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I n search theory applications, effective sweep width is often the key parameter 
when determining the probability of detection against uniformly distributed targets. 
Typically, a sensor's effective sweep width is computed based on continuous target 
signals; however, almost every type of target emits at least one form of intermittently 
occurring signal. To determine the utility of searching for intermittent signals, a general 
methodology is derived that evaluates a sensor's effective sweep width using a passive, 
omnidirectional detection system. Under this methodology signals may be continuous, 
or they may be independent, intermittently occurring signals whose interarrival time 
distributions can be represented by anyone of the family of Erlang probability 
distributions. 

INTRODUCTION 
When trying to improve a search platform's ability 

to detect a target by increasing its passive sensor effec~ 
tive sweep width, the value of using all available target 
signals can be significant. Even so, modeling efforts 
often ignore or modify certain important signals to 
avoid complicated mathematics. Likewise, problems in 
passive detection search theory tend to revolve around 
exploitation of continuous target signals or, in rare 
cases, intermittently occurring signals that are easily 
modeled. This article describes the use of stochastic 
process theory techniques to derive a searcher's effec~ 
tive sweep width against a target that is emitting con~ 
tinuous and multiple~source intermittent signals of a 
general nature. 

The term "signal" refers here to any phenomenon 
produced by a target that can be detected by passive 
means in a given environment. As an example of an 
intermittently occurring signal and its effective sweep 

width, consider a submerged submarine's periscope 
occasionally breaking the water's surface while passing 
through a channel. Now place an observer, whose 
visual detection range varies with time owing to weather 
conditions, on a buoy in the middle of the channel. 
The observer cannot see either side of the channel from 
the vantage point of the buoy. For the observer to 
detect the submarine's periscope, the periscope must 
break the surface at least once while within detection 
range. If effective sweep width is calculated for this 
problem, the mean probability of detecting the subma~ 
rine's periscope from the buoy will be the effective 
sweep width divided by the channel width. 

To simplify calculations of the probability of detec~ 
tion, the actual detection laws governing a sensor's 
ability to detect a target in a given environment are 
transformed when possible to definite range (cookie~ 
cutter) detection laws. Detection laws, as used here, 
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include not only sensor capabilities but also environ, 
mental and signal characteristics that affect the sensor's 
ability to detect a target. The transformation is done 
so that, under the same conditions, the same number 
of uniformly distributed targets of identical velocity 
will be detected under either law. 1 The term "effective 
sweep width" applies to the resulting value of the trans' 
formation. 

When considering passive sensor detection of a sig, 
nal within a given environment, two events must occur 
simultaneously: the signal must occur, and it must be 
within sensor detection range. A sensor's effective 
sweep width depends on both events. The probability 
of a signal occurring while within detection range 
depends not only on how long the target remains 
within that range, but also on the signal's interarrival 
time distribution. Calculating a sensor's effective sweep 
width against intermittently occurring signals has until 
now required that the signals have exponential (Erlang 
type 1) interarrival time distributions. The more 
generalized approach developed in this article requires 
only that each signal of interest have an Erlang type 
k interarrival time distribution. Figure 1 depicts exam, 
pIes from the family of Erlang distributions with mean 
interarrival time A - 1. 

Independent target signals having Erlang interarriv, 
al time distributions are chosen on the· basis of the 
Erlang distribution's relationship to the exponential 
distribution. Using this relationship, one can model 
these signals as a Markovian arrival process. Thus, the 
Chapman-Kolmogorov equations2

,3 can be used to 
derive the probability of a signal being emitted while 
a target passes within sensor detection range at a given 
relative speed. From this, a probability of detection 
curve that depends on the target's closest point of 
approach or lateral range is constructed. The area 
under this curve is the sensor's effective sweep width. 1

,4 

k= oo 

Erlang type k density function: 

('A.k)kt k- 1 e-k'At t>O 
f(t) = (k-1) ! ' 

o 
'A. -1 

Time, t 

Figure 1. Sample Erlang type k distributions with mean 
interarrival time A- 1 

BASIC CONCEPTS 
Before we describe the mathematical development, 

three basic but important concepts must be introduced. 
The first, mean sensor detection range for a given 
environment, focuses on how temporal variations in 
sensor detection range resulting from fluctuations in 
environmental and signal strength are dealt with. 
N ext, independence of detection events is defined. 
Finally, using the mean sensor detection range as a 
stepping stone, the discussion proceeds to the lateral 
range concept. 

Mean Detection Range 

Before we can construct effective sweep,width 
models, the concept of mean detection range (MDR) 
must be understood. In acoustics, for example, MDR is 
usually referred to as median detection range, probably 
because the random variable representing signal excess 
in decibels appears to be normally distributed in passive 
acoustics.5 Since the mean and median of a Gaussian 
distribution are the same, the use of either term is 
correct. This section addresses the time,varying nature 
of a sensor's threshold detection range. Because of this 
variability, a sensor can demonstrate poor performance 
one day and outstanding performance the next. This 
concept occasionally gets lost in computations of the 
expected probability of detection. 

For a continuously monitoring passive sensor, let 
threshold detection range x be defined as the range at 
which an approaching target's signal,to,noise ratio just 
equals the sensor's established detection threshold 
based on a 0.5 probability of detection and an accept, 
able false alarm rate. To predict sensor performance, the 
detection system parameters, noise level, signal level, 
and signal propagation characteristics must be estimat, 
ed. Since the value of any factor at any particular 
instant can be greater than or less than its estimated 
value, the threshold detection range x for a given 
intermittent signal can be viewed as a random variable 
with associated density function [(x) (Washbum6

). 

This article addresses only unimodal density func, 
tions representing x. More computationally time, 
consuming multimodal density functions can be 
approached similarly. For further analytic simplification, 
the value of the random variable x is assumed to be 
constant in all sensor directions at any particular 
moment in time. This assumed spatial symmetry facil, 
itates representation of a "zone of detection." The zone 
of detection for some ith,type intermittent signal is 
defined as the area in which that particular intermit, 
tent signal has the opportunity to be processed as a 
target. The word "opportunity" is used to indicate that, 
even though the signal is modeled as being detected by 
the sensor, false alarms or other factors in the real world 
can cause it to be missed. 
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The ith~type intermittent signal is associated with 
its threshold detection range density function h{x). Its 
MDR, which is the mean radius of the zone of detec~ 
tion, is simply the mean of the threshold detection 
range random variable x, or 

MDR, = f xl, (x)dx . 

This static representation of threshold detection range 
conservatively simplifies the calculations of mean prob~ 
ability of detection. 

To illustrate concepts in this section, let h{x) be the 
threshold detection range density function just defined. 
Define Fi(d) as the cumulative distribution function of 
the ith~type intermittent signals, given a signal occur~ 
ring at distance d from the sensor. Figure 2 provides 
examples of h{x) and Fi(d) using a standard normal 
probability density function. The MDRi of the density 
function is 20 units of distance. 

Independent versus Dependent 
Probability of Detection 

Let B1 and Bz denote two identical intermittent 
signal events at the same location. If the probability P 
of detecting B1 is independent of the probability of 
detecting Bz, then 

If Eq. 1 does not hold for the two events, then the 
events are dependent to some degree. In the following 
sections, using MDR as the range at which detection 
will occur, dependence between signals is modeled. If 
Bz is not detected at distance d, then Bl will not be 
detected at distance d. Although methodology present~ 
ed later in this article would allow independence to be 
considered also, we avoided this approach because it 
may not be realistic over time frames short enough to 
be measured in hours. 7 Although the dependence used 
here is probably not entirely correct either, it is con~ 
servative, if not more realistic.6 

Sweep Width and Lateral Range Defined 

To introduce the concept of sweep width, consider 
a sensor and a target in motion passing the sensor. The 
notion of effective sensor sweep width allows a target 
that has passed by a sensor within its sweep width to 
be detected with probability 1 (definite range law).l To 

(a) 
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Figure 2. Examples of (a) threshold detection range density 
function f;(x) of the ith-type intermittent signal; and (b) cumulative 
distribution function F;(d) of the ith-type intermittent signal occur
ring at distance dfrom the sensor. Both examples use a standard 
normal probability density function with mean detection range 
(MDR;) of 20 units of distance. 

derive sweep width, we must define the lateral range 
curve concept of the target-sensor combination. 

For a particular sensor and environment, a lateral 
range curve represents a target's cumulative probability 
of being detected as a function of its lateral range. As 
shown in Fig. 3a, lateral range is the distance between 
the target track line and the sensor at closest point of 
approach. Experimentally, we can obtain a lateral range 
curve if a target follows a straight course while within 
sensor detection range. In theory, an observer will see 
only whether detection occurs somewhere between 
points a and (3 for a given lateral range r, ignoring the 
true range at which detection occurs. After enough 
independent trials, the probability of detection P( r) can 
be established for encounters having lateral range r. For 
intermittent events, P( r) will likely increase as r 
decreases based on the target's increased time within the 
zone of possible detection. 

Consider the hypothetical lateral range curve in 
Fig. 3b and assume that relative target-sensor motion 
is perpendicular to the page. If the probability density 
of the target crossing at point r between -R and R is 
uniformly distributed, then effective sweep width is 
defined as 

sw = fR P(r)dr. 
-R 

(2) 
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Figure 3. For a particular sensor environment, a lateral range 
curve represents a target's cumulative probability P of being 
detected as a function of its lateral range r. (a) Lateral range 
geometry, where a is the point at which the target enters the zone 
of possible detection and {3 is its point of departure. (b) Hypotheti
cal lateral range probability curve. 

As should be noted, 

SW ~ 2R, 

where R is the range after which probability of a target 
detection opportunity is considered insignificant. 

DERIVING EFFECTIVE SWEEP WIDTH 
In this section, we assume an exponential (Erlang 

type 1) signal interarrival time distribution when 
constructing a sensor's effective sweep width. The 
sweep width applies to a particular environment when 
multiple, independently occurring intermittent signals 
are considered. The approach taken in constructing the 
following models strongly resembles queuing theory 
models. 2 The methodology described is important, in 
that it allows a systematic framework within which to 
work. 

Intermittent Signals with Exponential 
Interarrival Time Distributions 

U nder specific conditions, a sensor has an MDRi 
value representing the cookie-cutter range at which a 
target's ith- type in termittent emissions are expected to 
become detectable. For expected value modeling, if an 
intermittent signal of in terest occurs within its associ
ated MDR, or zone of detect ion , it is modeled as being 

DERIVING EFFECTIVE SWEEP WIDTH FOR INTERMITIENT SIG ALS 

detected by the sensor with probability 1. Here, the 
probability of at least one intermittent signal occurring 
while the target is within the associated MDR must be 
determined. Using the following standard definitions, 

A = the event that the target is within the 
sensor's zone of detection 

B = the event that the target emits at least one 
intermittent signal 

D = the event that the target emits at least one 
intermittent signal while within the sensor's 
zone of detection, 

then 

In deriving PD' the intermittent event and the 
detection process must be defined within a Mark
ovian framework. This requires introducing a time
dependent detection probability factor, N i(t , r) 
(defined in the following paragraph). Introducing this 
factor causes the transition probability to be a func
tion of time. Fortunately, the Chapman-Kolmogorov 
equations can still be used in solving the problem.3 

Define Ni(d) as the probability that detection of a 
single ith-type intermittent signal occurs when distance 
from target to sensor is d nmi. In other words, if d is 
less than the intermittent signal's MDR value, the 
signal can be detected. If the target begins its straight
line transit from a known position outside the sensor's 
zone of detection, then the target's position can be 
defined in terms of start time to = 0, relative speed v, 
and lateral range r. If a constant relative speed v is 
assumed, then Ni(d) can be transformed to N j(t,r). If 
to' ~ to and t(3 ~ to', which represent the time that the 
target enters (to' ) and exits (t(3 ) the zone of possible 
detection in Fig. 3 (MDR range), then 

N .(d) = [1, if d ~ MDR i] 
I 0, otherwise 

=[1, ifta ~ t ~ t{3,r ~ MDR i ] 
0, otherwise 

Let A.i be the average arrival rate of the ith-type 
intermittent signals, where the arrival rate follows a 
Poisson distribution. Define state zero as the state where 
no ith-type intermittent signals have occurred within 
MDRi, state 1 as the state where a single signal occurred 
within MDRi, and so on. Since these states do not 
communicate with one another, we need only consider 
state zero. Letting Po(t) represent the probability of 
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being in state zero at time t, the Chapman-Kolmogorov 
difference equation representing this process for M dif 
ferent independent intermittently occurring signals is 

M M 
Po(t + Llt,r) = IT(l-A iLlt)po(t,r)+ L,AiLlt[l - Ni(t,r)] 

i = 1 i = 1 

M 
x IT (l - Aj Llt)po(t,r) . 

j = 1, 
j:t=j 

(3) 

The right side of Eq. 3 considers two cases in which 
state zero can be maintained at the end of the time 
increment ~ t. In the first case, 1 - Ai~ t is the proba, 
bility that no ith,type intermittent signals occur during 
time increment ~t. The second case, represented by 
A~t[l - Ni(t, r)], considers whether the intermittent 
event that occurred during time ~ t was within sensor 
MDR. By setting powers of ~t in Eq. 3 that are greater 
than 1 equal to zero, 

M 
Po(t + Llt,r) = Po(t,r)-Llt L,AiNi(t,r)Po(t,r). 

i = 1 

After subtracting Po(t , r) from both sides, dividing by 
~t, and then letting ~t -7 0, Kolmogorov's forward 
equation is obtained: 

(4) 

Fixing r such that Po(t ,r) is dependent only on t, 
Eq. 4 is equivalent to 

Equation 5 is simply a first' order homogeneous dif 
ferential equation whose solution, under the given 
boundary conditions, is given by 

Since only the probability of detection as a function of 
lateral range r is of interest, by substituting y = tv for 
relative target-sensor speed v, the following modifica, 
tion can be made: 

To simplify calculation one can use the assumed sym, 
metry of sensor detection range and the zone of possible 
detection's chord length ~MDR 2 _ r2 from point a to 
point {3 of Fig. 3a, at lateral range r (where r ~ MDR), 

f N,{t,r)dt 

=~ r~ N ,(y, r)dy 

h N() _[l, ifr~MDRi] were i r - . 
0, otherwise 

(6) 

The probability of the sensor having an opportunity to 
detect at least one of the M different independently 
occurring intermittent signals, all having exponentially 
distributed interarrival times at lateral range r, is 

p,exp ( ) -1 [~ 2AiNj (r) ~MDR2 2 ] [I,M] r - - exp - ~ i - r . 
i = 1 v 

We can find PD for the single sensor case by integrating 
over all possible uniformly distributed lateral ranges 
r E [0, R], such that 

Multiplying PD by R is one,half the effective sensor 
sweep width, Eq. 2. For symmetric lateral range curves, 
the effective sweep width for M intermittent signals 
can be defined as 

SW[1,M) = 2 f I[~~) {r)dr. 

By substituting the largest MDRi value for R, the effec, 
tive sweep width for M different intermittently occur, 
ring signals having exponentially distributed interarrival 
times and uniformly distributed lateral ranges is 
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SW[I,M] = 2P~~[l,M] MDR 1 = 2 MDR 1 - 2 

where MDRI ~ MDRz ~ . .. ~ MDRM · 

Multiple Intermittent Signals with Exponential 

Interarrival Times and a Continuous Signal 

This discussion focuses on the utility of processing 
continuous and intermittent signals. Select a contin, 
uous signal from a target such that its associated MDR 
value is larger than any other continuous signal MDR 
from a given target. The approach used in the preced, 
ing section applies here with some modifications. First, 
only intermittent signal MDR values greater than the 
continuous signal MOR value need be considered. 
Second, think of the continuous signal as an intermit, 
tent signal whose average arrival rate 'IF e is very large, 
such that PB I A approaches 1. For the maximum integer 
j E [1, M], such that MOR j > MORe ~ MORj + 11 where 
MORe is the continuous,signal MOR, then for Min, 
termittent signal types and a continuous signal, the 
effective sweep width is given by 

SW[1,M] = 2PD,[1,M] MOR 1 = 2 MDR I - 2 

fMDRI t j 2A ·N ·(r) 
x exp - L.. ! ! 

° i=l v 

where MDRI ~ MDRz ~ ... ~ MDRM · 

Multiple Intermittent Signals Having Erlang 

Interarrival Time Distributions 

The preceding section constructed the model that 
allows the effective sweep width to be derived for 
intermittent signals having exponentially distributed 
interarrival times. In the real world, the interarrival 
times of the intermittent signals may not always exhibit 
a Poisson arrival rate. This section constructs the er 
fective sweep,width model for Erlang,distributed inter, 
arrival times. Since an Erlang type 1 distribution is an 
exponential distribution, this model is more general 
than those derived previously. To help readers unfamil, 
iar with stochastic processes, the model is presented 
after the derivation of the more specific and relatively 
simple exponential distribution model. 

DERIVING EFFECTIVE SWEEP WIDTH FOR INTERMITTENT SIGNALS 

An Erlang type k distribution is just the convolution 
of k exponential random variables. For example, an 
Erlang type 2 density function equals the convolution 
of two exponential density functions, or 

More intuitively, an Erlang type k probability density 
function is a probability density function representing 
the sum of k exponential random variables with mean 
interarrival time A-11k. From the strong law of large 
numbers, as k tends to infinity, the variance of f(t) will 
tend to zero. In other words, as k becomes larger, the 
length of each interarrival time between signals will 
become more predictable (deterministic). 

This relationship between the Erlang and the expo' 
nential distribution is exploited to describe signal ar' 
rivals as a series of identical phases within each state.z 

As before, state zero is the state of interest. While in 
state zero, which implies that a signal has not occurred 
within sensor MOR, the interarrival time of the signals 
is broken into k independent and identically distribut, 
ed phases. Think of the signal as climbing a set of stairs. 
Once the signal gets to the top of the kth step, it can 
be detected if a sensor is close enough to observe it. If 
it is not within detection range, it goes immediately to 
the bottom of the stairs and begins the climb again, one 
step at a time, toward the top of the kth step. Each 
phase represents a step in the signal's progress from its 
last occurrence to its upcoming occurrence. The length 
of each phase is an exponential random variable with 
mean A-11k. Hence, the sum of k phases represents the 
length of an Erlang type k random variable. 

To determine the probability that the signal is in 
state zero at time t, the Chapman-Kolmogorov equa, 
tions are broken into k phases. Let Po)t) represent the 
probability that the signal is in state zero and phase 
j(1 ::; j ::; k) at time t, so that 

PO,1 (t+ Llt) = (1- kA iLlt)PO,l (t) + kA iLlt[l- N i(t, r)]PO,k (t) 

PO,2 (t+ Llt) = (1- kA iLlt)PO,2 (t)+ kAiLltPO,l (t) 

To solve Eq. 7, the steady,state probabilities of the k 
phases must be determined. 

Before the target arrives within the sensor's zone of 
detection, the probability of a signal having occurred 
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within sensor MDR is zero. Therefore, the process 
shown in Eq. 7 cannot leave state zero. When PO,k is 
reached, the next phase transition must return the 
model to phase 1 of state zero, not to state 1. This can 
be represented by 

PO,l (t + Lit) = (1 - kAiLlt)PO,l (t)+ kAiLltPo,k (t) 

PO,2 (t+ Lit) = (1 - kA iLlt)PO,2 (t)+ kAiLltPO,l (t) 

For steady~state conditions, this reduces to 

dP01 (t) 
- '- =O= - kA lo1(t)+ kA lok(t) dt ' , 

dPo 2 (t) 
- '- =O= - kA lo2(t)+kAlol(t) dt ' , 

dPO k (t) 
-'- = 0 = - kAlo k (t) + kAlo k- l (t). dt ' , 

Solving the steady~state value for each PO,j, j = 1,2, ... ,k, 
knowing that 

k 
Po (steady state) = 1 = L Po)steady state) 

j=l 

results in 

1 
Po ' =-,) k 

The k steady~state values can now be used as boundary 
conditions at time ta (the time the target enters the 
zone of possible detection in Fig. 3a) when solving 
Eq. 7. For a target emitting a single type of intermittent 
signal having an Erlang type k interarrival time distri~ 
but ion, the probability of a signal not occurring within 
the sensor's zone of detection by time t while passing 
at lateral range r is 

k 
Po(t) = L Po)t), 

j=l 

where 

PO,I (t) = i-exp [ - kA{ Ni(t,r)dt ] 

PO,2(t) = Ai f~ Ni(t,r)dt 

xexp [ - kA{ Ni(t,r)dt ]+ PO,I (t) 

k
i
-
2
[ Ai f~ Ni(t,r)dt rl 

Po)t) = (j - I)! 

x exp [ - kAi f~ Ni(t,r)dt ] + PO,i- l(t), 

Substituting in Eq. 6, the probability of the sensor 
detecting at least one of the intermittent signals as the 
target passes through the zone of detection at lateral 
range r is represented by 

Note here that as k -7 00, the interarrival time of 
the signal becomes deterministic with value A-I, 
implying that the probability of detection can be rep~ 
resented by 

In general, for M different independently occurring 
intermittent signals, each having an interarrival time 
distribution that can be represented by an Erlang dis~ 
tribution of not necessarily the same type, 

l(f~lg(r)=l- .Il[ 1-piErlang(r)]. (8) 
1=1 

Now PD can be determined using Eq. 8 such that 
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The effective sweep width can then be derived by 

SW[1,Ml = 2PD,[1,Ml MDRI 

f
MDR l M 

= 2MDRI - 2 .I1[1 - piErlang(r)] dr, 
o 1=1 

where MDR1 ;::: MDR2 ;::: . .. ;::: MDRM . 

APPLICATION OF RESULTS 
The preceding section provides the general form for 

deriving effective sweep width against intermittent sig~ 
nals having Erlang type k interarrival time distributions. 
As shown earlier, this encompasses continuously occur~ 
ring signals and intermittent signals having exponential 
interarrival time distributions. A sensor's effective 
sweep width against a target, once obtained, can now 
be used in various closed~form search theory detection 
models to determine a lower bound mean probability of 
detection at time t. 

In using the derived equations, two important pre~ 
suppositions must be maintained. As implied in the 
introduction, the uniformly distributed target must be 
able to pass each sensor at all but the most extreme 
threshold detection ranges. If this is not possible for the 
particular situation being modeled, then compensation 
must be made when calculating effective sweep width. 
A further associated assumption is that no two sensors 
may detect a particular target at the same time. 

To demonstrate use of intermittent signal sweep 
width equations and the assumptions mentioned, recall 
the example of the buoy and the submarine periscope 
presented in the introduction. Instead of one observer, 
consider two observers, each on a buoy, such that a line 
passing through both buoys is perpendicular to the chan~ 
nel boundary. The buoys are spaced so that only one 
observer can detect the target as it passes parallel to the 
channel boundaries. Also, as before, neither observer 
can see the channel boundaries from the buoy because 
of environmental conditions. Now let the target of 
interest be a rowboat drifting in the night down the 
channel at 4 kt. Detectable signals originate from a faint 
white light hanging from the boat's stem and from an 
occupant who occasionally smokes a cigarette. For the 
observers (who are wearing onmidirectional infrared 
sensors), the MDR of the faint white light is given as 
1.5 nmi, the MDR for the cigarette being lighted is 
3 nmi, and the MDR of the burning cigarette is 1 nmi. 
Since the continuous white light has a greater MDR 
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than the burning cigarette, the signal from the burning 
cigarette need not be considered. Let the interarrival 
time distribution of the signal from the cigarette being 
lighted be represented by an Erlang type 10 density 
function having a mean interarrival time of 1 h . Let 
P1(r) and P2(r) represent, respectively, the probability of 
detecting the white light and the probability of detect~ 
ing the cigarette being lighted when the track of the 
boat passes a sensor at lateral range r. For a channel 
width of 20 nmi, the mean probability of an observer 
detecting at least one of the two target signals is 

22~:~~J = 220 {6-{ [1-Pj(r)][I-P2(r)]dr } 

= 2x5.36 = 0.536 
20 ' 

where 

PM=I - exp[ -2000~Nj(r) ~1.52 _r2 ] 

P ( ) -1 [ - 10 X 2 X 1N2(r) r:7"732 2] 2 r - - exp ,p- - r-
4 

9 [20N2(r) ~32_r2]j 
X ~(10 .)=--_4 _ _ _ =_ 

.£..J -] 10 " }=o ]. 

If the rowboat occupant did not smoke, the mean 
probability of detecting the rowboat's presence would 
be 0.3. 

CONCLUSION 
Calculating sweep width using the derived equa~ 

tions can be formidable if integral tables and simple 
numerical methods are used. The easiest approach 
is to use mathematical software packages such as 
MATHCAD or MATHEMATICA. One might reason~ 
ably ask why a Monte Carlo~type computer program 
simulating a target emitting continuous and intermit~ 
tent signals is not used, thereby reducing the approach 
taken here to a mathematical exercise. This question 
has two answers. First, it is always good to know what 
to expect before using computer program~generated 
output. Too often the output is unintentionally mis~ 
used, or simulation within the algorithm is incorrect. 
Therefore, having a "back of the envelope" means to 
calculate the expected effect of monitoring various 
known signals under various detection schemes is 
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important. Second, using closed~form equations as 
derived here rather than repetitive, event~driven cal~ 
culations within a simulation can significantly reduce 
the time and cost required to produce an answer. 
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