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IMAGE PROCESSING FOR TOMAHAWK SCENE 
MATCHING 

To navigate precisely to a target, the Navy's Tomahawk cruise missile measures its position en route. 
One positioning technjque matches optical images of selected scenes, taken from the missile, to reference 
maps produced at a mission planning site before launch. The Laboratory has participated in the design, 
development, and evaluation of this image matching, which enables both the mission planning and the 
flight mechanics to implement the positioning technique. This article describes Tomahawk's scene 
selection, image matching, and match reliability, and it illustrates the Laboratory's contributions. 

INTRODUCTION 
The Tomahawk missile is an autonomously guided 

strike weapon. This cruise missile flies a planned route 
from launch to target using an inertial guidance system. 
Errors in the inertial guidance data exist at launch, in­
crease as the missile flies, and would cause the missile 
to miss its target if not reduced by en route position 
measurements. Tomahawk uses three systems to measure 
positions en route: terrain elevation matching with the 
Terrain Contour Matching System (TERCOM), satellite 
positioning with the Global Positioning System (GPS), 
and optical scene matching with the Digital Scene 
Matching Area Correlator (DSMAC). Of these three 
systems, DSMAC produces the most precise positions; 
its use is required to attack most targets effectively with 
a conventional warhead and to minimize collateral dam­
age. This article discusses the Laboratory's role in devel­
oping DSMAC's operational utility. 

The design of the DSMAC system is shown in Fig. 1, 
along with notes on some of the factors affecting its 
reliable operation. For each scene selected for a DSMAC 
update, an optical gray-scale image that shows the 
scene from high altitude is geodetically positioned; trans­
formed, typically from an oblique perspective to a view 
along the nadir; and converted into a binary map of local 
brightness patterns. Because reconnaissance images are 
generally acquired weeks or months before the DSMAC 
flight unit images the scenes, changes in time, lighting, 
atmospheric scattering, and imaging perspective may 
cause DSMAC images, called frames, to differ greatly 
from the reconnaissance images. Using image processing 
and correlation, DSMAC routinely computes the correct 
position even when differences are substantial between 
the images taken en route and the stored reconnaissance 
maps. There are limits to the differences that can be 
tolerated, however. An important function of mission 
planning is to estimate these scene-dependent limits and 
to specify the conditions that will enable DSMAC to 
determine Tomahawk's position. 

Image processing, optical feature modeling, and cor­
relation modeling all are used to forecast DSMAC 
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performance. This forecasting uses analytical mathemat­
ical modeling rather than simulation to reduce delays 
from the computations associated with image and scene 
analysis. (Analytical modeling represents the typical ef­
fects on DSMAC performance of optical features and 
image processing. Simulation would require specific sets 
of conditions to be varied over many runs to determine 
typical effects.) A DSMAC analyst makes these predic­
tions using specialized image display and processing 
equipment called the Digital Imagery Workstation Suite 
(DIWS). The analyst identifies the features in the recon­
naissance images displayed monoscopically and stereo­
scopically by the DIWS and measures feature character­
istics required by the models. The DIWS software fore­
casts DSMAC reliability and displays it as false colors 
superimposed on a binary image of the scene. The analyst 
reviews these reliability images and adjusts the conditions 
under which a binary reference map can achieve the 
broadest use that provides acceptable reliability. 

Mission data incorporating DSMAC maps are loaded 
into a Tomahawk missile shortly before launch and direct 
the inertial guidance from launch to target. Nearing a 
scene, DSMAC takes a sequence of short-exposure 
frames from low altitude, nominally along the nadir, with 
a video camera. Each frame in the sequence is processed 
into binary features and is correlated over the map. The 
resulting sequence of correlation surfaces is further pro­
cessed to locate the most likely position of the best cor­
relating frame. After one or several successful DSMAC 
position updates, which follow TERCOM or GPS up­
dates, the inertial navigation is well tuned to strike its 
target. 

Many DSMAC operations apply digital image pro­
cessing to a large quantity of image data; several image 
operations in map preparation and reliability forecasting 
merit note. Data are routinely compressed to store images 
compactly while preserving the detail required by pho­
togrammetry, forecasting, and correlation. Photogram­
metric control points within a geodetic ally controlled 
stereo image database (called the Point Positioning Data 

Johns Hopkins APL Technical Digest, Volume J 5, Number 3 (1994) 



Digital Imagery 
Workstation Suite Reference maps 

within mission 

Reference map 
production 
• Select scene 

Map 

In-flight correlation 

Sensed 
frames 

• Task for reconnaissance 
Databases 
• Point Positioning 

Data Base 
• Scene Area 

Suitablility Data 
Base 

• Digital Terrain 
Elevation Data 
Base 

High-altitude 
reconnaissance 

• Evaluate maps 
• Generate map 
• Validate map 

vs. , 

Reference imagery 
• Processing 
• Format (photograph/digital image) 

Figure 1. Overview of the Digital Scene Matching Area Correlator (DSMAC) System. 

Base) enable DIWS to transform, or "warp," reconnais­
sance images into a nadir view and create pixels with a 
manually selected resolution. For computational speed, 
much of the forecast modeling is implemented by means 
of look-up tables. Analysis of correlation sidelobes (cor­
relation away from the match point) uses special hard­
ware to carry out the large number (106 to 1010 ) of binary 
comparisons of frame-sized map subsets and to estimate 
the correlation noise within which the correct correlation 
position must be identified. 

Aboard the missile, DSMAC performs fewer process­
ing operations but in much less time than was allowed 
during mission planning. An intensified video camera 
acquires the missile images and outputs standard video 
signals. The intensifier gain and gating, which control the 
effective exposure of the sensor, adjust automatically to 
maintain a nominal video signal level day or night. Short 
exposure intervals prevent missile motion from signifi­
cantly blurring the scene features. In the vicinity of a 
scene, each frame is sequentially low-pass filtered, re­
duced in resolution, band-pass filtered, converted to bi­
nary brightness, and correlated with the reference map. 
Correlation surfaces are spatially related arrays of num­
bers, just as images are. When DSMAC acquires an 

Johns Hopkins APL Technical Digest. Volume 15. Number 3 (1994) 

image within the mapped area, the corresponding corre­
lation surface will include one value for the true (match) 
position and many values at false positions. DSMAC 
processing must identify the true position and pass it to 
the missile 's inertial navigator while rejecting all false 
positions. 

In a sequence of frames , the true correlation positions 
are related by missile altitude, attitude, and velocity. 
These relationships can be computed accurately from the 
missile inertial data. They are used differently by the two 
operational variants of DSMAC, Block II and Block IIA. 
The earlier variant, Block II, uses a process called voting 
to compare the computed inertial relationship to the 
positions of maxima from each pair of frames in each 
sequential three-frame set. In contrast, Block IIA uses the 
inertial data to shift each correlation surface so that the 
true correlations can be summed, even though their lo­
cations within the surfaces have not yet been identified. 
Correlation levels away from the true positions are ran­
dom; their sums approach the 50% level of random binary 
matches. Through this superior Block ITA processing 
scheme, invented at APL, a true position can be found 
from a sequence of frames that individually have no 
detectable true correlation. 
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THE LABORATORY'S ROLE IN DESIGNING 
DSMAC 

The Naval Air Warfare Center's Aircraft Division in 
Indianapolis, Indiana, invented and initially developed 
DSMAC and produced the fIrst set of flight units desig­
nated Block I. Rudimentary selection and mapping of 
scenes supported this flight capability. McDonnell Doug­
las Aeronautics repackaged the flight electronics, creat­
ing Block II. This variant retained most of the initial 
algorithm design, and it structured scene selection and 
mapping into an operational procedure. As the Technical 
Direction Agent for Tomahawk, APL worked with these 
organizations to understand, model, and improve both the 
flight elements and the mission planning elements of 
DSMAC. Throughout its involvement with this program, 
the Laboratory has emphasized the system perspective 
depicted by Fig. 1. This perspective has guided our anal­
ysis, design, and testing to enable us to focus on the topics 
offering the greatest gains in DSMAC employability and 
reliability. Our understanding of DSMAC stems from 
theoretical analysis, laboratory tests, and analysis of 
flight data. 

Three areas in which the Laboratory's efforts have 
been operationally implemented are DSMAC processing 
and correlation in the flight unit, performance prediction 
(that is, forecasting how reliably DSMAC will provide 
a correct position update for a selected scene), and 
analysis of complex operational scenes. In 1984, Thomas 

Reference channel 

Mission planning 

B. Criss devised and programmed the core of the image 
processing models that predict Block II's probability of 
reporting a correct position. McDonnell Douglas incor­
porated this software in its planning system, which, with 
refInements, was subsequently used to plan the strikes 
against Iraq. One refInement was Jeffrey D. Jordan's 
model of the correlation level lost to perspective distor­
tions. This model and some of Criss's algorithms remain 
in use. Geoffrey B. Irani, with Kim T. Constantikes and 
Gary D. Shiflett, invented and demonstrated the Block 
IIA algorithm. To aid planning for the Gulf War, James 
P. Christ devised and programmed algorithms to enable 
operational DSMAC analysts to measure and evaluate 
scenes with more reality and precision than possible with 
standard methods. Irani and Christ worked closely with 
operational analysts to evaluate DSMAC use under 
marginal conditions. 

DSMAC IMAGE PROCESSING 
Image processing in Block IIA differs signifIcantly 

from that in Block II, as Fig. 2 indicates. The newer 
electronics in Block IIA enable entirely digital process­
ing to correct nonuniform response of the sensor, spa­
tially fIlter in two dimensions, add correlation surfaces, 
and adaptively detect correct missile positions. When 
DSMAC was designed in the late 1970s, the only prac­
tical approach was to process the video with analog 
electronics until the video image was compressed in 
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Figure 2. Dual-channel designs of DSMAC for Block II and IIA. The reference channel consists of a reconnaissance camera and elements 
of the Tomahawk Mission Planning System. The sensed channel is the DSMAC unit itself. 
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both spatial and brightness dimensions to a small bi­
nary array. This analog processing performs some of 
the operations now realized in digital hardware in 
Block IIA. However, the filters in Block II are essen­
tially one-dimensional and aligned along the video 
raster line. The vertical averaging that reduces the 
down-track resolution operates on binarized video 
lines. These processes introduce substantial distortion 
between gray-scale and binary features. The distortion 
reduces correlation levels somewhat, but mostly it 
interferes with visual recognition of the stable binary 
features when maps are being selected. In Block II, as 
in Block IIA, each binary frame is correlated over the 
map. Unlike Block IIA, however, Block II requires a 
correlation level to exceed a fixed threshold that must 
be selected during mission planning. A fixed-size buff­
er is used to store correlation levels above the thresh­
old; once this buffer is full , any additional values above 
the threshold are lost. As noted in the Introduction, the 
two DSMAC variants also use different methods to 
determine if the correlation positions are consistent 
with inertial data. Analysis and measurements show 
that Block IIA far exceeds Block II in its capacity to 
correctly identify missile position. 

The DSMAC functions as a dual-channel match pro­
cess. The reference channel consists of a reconnaissance 
sensor and the Tomahawk Mission Planning System, 
which constructs the reference map; the sensed channel 
is the DSMAC flight unit. Time always separates infor­
mation in the two channels; reference processing may be 
completed months before the map is flown. 

The DSMAC maps are produced during mission plan­
ning. Mission planning has three objectives: (1) to iden­
tify areas suitable for DSMAC operation, (2) to create 
DSMAC maps for the selected areas, and (3) to estimate 

(a) 
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how reliably DSMAC will find the correct position of the 
missile using these maps. 

The initial identification of suitable DSMAC scene 
areas is primarily a manual process, potentially aided by 
the Scene Area Suitability Data Base. A skilled analyst 
visually reviews the reconnaissance imagery to find areas 
that have suitable characteristics for DSMAC operation. 
During this review, the analyst uses image processing 
hardware to enhance image contrast and control display 
resolution. 

After a scene has been selected, a DSMAC map must 
be created from the reconnaissance image; the original 
reconnaissance image is not used. Instead, the image is 
spatially averaged and subsampled to reduce its resolu­
tion, digitally filtered to remove the local average bright­
ness, and converted from a multibit gray-scale image to 
a single-bit (binary) image, in which the binary state 
corresponds to the sign of the filter output. A sample 
gray-scale reconnaissance image is shown in Fig. 3a; the 
corresponding binary image is shown in Fig. 3b. A subset 
of the binary image is extracted to obtain a DSMAC map. 

The DSMAC uses reduced-resolution binary images 
for two reasons. First, the lower resolution reduces the 
flight unit's data and computational loads. Reconnais­
sance images contain 50 thousand to 25 million pixels, 
and DSMAC video images contain 50 to 100 thousand 
pixels. Correlation is a computationally intensive process 
that scales as the fourth power of the image resolution. 
Even with modern electronics, processing full-resolution 
images in real time is impractical. Second, the appearance 
of scene features changes over time. Detailed information 
about shape or local contrast rarely contributes to a 
correlation match. Rather, the pattern formed by features 
distributed throughout a sensed frame enables correlation 
to identify the correct position. 

(b) 

Figure 3. (a) Sample reference image of an urban area and (b) the same image after spatial averaging, filtering, and conversion to 
binary form. 
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During flight, the DSMAC unit uses an intensified 
charge-coupled device video camera to acquire images of 
the ground. A high-intensity strobe provides illumination 
at night. As in the reference channel, the sensed channel 
spatially averages the video and subsamples, filters, and 
binarizes the images to produce binary frames. (With 
Block IIA the process is all digital; with Block II, analog.) 
Figure 4 shows the gray-scale and corresponding binary 
image for a maximally sized frame acquired over the 
scene of Fig. 3a. 

As the missile acquires each frame, the DSMAC unit 
correlates the frame with the reference map to determine 
where the two images correctly match. Correlation com­
pares the frame at every possible location, counting the 
number of binary pixels that match between the frame 
and the map. The higher the correlation value, the more 
likely that this position is the correct location of the frame 
within the map; the highest correlation value obtained is 
called the correlation peak. Figure 5 is a plot of the 
correlation values around the peak location for the frame 
in Fig. 4a. The smaller peaks around the correlation peak 
are called sidelobes. They are effectively noise in which 
the correct correlation must be identified. Mission plan­
ning predicts the likelihood that the true peak will be 
larger than all the sidelobes. 

(a) 

(b) 

Figure 4. (a) A gray-scale video frame from OS MAC during flight 
and (b) its corresponding maximally sized binary image. 
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The maximum correlation value could occur at the 
wrong position within the reference map, leading to a 
substantial error in the measured position. To prevent this 
possibility, several frames are acquired and correlated 
with the map. Block II and IIA use different methods to 
determine if a correct position is detected. 

In Block II, the reference map is sized so that at least 
three frames are acquired over the map. The DSMAC 
compares the relative peak positions of three consecutive 
frames with relative positions computed from the known 
velocity, altitude, and attitude of the missile. If at least 
two of the three positions are consistent with this infor­
mation, the frame with the highest correlation level is 
used for the position update; otherwise no position update 
is provided. 

In Block IIA, the individual correlation surfaces are 
shifted to compensate for missile motion. The shifted 
surfaces are then added together to produce a summed 
correlation surface. These shifts align the correct corre­
lations independently of their levels and locations to 
produce a peak in the summed correlation surface, even 
when individual surfaces do not have correct peaks. 
Sidelobe structures are uncorrelated with missile motion 
and will not line up after the shift. Thus, the summed 
surface has smaller sidelobe structures than the individual 
surface. As more surfaces are summed, the sidelobe struc­
tures approach a constant level, which is the mean side­
lobe level. The location of the highest value in the 
summed correlation surface provides the position update. 

Predicting Performance 
During mission planning, an analyst uses several 

computer algorithms to estimate how reliably DSMAC 
will provide a correct position update for a selected scene. 
These algorithms model the behavior of scene features 
and the effects of feature changes on DSMAC processing. 
Some of the algorithms simply simulate calculations 
performed in the missile. Others approximate computa­
tionally intensive processes. Temporal changes in fea­
tures, such as moving shadows or seasonal changes in 
foliage, affect reliability and must be forecast to predict 
periods of reliable operation. Other characteristics that 
must be represented are imaging noise, errors in geom­
etry, and similarity of feature patterns. Rather than dis­
cussing each model separately, we illustrate the process­
ing that APL performs by describing a single example in 
detail-the analysis of errors in horizontal geometry. 

Analyzing Horizontal Geometric Errors 
Differences between the geometry of scene features in 

a sensed frame and the geometry of the corresponding 
features in the DSMAC map significantly decrease the 
correct correlation level. These geometric differences 
include scale and rotational errors, as well as a small 
translational error called phasing. The amount of geomet­
ric error varies from frame to frame, map to map, and 
flight unit to flight unit. Consequently, performance pre­
diction models only the average effect. The current model 
is based in part on a theoretical result, which shows that 
small geometric errors affect correlation as if the images 
were low-pass filtered (Mostafavi and Smith' ). In a 
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Figure 5. A subset of a DSMAC correlation surface, centered around the peak correlation position. 

subsequent empirical study, Criss2 developed a 3 x 3 
finite impulse response filter that represents the losses 
caused by geometric differences. 

The work to determine the filter coefficients was based 
on a limited data set. In addition, the data included several 
other sources of correlation loss. Recently, data more 
suited for evaluating the accuracy of this model were 
obtained, and a more accurate process was developed. 
The new evaluation is based on comparing the correlation 
losses caused by horizontal geometric errors experienced 
during a test flight to the correlation losses predicted by 
the model. 

Conceptually, the correlation loss due to geometric 
errors can be measured by comparing the correlation 
level for a frame acquired by the DSMAC unit with the 
correlation level that would be obtained if there had been 
no geometric errors. The difference between the two 
correlation levels would provide a single measure of the 
loss due to geometric errors. Because the horizontal 
geometry model estimates the average expected correla­
tion loss for each possible frame location, rather than 
predicting the actual loss for any single frame, evaluating 
the model requires a statistical comparison of the actual 
losses with the predicted average losses. 

Computing the actual correlation loss requires a video 
frame without the geometric errors. In practice, acquiring 
such a frame is difficult. A large number of frames are 
involved with varying geometric errors. (A single se­
quence of test flights in 1991 yielded nearly 10,000 
frames.) The geometric errors can be measured by adjust­
ing the geometry of a recorded DSMAC flight video to 
match that of a reconnaissance image. In captive test 
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flights, but not aboard a missile, the gray-scale video for 
each frame is digitally recorded for processing in APL's 
Mission Planning Development Laboratory. The geomet­
ric errors in each frame are measured through repeated 
computer trials. A set of geometric corrections to the 
frame geometry is computed, and the resulting frame 
is compared through correlation to the reconnaissance 
image. This process is iterated using different geometric 
corrections until a best correlation is obtained. The cor­
rection providing the best match measures the geometric 
error for that frame. For some frames the process does 
not converge, and no useful geometric measurement is 
produced. 

Three problems had to be solved for the correction 
process to be automated. Each is discussed in detail in 
the sections to follow. We had to determine how to com­
pute a corrected frame, given a measurement of the 
geometric errors; design an algorithm that allows the 
computer to determine when the sensed and reference 
images are properly aligned; and decide how to efficient-
1y search the space of possible geometric errors to find 
the errors that actually occurred. 

Computing a Corrected Frame Given the Geometric 
Errors 

Producing a geometrically corrected sensed frame 
given a set of geometric errors is a relatively simple task. 
The video digitizer measures the sensed brightness 
throughout the video frame, producing a rectangular 
array of pixels. Geometric errors present when the frame 
was acquired move the pixels from their ideal locations 
without changing the measured brightnesses. If we knew 
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where the pixels belonged, we could construct a corrected 
frame by moving each pixel value to its proper location 
within the ideal frame . 

This approach transforms a sensed frame with geo­
metric errors into a new sensed frame without geometric 
errors. However, correcting some scale and rotation er­
rors could require pixels that are not present in the dis­
torted sensed frame. In practice, we prefer to transform 
a subset of the reference image into the (distorted) ge­
ometry of the sensed frame, since the reference image 
provides pixels surrounding the frame. The transforma­
tion is defined by a set of equations derived by Ratway? 
For displays, however, a corrected sensed frame is used 
instead of the transformed reference image, which re­
quires inverted transformation equations. 

Conceptually, transforming a subset of the reference 
image is simple. The transformed image will be the same 
size as a sensed frame, since evaluation of the transfor­
mation is based on correlation. The origin of the coor­
dinate system for the transformed image is placed at the 
center of the frame. The computer then steps through 
each pixel location in the transformed image, computes 
where that pixel lies in the original reference, and uses 
bilinear interpolation to estimate the gray level from the 
four neighboring reference gray levels. 

Figure 6 shows uncorrected and corrected frames: Fig. 
6a is the original gray-scale frame acquired during flight, 
and geometric correction produced the image of Fig. 6b. 
The original image did not cover a large enough ground 
area; the gray band around the corrected image corre­
sponds to the area not imaged. The frame is rotated 
slightly within the gray band; this corresponds to a yaw 
error in the original frame. 

Determining When the Sensed and Reference Images 
Are Properly Aligned 

The second problem is to design an algorithm that 
allows the computer to determine when the sensed frame 

(a) 

and reference image are properly aligned. One can visu­
ally compare feature edges in the two images. Computer 
vision techniques to locate edges and segment features 
from an image are complex and do not apply well to this 
situation, particularly because perspective differs be­
tween the images. It is difficult or impossible to have a 
computer consistently find suitable alignment features. 
The simplest way to automatically compare two images, 
I and J, is to compute the average gray-level difference 
between the images. We could use the mean square dif­
ference between the images: 

I(lm n -Jm n)2 

diff(l, J) = _m_, n ____ _ 

~) (1) 
m,n 

where m, n denotes individual pixel locations. As the 
geometry is corrected and the two images I and J become 
more alike, this difference should decrease. 

Unfortunately, the difference function defmed in 
Eq. 1 is not sufficient. The reference image and sensed 
frame were acquired by different sensors at different 
times. The lighting for the two images is different, lead­
ing to differences in the average brightness of the image 
as well as differences in the image contrasts. If these 
differences are severe enough, Eq. 1 provides a poor 
measure of image similarity. 

We need to suppress gray-level differences that do 
not represent horizontal geometry. This is the same 
challenge that must be met for proper DSMAC oper­
ation. The DSMAC filter removes the local average 
gray level and, thereby, suppresses differences in aver­
age brightness. Binarization effectively suppresses dif­
ferences in image contrast. DSMAC has demonstrated 
the effectiveness of this approach, so the same tech­
niques are used to compare the reference image and 
sensed frame. 

(b) 

Figure 6. A gray-scale video frame from DSMAC during flight. (a) Original , uncorrected frame; (b) frame corrected to remove geo­
metric errors. 
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After the two images have been filtered and bina­
rized, the difference between them can be easily mea­
sured using binary correlation with exclusive-or logic, 
indicated by the symbol ®. Because relative position 
is a parameter in the geometric correction, only the 
difference at a prescribed location need be computed. 
This difference is the fraction of pixels in the two images 
that have different binary states: 

IJ®J 
diff(! J) = _m,,--n __ 

, II 
m,n 

(2) 

Performing this calculation at full resolution provides 
the best sensitivity to geometric distortion, so the images 
are not averaged and subsampled before filtering or 
binarization. 

Searching the Space of Possible Geometric Errors 

The remaining task is determining the transformation 
parameters that provide the minimum difference between 
the sensed frame and the reference image. The geometric 
transformation depends on six variables: roll, pitch, yaw, 
altitude, cross-track position x, and down-track position 
y. Trying just five values for each would require us to test 
more than 15,000 possible transformations, which would 
consume too much time. The telemetry information that 
is acquired with the sensed frames includes measures of 
roll, pitch, yaw, and altitude. Two of these parameters, 
roll and pitch, are relatively small, and small errors in 
their values have a fairly small effect on the sensed frame 
geometry. Therefore, the roll and pitch values from the 
telemetry are used without modification, leaving four 
parameters to be determined by computer trials. 

The difference measure defined in Eq. 2 produces 
numerous local minima as the transformation geometry 
is varied. These minima prevent the use of a classical 
gradient-based search technique, which would find a 
local minimum rather than the true global maximum. To 
find the global minimum, the transformation parameters 
are divided into two pairs: x and y, and yaw and altitude. 
For each pair, the difference measure is evaluated over 
a grid of points centered at the current estimate of the 
transformation. The point in the grid that provides the 
minimum difference is used to update the current esti­
mate. After this has been done for both pairs, we have 
a new estimate of the true transformation. This process 
is repeated several times, using a more closely spaced 
search grid at each iteration. 

This grid-based search finds the approximate location 
of the global minimum as long as the minimum is within 
the region being searched. Once the approximate location 
of the minimum has been found, however, a gradient 
search is more efficient. Thus the final transformation is 
determined using a gradient-based search. 

Evaluating the Horizontal Geometric Errors 

As part of the effort to evaluate the accuracy of the 
performance prediction models, a large number of flight 
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frames were run through the geometric correction de­
scribed above. The geometric parameters obtained 
through this process provide the best available measure 
of the geometric errors encountered during flight. The 
corrected frames are also useful for other analyses. 

The most obvious use for the frames is to determine 
how much correlation loss occurs due to geometric errors 
in flight. The increase in correlation level after geometric 
correction is plotted in Fig. 7. This figure shows that 
increases of approximately 7% of perfect match are 
obtained. If this correlation improvement could be real­
ized in the missile, it would represent a significant in­
crease in DSMAC capability. A comparison of the mea­
sured losses due to geometry with the predicted losses 
shows that geometric losses are consistently underpre­
dicted. For one scene studied, the average predicted loss 
was 2%, whereas the average actual loss was 8%. To 
compensate for the underpredicted geometric losses, the 
predictions appear to overstate the loss due to system 
noise. 

A second use for the corrected frames is to create a 
mosaic image, where the individual frames have been 
combined to provide one image of the entire scene. Fig­
ure 8 shows a frame-mosaic image of Duke airfield. Each 
pixel in this image is the average of all corrected frames 
that include that pixel. Changes in the scene features can 
be identified by comparing the frame-mosaic image to the 
reference image from which the DSMAC binary map was 
produced. 

Other useful images can be produced from sets of 
corrected frames. If the frames are binarized and then 
combined to form a mosaic, each pixel estimates the 
probability P white that a given pixel will binarize white. 
The P white is an intermediate figure of merit computed by 
the prediction models and can be evaluated by compar­
ison with this mosaic image. 

A more important parameter than P white for predicting 
the correlation peak level is the probability of correct 
binary assignment, Pcba; that is, the probability that after 
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Figure 7. Increases in correct correlation levels achieved by 
removing geometric errors. 
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Figure 8. A gray-scale mosaic of DSMAC frames from a test flight. 
Individual sensed frames are geometrically corrected and pieced 
together to form the mosaic image. 

a frame is converted to binary form, a given pixel will 
be in the same state (black or white) as in the reference 
map. We can combine the corrected frames with the 
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reference map to produce a P cba mosaic. Figure 9a shows 
a Pcba mosaic, and Fig. 9b shows the predicted Pcba• A 
comparison of these two images measures how well we 
predict the correlation peak level. One striking difference 
between the two is that a large area in the measured P cba 

mosaic is white, corresponding to a Pcba of 1.0. In con­
trast, the predicted Pcba is almost never white. A charac­
teristic of the model used is that the predicted P cba is never 
less than 0.5. In contrast, the measured Pcba also includes 
values that are less than 0.5; in some areas the measured 
Pcba is even zero. 

Once a P cba mosaic and a predicted P cba image have 
been produced, comparison between the two is easy. A 
simple form of comparison is a two-dimensional histo­
gram (sometimes called a co-occurrence histogram). The 
two-dimensional histogram hex, y) is generated by count­
ing all the locations where the first image is equal to x 
and the second image is equal to y . Figure 10 shows a 
two-dimensional histogram produced from the two im­
ages in Fig. 9. The horizontal streaks in this figure are 
caused by the quantization of the measured Pcba values. 
(The number of distinct Pcba values that can be observed 
depends on the number of frames that image each map 
pixel projected onto the scene. Since the number of 
frames is limited, the number of possible Pcba values is 
small.) Because the predicted Pcba is never less than 0.5 , 
the left half of the plot is completely black. The histogram 
shows a large spread in the measured P cba for all values 
of predicted Pcba• 

Comparing the average measured Pcba with each pre­
dicted P cba value provides another indication of predic­
tion accuracy. Figure 11 compares the two graphically. 
On average, there appears to be a relationship between 
predicted and measured Pcba• For most values of predicted 
Pcba the curve lies above the diagonal, implying that the 
predicted Pcba is less than the measured Pcba . This result 
agrees with the earlier observation that the predicted loss 
due to geometric errors is lower than the measured loss 
and that the predicted loss due to system noise is higher 
than actual. Since the loss from geometry has been re­
moved from this comparison, the net result is more pre­
dicted loss (smaller predicted Pcba) than measured. 

We have illustrated image processing for DSMAC 
performance prediction by discussing our analysis of 
horizontal geometric errors. This is only one of the char­
acteristics modeled for performance prediction. Although 
other models apply image processing in different ways, 
the goals are the same-to predict DSMAC performance, 
and to measure the accuracy of the predictions. 

SPECIAL SOFrW ARE FOR OPERATIONAL 
SCENE ANALYSIS 

Tomahawk uses image processing for purposes 
other than the development and application of standard 
predictive algorithms. In certain circumstances, special 
analyses must be done of images showing operational 
scenes having marginal predicted performance. At APL, 
J. p. Christ developed two menu-driven sets of software, 
Analyst and Compare, for such analyses. 
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Figure 9. The probability of correct binary assignment Pcba for a test scene. (a) The Pcba 
measured during a series of test flights; (b) predicted Pcba. 
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Figure 10. A two-dimensional histogram comparing predicted 
and measured Pcba values from the images in Fig. 9. 

The Analyst Program 
Analyst, which is written in C, aids analysis of scene 

instabilities. Instabilities are features whose appearance 
changes between the time the reconnaissance image is 
acquired and the time the missile flies over the scene. 
Analyst provides tools for two activities: measurement of 
feature composition in areas of interest and gray-level 
transformation of selected image features. 

Instability analysis uses the fraction of the scene area 
affected by certain visually recognized instability classes 
to predict correlation losses from instabilities. Two exam­
ples of these classes are shadows that move during the 
day and mapped shadows that disappear at night. To help 
the user measure areas affecting correlation for each 
class Analyst color-codes interactively selected gray­
scale ranges (slices) of a displayed image. For each slice 
within a selected image area, the user selects minimum 
and maximum gray levels. The software colors each slice 
uniquely in real time as the user adjusts the gray-scale 
limits. When up to 10 slices have been defined, the soft­
ware counts the number of pixels within the slices and 
reports it as a fraction of the scene area. 

Gray-scale values mean little to a DSMAC analyst. 
Rather, the features in the area to be mapped and their 
instability classes matter. Consequently, Analyst allows 
slices to be defined visually. The Analyst program dis­
plays the image on a monitor and colors the pixels that 
fall within the selected slice. The bounds on the slice can 
be varied using a mouse or track ball; the color-coded 
display is updated in real time to reflect the new values. 
While watching the display and varying the slice bounds, 
the user can generally isolate the instabilities or their 
sources (for example, tall objects) well enough to predict 
performance. Performance prediction assumes that only 
one instability affects a single point in the scene, so an 
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Figure 11. The average measured Pcba as a function of predicted 
Pcba' 

image area should be assigned to one instability at most. 
Analy t can adjust the limits of two slices so that their 
gray levels do not overlap and the same area is not count­
ed twice. 

Two or more instability classes sometimes share the 
same gray-scale range. In this case Analyst allows polyg­
onal subdivision of the image; each defined region must 
then be separately classified. After gray-scale slicing has 
been done satisfactorily within each area of interest, 
Analyst reports the total area assigned to each instability 
class within all areas of interest. Analyst then computes 
the fractional areas of all classes across all regions. 

Two sources of correlation loss, moving shadows and 
verticality require measurement of feature size and 
height. The images used to produce DSMAC map are 
geometrically controlled so that each pixel represents a 
fixed distance on the ground. Analyst allows the u er to 
draw a line along a horizontal feature boundary within 
the image and then reports the length of the line in feet. 
This allows measurement of horizontal dimensions. 
Analyst also enables height to be measured using one of 
two approaches. The obliquity of the reconnaissance 
image is always known. If a line along a vertical feature 
edge is drawn, Analyst transforms this length to height 
using trigonometry. The second principle is also trigono­
metric. If the length of a shadow of an object can be 
marked with a line and the elevation of the Sun i known, 
Analyst will calculate the object's height. If the Sun's 
elevation is not known, Analyst asks the user to measure 
both a vertical edge and the corre ponding shadow; this 
measurement allows Analyst to calculate the Sun's 
elevation. 

DSMAC performance prediction include a model for 
correlation loss when the shadows shown in reconnais­
sance are absent in DSMAC frames , a occurs at night 
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or with a high overcast. The model assumes the shadows 
are not a major source of image contrast within the scene. 
This assumption is convenient, but often does not apply. 
Analyst offers a more accurate measure of shadow loss 
for such cases. 

The most accurate way to measure the loss due to the 
disappearance of shadows would be to acquire a second 
reconnaissance image without the shadows, and then 
measure the binary change between the images. (The 
Compare program described later enables the measure­
ment of binary change.) Unfortunately, acquiring an image 
without shadows is rarely possible, since a cloud must 
block the Sun but not the reconnaissance perspective. 

Analyst circumvents the need for a second reconnais­
sance image by allowing the user to suppress shadows in 
the original image. The user fIrst identifIes the shadows, 
ither by gray-scale slicing or by using polygonal areas 

of interest. Analyst supports a linear transformation of the 
gray-scale values within each area of interest or gray­
scale slice. The user interactively adjusts the transforma­
tion with track ball or mouse while viewing the modifi­
cations in real time. By using multiple gray-scale slices 
for a shadowed area, the user can often blend the shadows 
into their surrounding features . This is an inherently 
subjective process, but it produces fairly realistic repre­
sentations of scenes without visible shadows. 

Once the user has suppressed the shadows within the 
image, Analyst processes both the original and the mod­
ifIed images through the DSMAC fIlter to obtain binary 
images for the scene with and without shadows. To show 
how the shadows influence the binary image, Analyst 
alternately displays (flickers) these two binary images 
with either of the two gray-scale images. Analyst also 
displays the area where the binary images differ and 
flickers this difference with either gray-scale image. 
These displays help the user determine what features are 
affected by the shadow changes. Analyst also measures 
the impact of these changes on DSMAC correlation by 
computing the average binary change within each possi­
ble DSMAC frame. Analyst displays the average change 
as a pseudo-color image overlaid upon the binary features 
in the shadowed image. The user examines this display 
for local areas with unacceptably high correlation loss 
and selects an average loss to enter into the standard 
performance prediction software. 

The Compare Program 
The performance prediction algorithms estimate the 

future performance of a DSMAC reference map. The map 
has a limited operational lifetime that depends on the 
instabilities affecting the scene. At planned intervals, a 
current reconnaissance image is compared with the image 
used to map the scene. If signifIcant changes have oc­
curred, new maps are created. This process is called map 
maintenance. 

The Compare program replaces visual comparison of 
printed images during map maintenance with a quanti­
tative analysis of digital images. This software measures 
binary changes between two images of the same scene. 
The resulting measurement can be entered into the 
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standard DSMAC performance prediction software to 
determine if the map still provides adequate reliability. 

Compare assesses pairs of images pixel by pixel. For 
meaningful results, the geometry of the two images must 
be nearly identical; that is, features must occupy corre­
sponding pixels within the two images. Even a small 
geometric difference causes an artifIcially large change 
to be measured. Therefore, Compare must fIrst remove 
any geometric difference between the two images. The 
user measures the geometric differences by identifying a 
set of identical ground-level points in both images called 
tie points. Figure 12 shows an example of the display that 
Compare provides to guide selection of tie points. The 
left side of the display shows the two images being 
compared. The right side shows a portion of each image 
at full resolution. The upper images are an urban area 
with a large number of trees. The lower images show the 
same area after the leaves have fallen. The user placed 
the two green squares on the right side of the display to 
defIne a tie point. After the user has marked correspond­
ing areas in this manner, the program performs a gray­
scale correlation in the vicinity of the square to more 
accurately locate the tie point. This correlation reduces 
the accuracy with which the user must mark the tie points. 
The colored squares on the left side of the display indicate 
previous tie points, with the color-coding indicating how 
well the areas matched during the local correlation. 

When enough tie points have been selected, the pro­
gram automatically determines and applies a transforma­
tion to one image to suppress the geometric differences. 
Compare allows the user to flicker the two images on the 
display to observe how well the geometry has been cor­
rected. If geometric differences remain, Compare pro­
vides a tabular display that measures how well each tie 
point fIts the geometric model, which helps the user 
choose tie points to position or replace. 

Once the geometry has been adequately matched, 
Compare provides several ways to examine change with­
in the scene. The fIrst tool is a colored overlay that 
identifIes where the DSMAC binary image has changed. 
If the changes are substantial and affect features that were 
considered stable when the map was originally prepared, 
then a new map is required. 

A second measure of change is the average binary 
change for each possible DSMAC frame over the scene. 
This measure indicates how much correlation loss will 
occur if the map is used, and is displayed as a false-color 
overlay. The user checks the display for any local areas 
with unacceptably high correlation loss and to determine 
the average correlation loss over the scene area. 
The average loss can then be used as an additional in­
stability value for the DSMAC performance prediction 
software; the predicted probability of correct update 
Pcu provides a familiar indication of map reliability. 
Figure l3 shows the frame-averaged binary changes 
between the two images in Fig. 12. The number of chang­
es is color-coded and placed at the center of each possible 
frame. Green and blue represent little or no change; red 
and yellow represent substantial change. The difference 
in foliation between the two reconnaissance images led 
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Figure 12. A screen image of tie-point generation using the Compare program. (The images on the right are portions of those on the left 
shown at full resolution.) The upper two images are an urban area with a large number of trees. The lower two show the same area after 
the leaves have fallen. The green squares on the right are the tie points currently being selected; the green and red squares on the left 
are previously generated tie points. 

to substantial binary changes. A DSMAC map of this 
scene was produced from summer imagery and is unlike­
ly to correlate reliably during winter. 

The frame-average loss just described is calculated at 
the correct geometric match point between the two im­
ages. However, DSMAC does not know the correct match 
point, so it uses the point at which maximum correlation 
occurs. For some types of instability (shadows, for exam­
pie) the maximum correlation is not at the true match 
point. When shadows move from one side of an object 
to the other, the correlation peak is also likely to move. 
Compare measures the shift in correlation position as 
well as the correlation loss that occurs at the peak 

262 

location. To do this, Compare selects frame-sized subsets 
from one image and correlates each subset over a neigh­
borhood around the true match point. Computing this 
correlation for every possible frame within the map 
would take too long, so Compare selects these subsets 
using a grid pattern spanning the map. If images are 
available for different times of day, this analysis can be 
used to estimate shadow losses. 

CONCLUSION 
Tomahawk effectiveness requires DSMAC to be reli­

able in a wide variety of scenes and environmental con­
ditions. To meet this requirement, the Laboratory has 
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Figure 13. The average binary change within a DSMAC field of view. The color bar on the right indicates the magnitude of the change, 
with green representing no change, blue a small change, and red and yellow large changes. 

adopted, invented, and applied a variety of image pro­
cessing techniques to advance DSMAC's potential and 
realized capabilities. Many image processing techniques 
and empirical relationships are applied in selecting 
scenes, mapping reconnaissance information showing the 
scenes, and forecasting DSMAC performance with the 
resulting maps. In flight, DSMAC relies on the robustness 
of correlation in combination with inertial data to deter­
mine position in real time. 

Much refinement of DSMAC has been achieved since 
its initial development. Even so, evolving technology and 
the complexity of optical features provide incentive for 
more improvements. More detail in DSMAC planning 
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calculations, for example, may improve forecasts made 
for complex scenes and environments. In addition, other 
algorithms to run in the reprogrammable DSMAC Block 
ITA flight processor have been proposed. 
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