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R ecent advances in a variety of technologies are fueling a revolution in the areas 
of simulation, rapid prototyping, and system integration. The APL Submarine 
Technology Department is concentrating these technologies into a single facility to 
focus them on a wide range of problems. This facility, the Submarine Combat 
Information Laboratory, is a flexible, land~based testbed and simulation facility 
developed to support Navy and Department of Defense activities. A key component of 
this facility is its powerful simulation development environment and stimulation 
software, called the Object~oriented Rule~Based Interactive System (ORBIS). 

INTRODUCTION 
The ship's commanding officer scans the fire control 

system displays and orders firing point procedures. Flawless~ 
ly, the well-trained crew execute their tasks. The skipper 
then gives the commands that launch a torpedo toward its 
target. 

In the past, this scenario was likely to be a drill 
aboard a submarine at sea. Today, it could also be the 
simulated action taking place in the APL's Submarine 
Combat Information laboratory (SCIl). 

Significant advances have recently been made in 
the areas of high~performance computing and network~ 
ing, distributed simulation, expert systems, and computer~ 
visualization technology. These advances offer an 
opportunity to revise the paradigms that government 
and industry use in system requirement definition, 
acquisition, test and evaluation, doctrine development, 
and training. The benefits of a revised approach 

include reduced costs, more effective products, and 
faster development cycles. 

The APl Submarine Technology Department 
(STD) is incorporating the recent technological ad~ 
vances in a single departmental facility, the SCIL. The 
foundation of the SCIl is a high~fidelity synthetic 
environment generated by the Object~oriented Rule~ 
Based Interactive System (ORBIS). This multifaceted 
expert~system simulation tool supplies the development 
framework that enables swift prototyping of complex 
scenarios, assessment of emerging technologies, and 
development of control strategies. ORBIS enables these 
tasks to be performed by providing high~powered fea~ 
tures such as sophisticated reactive rule control structures, 
detailed object representations, and dynamic editing 
mechanisms. Through the richness of these features, 
ORBIS can function in several arenas, including 
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Monte Carlo, interactive, and real~time man~in~the~ 
loop simulations. 

This article describe the conceptual development 
and the contents of the SCIl, including its physical 
facilities, supporting software infrastructure, uses, and 
users. Particular attention is given to ORBIS because 
it is the underlying simulation engine that stimulates 
the SCIl and creates the virtual world in which the 
SCIl operates. 

THE SCIL CONCEPT 
The SCIl is the brainchild of James R. Austin, 

former supervisor of APL's STD (personal communica~ 
tion, J. R. Austin, 28 Feb 1994). The SCIl concept 
emerged in the mid~ 1980s, when the STD was engaged 
in more than a dozen projects aimed at addressing new 
requirements or correcting perceived deficiencies on 
U.S. submarines by adding prototype sensors, proces~ 
sors, and decision aids. The STD faced three general 
problems in developing and fielding these systems: (1) 
physical space limitations, (2) information flow bottle~ 
necks, and (3) expensive and time~consuming proto~ 
type sea~testing. A fact apparent to even a casual visitor 
to a submarine i that little space is available for new 
systems. An even more difficult issue is handling the 
information generated by new systems. Modem control 
and sensor systems manipulate massive amounts of 
complex data that can quickly overwhelm operators 
unless the data are carefully filtered and prioritized. The 
solution to these dilemmas is proper system integration. 

The third problem listed in the preceding paragraph 
stems from the limited availability of resources for 
developing and testing new tactics and systems. 
Even under the best circumstances, 
the resources required for testing at 
sea are significant. In an era of de~ 
clining assets and naval force levels, 
new method had to be developed 
in response to resource limitations. 
One solution to this problem was to 
rely more on land~based system 
development and testing provided, 
of course, that it could be a realistic 
and effective substitute for time 
at sea. 

known as the Combat Information Test and Evaluation 
Facility (CITEF). 

PHYSICAL FACILITIES 
The CITEF consists of an interconnected collection 

of laboratorie , equipment rooms, computer rooms, a 
briefing area, and other work spaces (Fig. 1). At the 
heart of the facility is the SCIl, which is a physical 
mockup of a submarine control room (Fig. 2). The SCIl 
is ized and laid out to duplicate the control room of 
the largest type of u.s. submarine, a Trident~class stra~ 
tegic ballistic missile submarine (SSBN). Appropriately 
scaled and located control console mockups, an arched 
panel ceiling, and lighting options create the illusion 
of being aboard ship. To add to the realism, some com~ 
ponents were salvaged from decommissioned U.S. sub~ 
marines. These components include a periscope stand 
and tubes, steering and diving station controls, and 
even flashlights and their mounting brackets. 

Although we tried to give operators the sense of 
being aboard a submarine, our goal was not to create 
an exact replica of a control room. In keeping with its 
role as a research and development facility, the SCIl 
is equipped with a network of modem commercial off~ 
the~shelf workstations instead of the Mil~Spec computers 
currently used in U.S. submarines. To increase the 
SCIL's flexibility, provision was made for unbolting sec~ 
tions of the flexible ceiling so that it could be reconfig~ 
ured to duplicate the curvature of a submarine with a 
smaller~diameter hull, such as a nuclear attack subma~ 
rine. Likewise, a raised computer room floor was built so 
that modular cabinetry and commercial ofrthe~shelf 
equipment could be reconfigured to address future needs. 

Recognizing the advances made 
in key enabling technologies, Austin 
conceived a flexible, land~based 
development and test facility that 
could be used to integrate tactics, 
operational procedures, and software 
and hardware systems. The facility 
that emerged was the SCIl and its 
associated work spaces, collectively 

Figure 1. APL's Combat Information Test and Evaluation Facility (CITEF). This facility creates 
interactive virtual worlds for testing new submarine technologies and tactics. 
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Next to the SCIL are an equip­
ment space and the Simulation/ 
Stimulation Laboratory. These spac­
es house the Defense Simulation 
Internet (DSI) networking and en­
cryption electronics. They also 
house workstations used to develop 
simulation applications, stimulate 
the SCIL's consoles, and interface 
to the DSI. 

SUBMARINE COMBAT INFORMATION LABORATORY 

Also adjacent to the SCIL are a 
briefing area and the Operations 
Center. The briefing area allows an 
audience to monitor in real time 
the activities of operators in the 
SCIL and other CITEF work spac­
es. Such monitoring is possible, in 
part, because all of the ClTEF spaces 
are linked via Ethernet, color video, 
dedicated three-channel voice, and 
RS-232 serial connections. The 
briefing area is equipped with a pair 
of color projectors, viewgraph pro­

Figure 2. The Submarine Combat Information laboratory (SCll). This facility, a mockup of a 
submarine control room, creates a sense of being aboard ship. Control console displays enable 
operators to interact in the SCll's virtual world. 

jectors, and a television monitor. By means of a switch­
ing panel, the audience can view other laboratories 
selectively through portable cameras as well as see 
actual operator or referee "ground truth" console dis­
plays. The audience can thus monitor all activities 
without intruding on an exercise's participants. In ad­
dition to this internal monitoring capability, the brief­
ing area is furnished with DSI video teleconferencing 
(VTC) equipment, which permits monitoring and in­
teraction with remote, VTC-equipped DSI sites. 

The Operations Center was originally developed as 
part of the Critical Sea Test program to address a sep­
arate problem. Scientific investigations aboard research 
vessels can be hampered by limited space for equipment 
and staff. To overcome this problem, the Operations 
Center was constructed to provide real-time data links 
between scientists at APL and research vessels at sea, 
thus creating a larger pool of researchers and equipment 
that could contribute to an experiment. Besides the 
work spaces in the Operations Center, other laboratories 
and work spaces are available and can be allocated to 
projects and equipment as the need arises. 

While not a stated goal when the SCIL concept was 
conceived, the distributed computer network architec­
ture used in the SCIL has provided a substantial 
benefit to the STD in the form of a powerful depart­
mental computer facility. The open architecture that 
permits the SCIL to mirror advanced combat systems 
and provide a flexible research and development inte­
gration environment has much in common with ded­
icated, advanced, distributed computing facilities. The 
virtues of such an approach are many, including scal­
ability, redundancy, reliability, graceful performance 

Figure 3. Diagram of the SCll network. Open architecture permits 
advanced combat systems to be simulated and provides a flexible 
integration environment. (WAl = Warfare Analysis laboratory, 
DSI = Defense Simulation Internet. Sparc, IRIS, IPX, Indigo, and 
IPC are names of workstations.) 

degradation, incremental equipment replacement and 
upgrades, and cost-effectiveness. At present, the STD 
facility contains both Sun and Silicon Graphics work­
stations, with over 30 central processing units typically 
on-line (Fig. 3). Because of the nature of the facility, 
however, the number of workstations fluctuates as sub­
networks are dedicated to special tasks and workstations 
are installed or removed for field tests or off-site uses. 

The STD is not unique in reaping the benefits of 
distributed computing. For example, the IBM Watson 
Research Center employs a "farm" of more than 50 
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workstations to supply part of its processing capacity. As 
reported at a recent conference on high,performance 
computing and networking, the new implementation 
has reduced the number of IBM mainframes supporting 
the Center by 50%. 

SOFTWARE INFRASTRUCTURE 
The software that supports the SCIL contains four key 

elements: (1) the SCIL network server (SCILNET), (2) 
control console display software, (3) the SCILNET/ 
Distributed Interactive Simulation (DIS) protocol trans' 
lator, and (4) ORBIS. The SCILNET coordinates 
communication among the distributed simulation com' 
ponents and acts as a central repository for the state of 
a simulation. The network uses a client,server architec, 
ture in which each simulation component-the control 
consoles, the SCILNET/DIS translator, and ORBIS­
is a client program that communicates only with the 
central server program. The server is solely responsible 
for distributing messages that need to be broadcast or 
multicast to client programs. 

The control console display system is the man­
machine interface that permits operators to interact in 
the SCIL's virtual world. Its design allows it to be tai, 
lored to address a range of problems. Displays vary by 
vessel type and configuration and include such func, 
tions as maneuvering control, navigation, fire control, 
weapons control, countermeasure control, engineering 
and ship status, and sensor (e.g., sonar) displays. As 
designed, an entire vessel can be controlled by one 
person on one workstation or it can be controlled by 
many operators each using one workstation to display 
one or more ship functions. Displays can be dynamical, 
ly allocated during a scenario to address changing sit, 
uations or operator preferences. The control consoles 
do not have to be used in conjunction with the physical 
control room mockup; additional platforms can be 
created and controlled from anywhere on the facility's 
network. For example, an opponent (such as a KILO, 
class diesel submarine) can be crewed in the Simula, 
tion/Stimulation laboratory and operated in the same 
simulated battle space as the SCIL submarine. 

In 1989, elements of the defense community held a 
series of workshops to start creating standards in sup' 
port of Advanced Distributed Simulations, an effort 
aimed at building large, interactive virtual worlds. This 
standards support movement is now known as Dis, 
tributed Interactive Simulation (DIS). The proposed 
objective of DIS " ... is to define an infrastructure for 
linking simulation of various types at multiple locations 
to create realistic, complex, virtual 'worlds' for the 
simulation of highly interactive activities.,,1 This 
infrastructure provides interface standards, communi, 
cation architectures, management structures, mea, 
sures of fidelity, and other elements needed to bond 

heterogeneous simulations into unified virtual worlds. 
These virtual worlds, also known as synthetic environ, 
ments, are intended to support 

1. Design and prototyping 
2. Education and training 
3 . Test and evaluation 
4. Emergency preparedness and contingency response 
5. Readiness and actual combat situations 

The goals of the original SCIl concept show con, 
siderable overlap with those of DIS. It was only natural, 
then, that the SCIl be adapted to function as part of 
the defense community's large,scale synthetic environ, 
ment effort to permit it to address a wider range of issues 
(see Fig. 4). This adaption was completed in 1993 and 
included installation of DSI networking hardware and 
development of a SCIlNET/DIS translator and interface. 
The current SCILNET/DIS translator and interface 
uses a commercial product called VR,Link, developed 
by Mak Technologies, which adheres to DIS protocol 
version 2.03. 

ORBIS 
If the SCIl is the heart of the CITEF, ORBIS is its 

soul, for it drives the virtual world in which the sim, 
ulated submarines, sensors, weapons, countermeasures, 
opponents, and other objects exist and operate (Fig. 5). 
The depth and richness of the ORBIS environment 
endow the SCIL with capabilities for addressing a wide 
array of problems. 

ORBIS is actually a time,stepped expert system that 
manipulates simulated objects on the basis of the state 
of the virtual world. It is written in Common Lisp and 
runs in an X, Windows (UNIX) environment. ORBIS 

• Router/bridge 
o Node 

Figure 4. Map of the Defense Simulation Internet (DSI). 
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dictionary variables (i.e., state val­
ues or reaction trip-points), rule or 
activity names, and standard con­
structs (e.g., IF, THEN, <, >, =). 
Rules are grouped to form rule 
bases, which are then combined to 
form rule base systems. Reactions 
specified in the rules take the form 
of rule base system state adjustments 
(such as motion goal changes) or 
object creations. 

Figure 5. The SCll's virtual world. This world is generated by ORBIS, which is a time-stepped 
expert system that manipulates simulated objects. 

Once the top-level object types, 
dependent object types, and rules or 
manual controls for an application are 
defined, they are used to form object 
trees. The trees are assigned an ini­
tial state (such as x, y, and z posi­
tion) and are then grouped to form 
a setup, as conceptualized in Fig. 6. 
The setup in Fig. 6 represents a pos­
sible scenario in the virtual world 
defined by the objects, the rules, and 

enables users to create domain-specific synthetic envi­
ronments or applications by providing a set of tools 
collectively known as the shell. Included in the shell are 
various editors, such as the Rule Editor, Dictionary 
Editor, Object Tree Editor, and Setup Editor. These 
tools enable developers to create and control, manually 
or by rules, the objects that exist in the SelL's virtual 
world. After the objects are developed, they can be 
exercised in real time using a simulation engine, which 
carries out functions such as object state updates and 
interpretation of rules or manual instructions.2 

As its name indicates, ORBIS uses an object-oriented 
approach. This approach has two levels of objects, top­
level and dependent, and their states are represented 
by a collection of attributes. Message variables can also 
be associated with an object to allow it to base its state 
on the state of other objects. The distinction between 
top-level and dependent objects is that movements of 
dependent objects generally depend on movements of 
top-level objects. For example, the position of dependent 
objects in a submarine or towed by a submarine depends 
on the motion of the top-level submarine object. 

ORBIS's name, besides indicating an object-oriented 
approach, reflects the presence of rules in applications. 
On the basis of expert experience or a priori knowledge, 
these rules automatically control the actions of objects 
such as torpedoes through the use of a reactive planner 
approach.3 This approach takes into account all possi­
ble situations prior to simulation time and establishes 
state patterns that will cause reactions when recognized 
in the virtual world. The rules are a combination of 

the SelL's physical facilities. Includ­
ed with object trees in a setup are 

parameters for controlling the setup, such as object re­
moval and end-of-run conditions. 

After a setup or scenario is created, it is exercised 
by manning the selL and starting a simulation clock. 
While time is advancing in the synthetic environment, 
object states are updated (for example, their positions 
are changed), and rule-based or manual reactions are 
stimulated by patterns in the state of the virtual world. 
During operation in this interactive mode, a graphical 
representation of the virtual world is provided that 
includes object positions, motion characteristics, and 
rules that have been executed or "fired" for automatically 
controlled objects (see Fig. 7). ORBIS can also run in 
a background mode that allows collection of Monte 

Figure 6. Conceptualized ORBIS setup and object tree structure. 
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Figure 7. ORB IS graphic display during operation in the interactive mode. 

Carlo statistics. This mode can be used for many pur~ 
poses, such as statistical testing of preliminary tactics 
developed manually in the SClL, assessing the utility 
of emerging technologies, and sensitivity studies. 

An important feature of ORBlS is that objects and 
rules created for one virtual world can be used in an~ 
other. For example, a 688~class submarine object previ~ 
ously developed for a search scenario can also be used 
in a battle~group support application. The ability to 

reuse objects and rules permits the ORBIS development 
team to create an ever~growing library of objects and 
their associated behaviors. The benefits of this ar~ 
chiving and reuse include faster simulation develop~ 
ment, reduced development costs, greater flexibility, 
and continual enhancement of the ability to address 
more complex problems. 

Objects in ORBIS 
ORBIS objects contained in a setup are actually 

instances (copies) of a particular object type and kind. 
For example, if there is a submarine object type in an 
application, 726 (i.e., the USS Ohio) might be one of 
the object kinds associated with that type. Figure 6 
shows how these copies could be grouped with rule base 
system instances to form object trees. Figure 8 shows an 

example of some of the structure that would exist in 
a simplified submarine object type definition. The figure 
shows that object type definitions include static, dy~ 
namic, and graphic attributes as well as message vari~ 

abIes. The state of an object instance in a setup consists 
of a list of specific values for each attribute and message 
variable in the associated object type definition. 

The static attributes in an object type definition are 
unique for each object kind and represent a database 
of object characteristics such as Max~Speed. For exam~ 
pIe, the value for the Max~Speed static attribute asso~ 
cia ted with the kind 726 in Fig. 8 is 12 kt. The static 
attribute values associated with each kind can be single 
values such as Max~Speed, simple pair~lists (such as 
rudder and advance value pairs in the Advance at~ 
tribute), or even multidimensional lists. 

Dynamic attributes, which are not kind~specific, 
contain expressions that are evaluated at every time 
step using the current state of the virtual world. Expres~ 
sions can be a simple expression, such as the Time~on~ 
Constant~Course expression in Fig. 8, or a function 
call. In some cases, more than one dynamic attribute 
is updated using a single expression, as indicated by the 
call to Update~Dynamic~ Variables. In other cases, more 
than one expression is associated with a single dynamic 
attribute. This feature can be used to specify a different 
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Kinds 

Static Attributes 
Max-Speed (knots): 
Max-Depth (feet): 
Advance (degrees, yards) : 

Transfer (degrees, yards): 

lactical-Diameter (degrees, yards) : 

Message Variables 
Submarine-Locations (nm, nm): 

Dynamic Attributes 
Last-Course (degrees): 
X, Y, Z, Course, Speed: 

(688726) 

(688 15) 
(688200) 
(688 
(726 
(688 
(726 
(688 
(726 

(51500) 
(52250) 
(51200) 
(51800) 
(51350) 
(52000) 

((Object-lYpe Submarine) 

(72612) 
(726250) 
(1 01000) 
(1 01500) 
(10800) 
(101200) 
(10900) 
(101350) 

(Get-From 'sell' 'Course) 
(Update-Dynamic-Variables 

(15500) 
(15750) 
(15400) 
(15 600) 
(15450) 
(15675) 

(Attributes X V)) 

SUBMARINE COMBAT INFORMATION LABORATORY 

the object type from which to get 
messages is submarine, and the at~ 
tributes to return are X and Y. A list 
of these attributes from each sub, 
marine object in the setup, not in~ 
eluding the current object, is 
assigned to the message variable 
Submarine~ Locations. 

A frequently used function in 
ORBIS is Get,From, which re' 

(nm, nm, feet, degrees, knots) (Get-From ' self' 'X) (Get-From ' self' 'Y) (Get-From 'self' 'Z) 
(Get-From ' self' 'Max-Speed) (Get-From 'self' 'Max-Depth) 
(Get-From ' self' 'Course) (Get-From ' self' 'Speed) 
(Get-From ' self' 'Advance) (Get-from 'self" 'Transfer) 
(Get-From ' self' 'lactical-Diameter) 

trieves a specified attribute or vari, 
able from an object or rule base 
system. In Fig. 8, one attribute 
source used is the variable *self*, 
which refers to the object being up~ 
dated. A nother source is the 
variable *motion~goals~ rule,base*. 
This variable is bound to the rule 

(Get-From 'environment' 'Environment-Values) 
(Get-From ' motion-goals-rule-base' 'Ordered-Dive-Angle) 
(Get-From 'motion-goals-rule-base' 'Course-Goal) 
(Get-From ' motion-goals-rule-base' 'Speed-Goal) 
(Get-From 'motion-goals-rule-base' 'Depth-Goal) 
(Get-From ' motion-goals-rule-base' 'Ordered-Rudder) 
(Get-From ' motion-goals-rule-base' 'Turn-Side)) 

Time-on-Constant-Course (hours): If (Get-From ' self' 'Course) = (Get-From ' self' 'Last-Course) 
Then (Get-From ' seW'Time-on-Constant-Course) + 'time-step' 
Else 0.0 

Submarine-CPAs (nm): 

Graphic Attributes 
Show in Animation: 
Color: 

(Update-CPAs 
(Get-From ' self' 'Submarine-CPAs) 
(Get-From ' self' 'Submarine-Locations)) 

(688 (Yes No)) (726 (Yes No)) 
(688 (Red Blue BlackYeliow Green)) 
(726 (Blue Red BlackYeliow Green)) 

' Indicated values were created solely for the purposes of this example. 

base system that controls either the 
movement of the object being up~ 
dated or its associated top' level 
object. Figure 9 shows an example 
of such a rule base system that 

Figure 8. Example of structure in a submarine object type definition. The structure includes 
static, dynamic, and graphic attributes as well as message variables. 

might be used to control the move~ 
ment of a submarine object. When 
manual controls are in place, this 
global variable is bound to a remote 
object manager object, which reflects 

expression for different subsets of object kinds in a type 
defin ition. Note that in the TIme~on~Constant~Course 

expression , the Course attribute values from before and 
after update are used to determine whether a course 
change has occurred. This expression not only points 
out how state values from the previous update time can 
be used to determine state values for the current update 
time, but also how the update order of the object (top 
to bottom) is taken into account. 

The graphic attributes are used to control the graph~ 
ical representation of an object in the interactive 
display. As indicated in Fig. 8, these attributes might 
be used to specify whether or not the object is displayed 
graphically in Interactive Mode and, if so, what color 
to use. For example, in Fig. 7, if the 688~ 1 object were 
not displayed, the green bearing lines would be the only 
indication that the object existed. Since these bearings 
are part of what the 726~ 1 object is basing its reactions 
on, the user could tell whether the 726~ 1 is reacting 
correctly on the basis of its sensor inputs as opposed to 
ground truth. 

Message variables, as indicated previously, contain 
values associated with the state of other objects in the 
setup. For each object in a setup that matches the 
specified type, a list of the indicated attributes is con~ 

structed. These lists are combined into a larger list and 
assigned to the associated message variable. In Fig. 8, 

the inputs or goal changes indicated at operator, 
controlled consoles. 

Rule Bases and Dictionary Variables 

Rules are used in O RBIS to recognize patterns in the 
state of the virtual world and react to those patterns 
automatically. The rules exist in the two~level structure 
of the rule base system. In this system, an activity, level 
rule recognizes a situation that the associated top~level 

object is in and selects an instruction,level rule base to 
carry out the appropriate reactions. In Fig. 9, the 
activity~level rule base is the Tactics rule base, and the 
instruction~ level rule bases are the Constant Course 
and Random Maneuver rule bases. T he simplified rule 
base system in th is figure might be used to cause a 
submarine object to maneuver periodically to a new, 
randomly selected course after a random period of time. 
This rule base could be modified to account for avoid~ 
ance of contacts by adding a higher,priority avoidance 
rule at the top of the Tactics rule base and an associated 
instruction~level rule base. The resultant rule base 
system would continue to maneuver randomly unless 
avoiding a contact. 

Note that rule base systems have different types just 
as objects do, and that instances of more than one type 
of rule base system can exist in an object tree. For 
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Maneuver Randomly 

Tactics Rule Base 

Conduct Random Maneuver 

Activity 
level 

IF (Time on Constant Course> Duration Limit) OR 
(LastTactic EQUAL Random Maneuver AND NOT Tactic Completed) 

THEN lACTIC = Random Maneuver 

Stay on Course 

IF TRUE 
THEN TACTIC = Constant Course 

Random Maneuver Rule Base Constant Course Rule Base 

Carry Out Random Maneuver Maintain Constant Course 

IF TRUE IF TRUE Instruction 
level THEN Ordered Course = Random Course AND 

Duration Limit = Random Duration 
UNTIL Course = Ordered Course 

THEN Ordered Course = Ordered Course 

THEN Tactic Completed = TRUE 

Figure 9. Simplified example of a rule base system, Maneuver Randomly, which could be used to control a submarine object. All except 
the standard constructs are shown in boldface. 

example, the type of rule base system shown in Fig. 9 
is called a motion goals rule base. It is typically dom~ 
inant in that other types of rule base systems tend to 
be dormant until stimulated by a motion goals rule 
base, as when a submarine's motion goals rule base flags 
the torpedo fire rule base to conduct a torpedo launch. 
Because of the dominance of motion goals rule bases, 
the fired instruction rules shown in the interactive 
display come only from this type of rule base system. 
Rules that have fired in instances of other types of rule 
base systems can be viewed via the Examine menu of 
the interactive display. (Rule base systems also have 
names, as indicated by the name Maneuver Randomly 
in Fig. 9.) 

Rule bases are processed by evaluating rules sequen~ 
tially from top to bottom until an antecedent (IF part) 
is found that evaluates to TRUE. When this rule is 
found, it fires, causing an activity to be selected or a 
reaction to be carried out. Fo·r example, in Fig. 9, if the 
antecedent of the Conduct Random Maneuver rule 
evaluates to TRUE, the Random Maneuver tactic will 
be selected and the Random Maneuver rule base will 
be entered. Note that the antecedent of the last rule 
in each rule base usually has an expression of TRUE, 
which causes the rule to fire when encountered. 

An interesting control construct that can be used in 
an ORBIS rule is the UNTIL construct. When an 

instruction~level rule base exits a time step because an 
UNTIL clause evaluates to FALSE, the same UNTIL 
clause will be reevaluated if the same rule base is 
entered during the next time step. If this UNTIL clause 
evaluates to FALSE, the rule base is exited and no rules 
are fired. On the other hand, when the UNTIL clause 
finally evaluates to TRUE, the subsequent THEN 
clause is carried out. For example, in Fig. 9, when 
Course finally equals Ordered Course in the Carry Out 
Random Maneuver rule, Tactic Completed will be set 
to TRUE. A THEN~UNTIL pair in ORBIS is called 
an execution plan, so the reaction specified in an 
instruction rule is considered to be a series of one or 
more execution plans. Note that an UNTIL TRUE 
implicitly exists at the end of a rule that does not end 
with an UNTIL clause, thus completing an execu~ 
tion plan. Therefore, the reaction specified in the 
Carry Out Random Maneuver rule consists of two 
execution plans. 

Rules are created from standard constructs, dictio~ 
nary variables, and rule or activity names. In the Rule 
Editor, a rule is built by clicking on these mouse~ 
sensitive ingredients (see Fig. 10). The rules shown in 
Fig. 9 illustrate how these ingredients are combined; all 
except the standard constructs are shown in boldface. 
Some of the operations that the standard constructs 
can be used to perform include 
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( Standard 
constructs 
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Random Maneuver rule. In addi, 
tion to their software names, all 
dictionary variables have an En, 
glish name that is used in the rules 
to promote readability. An example 
of this feature is when the Carry 
Out Random Maneuver rule sets a 
course goal. The English name used 
in the rule is Ordered Course, but 
the actual name of the dictionary 
variable is Course,Goal. 

EQUAL fA. Number f\r<tan-- Expt--

Random Course Course 
Random Duration Duration Limit 

Last Tactic 

( Settable 
Ordered Course 
lactic Completed 

dictionary Time on Constant Course 
variables 

--- ( Static and dynamic 
Random Maneuver (tactic) dictionary variables 
Constant Course (tactic) 
Conduct Random Maneuver (rule) 
Stay on Course (rule) 
Carry out Random Maneuver (rule) 
Maintain Constant Course (rule) 

(Rule and activity 
names 

~andTactics "'""'-Y-

IF TRUE 
THEN Ordered Course = Random Course AND 

Duration Limit = Random Duration 
( Rule UNTIL Course = Ordered Course 

THEN Tactic Completed = TRUE creation 
area 

Figure 10. The ORBIS Rule Editor, which permits users to build rules_ 

1. Numeric comparison 
2. Assignment 
3. Execution plan definition 
4. String comparison 
5. Functions (such as max, min, cos) 
6. Object generation 

The construct applied when generating an object is 
the Action construct. This construct appears in the rule 
when the Generate menu command is selected in the 
Rule Editor. Using this construct, a torpedo launch is 
represented with the clause Action = Launch Torpedo 
in a rule. Since generated objects are actually object 
trees, the torpedo that is generated will consist of a top' 
level torpedo object, sensor objects, and a motion goals 
rule base as specified in an initialization structure at, 
tached to the Action clause. Default initial values for 
attributes can be overridden using expressions that 
reference the state of the virtual world at generation 
time. For instance, a generated torpedo will have a 
Course,Goal assigned to it on the basis of the current 
target solution rather than a default value that is out 
of context. 

As shown in Fig. 9, each rule or activity has a unique 
name in a rule base system. Their uniqueness allows 
these names to be referred to in rules, as demonstrated 
by the Random Maneuver reference in the Conduct 

D 

Each rule base system in O RBIS 
uses a set of dictionary variables 
that act as a blackboard of values 
that are available to all of its rule 
bases and represent its state. These 
dictionary variables can be static, 
dynamic, or "settable." Their defi, 
nitions can be viewed while in the 
Rule Editor by using a mouse and 
key combination to reveal the Dic, 
tionary Variable Examiner window, 
shown in Fig. 11. Static variables 
have constant values that generally 
change only when assigned a new 
value in a rule. An example of this 
type of variable is Duration Limit, 
which is used in the Carry Out 
Random Maneuver rule (see Fig. 

9). Dynamic variables have an associated expression 
that is evaluated at every time step in the same manner 
as dynamic attributes. As in the dynamic attribute case, 
multiple dynamic variables can be set within a single 
function call or expression (see Active,Bearing,MR in 
Fig. 11). A sample dynamic variable is Time on 
Constant Course, which might be set using the simple 

... Il£1VM .." .. bit 

Exit Break 
p letlonary Variable Examiner 

For Variable: act tve bearing (mr) (ACTlVE-BEARING-MR) 

STORED IN FILE - Active 

ENGLISH: "active bearing (mr)" 

COMMENTS: "Indicates most recent bearing to actNe contact If It exists ." 

KEYWORDS-LIST, (ACTIVE) 

TYPE , DYNAMI C 

INITIAL-VALUE , NIL 

UNITS, DEGREES 

MUL TlPLE-VALUE - RETURN, (ACTIVE-BEARING-MR T -ACTIVE - BEARING-MR) 

FUNCTION-FILE , NIL 

EXPRESSION, (IF (GET -FROM ' CONTACT -MANAGER" 'A CTIVE-BEARING) 
(VALUES (GET -FROM "CONTACT -MANAGER" 'A CTIVE-BEARING) "TIME") 
(VALUES (GET -FROM "MOTION-GOALS-RULE -BASE" ' ACTIVE -BEARING-MR) 

(G ET - FROM 'MOTION-GOALS-RULE-BASE" 'T -ACTIVE-BEARING-MR»)) 

Figure 11. The Dictionary Variable Examiner window, 
which allows operators to view the dictionary variables 
used in ORBIS's rule base systems_ 
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expression Get,From *submarine* Time,on,Constant, 
Course. In this expression, *submarine* is a variable 
bound to the name of the top' level submarine object to 
which this rule base system is attached. This expression 
demonstrates how object attribute values can be re, 
flected in a rule base system. However, note that there 
is a potential delay of one time step associated with this 
expression (i.e., the rule base system might be updated 
prior to the submarine object). Finally, settable variables 
are variables that have an associated expression that is 
evaluated only when the variable is referenced in a rule. 
This feature reduces computation time when a complex 
expression is used. 

Simulation Parameters and Setups 

An ORBIS application usually has various associat, 
ed setups or scenarios, each of which includes an initial 
configuration of object trees and a set of simulation 
parameters. These setups are created using the Setup 
Editor, which has the same graphical appearance as the 
interactive display. Adding an object tree in the Setup 
Editor requires performance of the following: 

1. Selection of object tree components 
2. Specification of some initial values such as course, 

speed, and location 
3. Selection of expressions to use for multiple,expres, 

sion dynamic attributes 
4. Indication of the desired object tree location 

Note that selecting object tree components requires 
choosing not only the types of objects or rule base sys, 
tems, but also their kinds or names. When creating the 
object tree, no restrictions are placed on the object tree 
structure except that there must be a top,level object, 
and only one rule base system or object of a specific type 
can occur in the object tree. This flexibility enables 
evaluation of unusual combinations, such as placing U.S. 
sensor types on enemy platforms or vice versa. 

Besides adding object trees, the Setup Editor is used 
to specify pre initialization functions, initialization 
functions, time increments, object removal conditions, 
end conditions, and measures of effectiveness. A list of 
each of these items is defined before entering the Setup 
Editor, and then selections from these lists are made 
while in the Setup Editor. Pre initialization and initial, 
ization functions are evaluated before the simulation 
clock is started. The difference between preinitializa' 
tion and initialization functions is that the former are 
evaluated before, and the latter after, objects and rule 
bases are initialized. A pre initialization function might 
be used to establish a random seed for a particular 
simulation run before random values are assigned to 
attributes or dictionary variables. A direct comparison 
of runs conducted using the same set of random seeds 
would thus be possible. An initialization function, on 

the other hand, could be used to place and orient a sub, 
marine randomly at the start of a series of simulation runs. 

Dynamic,simulation,based time increments are used 
to advance time in the synthetic environment. When 
a simulation starts, a default time increment, which is 
usually large, is applied. However, a different time in, 
crement might be used when a significant change in the 
situation occurs, such as after an initial detection during 
a hostile submarine encounter. Such a time increment 
is defined in ORBIS by specifying an expression that 
will indicate when a detection has occurred. When this 
expression returns TRUE, the associated time incre, 
ment is used. If more than one situation, based, time, 
increment expression returns TRUE, the smallest 
associated time increment is used. For example, the 
time increment desired when a torpedo is homing in on 
a target would be smaller than the desired postdetection 
time increment. 

Removal conditions are used to remove object trees 
from a simulation. Object trees could be removed for 
a variety of reasons. For example, an object might be 
removed when it is hit by a torpedo. The torpedo and 
anything else in the affected area would also be re' 
moved. An object might also be removed when its 
lifetime expires, as when a torpedo runs out of fuel. End 
conditions are used to end a simulation run, and they 
include simulation time constraints (stopping the sim, 
ulation at a particular simulation time without regard 
to simulation state), and removal of all significant ob, 
ject trees (as when both submarines in an engagement 
are sunk by torpedoes). 

Measures of effectiveness are used to record observa, 
tions during simulation runs. These are used during 
Monte Carlo background runs to collect data for sta' 
tistical analysis. They can also be used during SCIl 
simulation runs to collect data for exercise reconstruc' 
tion. Examples of the types of data collected during 
background runs include closest points of approach and 
hits by torpedoes. During SCIl simulation runs, the 
tracks of each participant and the associated generated 
objects can be logged. 

Once a setup is created, it can be edited, copied, and 
deleted. Editing a setup involves one of the following: 

1. Adding or removing objects 
2. Changing initial attribute/variable values 
3. Changing the object tree structure 
4. Reselecting expressions in multiple, expression 

dynamic attributes 
5. Changing simulation parameter lists 

Objects are added in the same manner as when the 
setup was originally created. Removing objects or 
changing simulation parameter lists is accomplished by 
a simple combination of menu selections and mouse 
clicks. Items 2 through 4 listed in the preceding para, 
graph are performed using the Object Tree Editor 
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shown in Fig. 12. This display shows the object tree 
structure in the upper "tree" window, and information 
relating to a selected tree node (object or rule base 
system) in the lower "examiner" window. By clicking 
on the appropriate category in the examiner window, 
the user can change the kind or name of any node in 
the tree as well as the initial attribute/variable values, 
graphic attribute values, and expression choices of the 
node. In the tree window, dependent objects or rule 
base systems can be added to or removed from the 
object tree. 

Quit Dictionary Editor Check Object Tree Add Dependent 

~6-1_HuU_"'~YI 
726-1-Contact-Managerl 

726-1 
726-1-Motion-Goals-Rule-Base! 

726-1-Torpedo-Firel 

II II 

Object: 726-1 
ATTRIBUTE VALUE{S) CURRENTLY STORED IN SETUP 
Type SUBMARINE 
Kind 726 
F unction Choices NIL 
Variables Z -POS - - 0.027978403 

X-POS- - 1.2689152 
Y -POS- 1.0325298 
FORCE- USA 
SPEED- 5 
COURSE· 4.712389 
GENERATABLE-OBJECT - TYPES- {{TORPEDO {(MK-48 2)))) 

Graphics Parameters No changes from defaults 
II II 

Figure 12. The Object Tree Editor, which is used to edit objects 
contained in a setup. The object tree structure is shown in the 
upper "tree" window, and information relating to a selected tree 
node is shown in the lower "examiner" window. 

The interactive operation of ORBIS setups allows 
a user to observe and manipulate the ground truth of 
a synthetic environment as it evolves. The graphic 
interface and functions used are the same as those used 
by the Setup Editor. A significant difference, however, 
is that the functions can be applied any time during 
a simulation run. This feature allows the user to affect 
the behavior within a virtual world by changing object 
states or even adding or removing objects. One func, 
tion available only during interactive operation is the 
ability to monitor variables, attributes, or expressions 
during the execution of a setup. Another such function 
is the Time Restore feature, which can create an in, 
stant replay of elapsed events. (This function is not 
currently available during man,in,the, loop SCIL op, 
erations.) With these functions, the user can stop the 
simulation, restore to an earlier time, edit the setup 
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(including attribute values, variable values, and rule 
structure), and then restart the simulation from the 
restored time. This process, known as dynamic editing, 
promotes rapid development of rule base systems in 
ORBIS. 

ORBIS Application 

ORBIS has proved to be a robust tool for creating 
interactive synthetic environments that exercise 
emerging technologies and tactics. The state informa, 
tion it passes to the SCIL consoles creates an authentic 
atmosphere that prompts operators to respond realisti, 
cally within the synthetic environment. The high level 
of fidelity enables advanced technologies and tactics to 
be extensively developed, integrated, and tested in the 
laboratory, reducing the resources expended for field or 
sea tests. ORBIS has also been effective when operated 
as a stand, alone simulation development environment 
and analyst's tool. Its flexible interactive mode, used for 
"what if " investigations, coupled with a background 
mode that can generate Monte Carlo statistics, has 
proved useful in assessing new technologies and devel, 
oping control strategies. 

THE USES AND USERS OF THE CITEF 
The CITEF was originally developed to support the 

activities of the STD's traditional principal sponsors 
and programs, such as the SSBN Security Program, the 
SSBN Survivability Program, and the SSN Security 
Program. CITEF's resources have accordingly been used 
in tactics development, advanced sensor concept as' 
sessment, exercise and sea' test planning, cost and op, 
erational effectiveness assessment, and prototype 
system development. 

As the CITEF's capabilities have grown, however, 
the facility has been used by other sponsors and pro' 
grams, primarily the Department of Defense's Ad, 
vanced Research Projects Agency (ARPA). The first 
ARPA,related effort was the ARPA/Maritime Systems 
Technology Office's Maritime Simulation Demonstra, 
tion (MSD), which took place in September 1993. The 
MSD was the first high,fidelity distributed simulation 
of undersea warfare in a major regional contingency 
scenario.4 In this demonstration, the SCIL supplied 
both U.S. and foreign man,in,the,loop,controlled sub, 
marines performing Anti,Submarine Warfare missions. 
The MSD was also the first test of the SCIL as a 
functioning node on the DSI. 

In late 1993, the SCIL also furnished simulated sub, 
marines in a strike warfare role for a DIS exercise 
sponsored by the ARPA/Advanced Systems Technol, 
ogy Office. During the summer of 1994, the SCIL was 
the site of a demonstration for the ARPA,sponsored 
Ship Systems Automation Program. 
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SUMMARY REFERENCES 

The SClL and its associated facilities have proved 
capable of supporting a wide range of Navy and 
Department of Defense activities. The activities in~ 
elude ORBlS~based Monte Carlo, man~in~the~loop, 

and distributed simulations (both internal and DlS~ 
related); software development; war~gaming; sea~test 
planning and support; technology demonstrations; and 
system prototype development, integration, and testing. 
The success of this facility is due to the effective incor~ 
poration of key advances in computing, networking, sim~ 
ulation, expert systems, and visualization technologies. 
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