
RESEARCH NOTE __ __

FERNANDO 1. PINEDA and ANDREAS G. ANDREOU

ANALOG NEUROMORPHIC COMPUTATION: AN
APPLICATION TO COMPRESSION

Nature has evolved computing engines whose intelligence and natural abilities are unrivaled by modem
computers. To match Mother Nature's abilities, we must overcome the same difficulties faced by natural
systems, and we must learn to perform reliable computing with unreliable components. Steps in this
direction are being taken by several groups at the Applied Physics Laboratory and at The Johns Hopkins
University Department of Electrical and Computer Engineering. The purpose of the work is twofold: (1)
to explore algorithms based on physical and neural models of computation and (2) to develop useful
applications. We describe the basic approach and an experimental electronic neural network for the
decompression of one-dimensional signals.

INTRODUCTION
Computation in biological systems is carried out on a

substrate characterized by highly variable and noisy
components. Nonlinearity and low precision abound. This
is not the combination of properties we usually associate
with today's electronic computing devices. Yet biological
systems, with the fine-grained massively parallel organi­
zation of their processing elements, can solve problems
in sensing, communication, and sensorimotor coordina­
tion with a speed and energetic efficiency that our best
technology cannot match. For example, consider the
mammalian retina, a tiny membrane at the back of the
eye. As an outpost of the brain, it serves as both sensor
and preprocessor for the visual cortex. Mead has per­
formed several simple order of magnitude estimates I
from which one can conclude that the combined super­
computers of the world would be unable to compute at
a rate equal to that performed by the retina. The perfor­
mance gap between natural and synthetic computation
highlights two aspects of the development problem: (1)
it suggests that conventional algorithms are not the best
approach, and (2) it point out that even if the algorithms
were to work well, conventional hardware would be
suboptimal, since the power dissipated by all these ma­
chines would suffice to illuminate a small city. Yet we
know that the entire human brain dissipates less power
than a dim lightbulb.

Power dissipation ultimately limits physical computa­
tion, because computing machines must be able to dis­
sipate the heat they generate. Modem computers are
approaching this limit. As clock speeds have increased,
efforts to channel heat out of processor chips have be­
come more sophisticated and complex. In the end, one
must reduce the amount of heat that is generated, since
the thermal conductivity of the silicon itself limits the rate
at which heat can be removed.

82

Current-mode subthreshold analog VLSI (very large
scale integration) is an excellent medium for implement­
ing neuromorphic algorithms.2 Information is represent­
ed by currents typically measured in units of 10- 1 to
10 nA. Voltage swings are typically measured in tens to
hundreds of millivolts. The power dissipated in these
circuits can be measured in microwatts. This dissipation
is many orders of magnitude less than conventional dig­
ital microchips. Like biological neural networks, analog
VLSI employs components that are noisy, imprecise, and
nonlinear. Analog computation could be carried out with
linear, precise, and low-noise components, much like it
was done in the late 1950s before the advent of digital
computation. This approach, however, does not scale to
highly complex multimillion-component highly integrat­
ed systems. The neuromorphic approach, on the other
hand, is to develop fine-grained massively parallel algo­
rithms and architectures that are intrinsically insensitive
to high noise, low precision, and device variability. Non­
linearity and noise are viewed as assets rather than
liabilities.

In the neuromorphic approach, semiconductor physics
and the physics of the microchip fabrication process play
important roles in constraining candidate algorithms and
architectures because the algorithms must use the natural
operations of the substrate if they are to be scalable
and energetically efficient. For example, simple charge
conservation guarantees that the arithmetic operation of
addition (a + b) can be performed easily and precisely,
provided the quantities a and b are represented as cur­
rents. Conversely, copying a quantity (i.e., a current),
although easy, is not very precise. It can be performed
by a two-transistor circuit called a current mirror.
With minimum-size transistors in a 2-l-tm complementary
metal oxide semiconductor (CMOS) process, current

Johns Hopkins APL Technical Digest, Volume 15, Number 1 (1994)

mirrors will usually copy currents only to within a factor
of 2! This rather large error is due to a process-dependent
phenomenon known as transistor mismatch. In today's
technology, transistor mismatch is caused mainly by vari­
abilities in the fabrication process itself, not by funda­
mental physical limitations. However, as the technology
scales down to ever-smaller sizes, the origin of mismatch
will become fundamental, since it is related to the
physics of ion implantation, an inherently stochastic
process. Another operation, multiplication of signed
quantities (a . b), requires as little as four transistors. The
simplest circuit actually calculates the nonlinear quantity
f(a + c) . f(b + 0) instead of a . b, where E and 0 are
offsets caused by transistor mismatch, and where the
functionf(.) = tanh(.) arises from semiconductor physics.
Thus, this nonlinear multiplication is a more natural
operation in silicon than the usual mUltiplication.

The task of algorithm design for neural machines
amounts to designing fine-grained massively parallel
algorithms that use the natural arithmetic operations of
the substrate and can cope with transistor mismatch.
Algorithms and architectures for neural machines are not
particularly well developed, nor are they particularly well
understood. In this project we exploit the theory of a
recently developed encoding algorithm to devise and
implement a neural network machine that decodes pre­
viously encoded signals.

THE ALGORITHM
The architecture of our network is inspired by recent

work on image encoding based on iterated transformation
theory (ITT) as described by Jacquin.3 The encoding al­
gorithm is sometimes informally referred to as "fractal"
coding. In fact, the algorithm is closely related to vector
quantization. In traditional vector quantization, one trans­
mits both the code book and the indices of the vectors
that best approximate particular blocks in the image. In
ITT coding, there is no code book. Instead, the encoder
transmits a set of transformation coefficients that convey
relationships between different blocks in the image. The
transformations are used by the decoder, at the receiving
end, to transform each block in an image into another
block. The decoder starts with an initially random image
and, by repeatedly applying the transformations, a se­
quence of images is generated that converges to a final
image. The final image approximates the original uncod­
ed image! Although this sounds like magic, it is actually
based on some rather simple mathematics.

To see how the algorithm works, consider an image I
to be a vector in a metric space. An affine transformation
of a vector in this space is simply a transformation of the
form

I ' = AI + B,

where A is an N x N component matrix and B is an N
component vector. This transformation can be iterated to
produce a sequence of vectors 1(0), ... ,1(n) . It is simple to
show that if the maximum eigenvalue of the matrix A is
less than 1, the sequence converges to a unique final
vector 1* that does not depend on the initial vector 1(0).

Johns Hopki11s APL Technical Digest, Volume 15, Number 1 (1994)

The uniqueness of the final vector implies that if we want
to transmit the vector 1* to a receiver, we can just as well
transmit the (N x N) + N components of A and B and let
the receiver perform the iteration to produce 1*. In this
case we say that A and B constitute an encoding of the
vector 1*. Furthermore, if the number of independent
coefficients in A and B is less than the number of com­
ponents in 1*, and if we only transmit these independent
components, we say that we have a compressed encoding
of the vector 1*. Compressed encodings are possible if A
and B have sparse coefficients, functionally dependent
coefficients, or some kind of symmetry. The transmitter
and receiver must either agree beforehand on the struc­
ture of A and B or this information must be transmitted
as part of the code. The ITT compression algorithm is
simply a special case of the iterative approach just noted.
It amounts to choosing A to be sparse in a blockwise
sense. The transmitted code includes information about
the block structure of the transformation as well as the
actual values of the matrix elements.

Of course decoding a code is only half the problem,
the other half being how to determine the code (i.e., the
matrix elements of A and B) in the first place. Suppose
we want to encode and transmit a vector T. How do we
find the affine coefficients? The most obvious answer is
to minimize d(T, 1*), the distance between T and 1*, with
respect to the nonzero coefficients of A and B. In fact this
is the basis of all standard algorithms for performing this
kind of compression. Different algorithms differ in the
details of how they perform the minimization. Some al­
gorithms are based on combinatorial search, whereas
others are based on simple least-squares minimization.

The salient features of the affine theory just discussed
are as follows: (1) the transformation only requires linear
operations, and (2) convergence of the decoder requires
that f... max <1. The general iterated transformation theory
developed by Jacquin and others is similar to the affine
theory, but it states that convergence is guaranteed, pro­
vided the transformation satisfies a more general techni­
cal condition known as contractivity. Any transformation
that can be made contracting can be made the basis of
a decoding and encoding scheme. In particular, we can
base a coding algorithm on the natural operations of the
substrate. Basically, we replace all multiplications in the
simple transformation with nonlinear multiplications.
The offsets and nonlinearities do not change the contrac­
tive nature of the transformation. To deal with random
mismatch, we use a variant of the basic algorithm that
aggregates outputs from many neurons. Simulations have
shown this to be an effective method for reducing the
effect of mismatch. The second change we make in the
simple theory is to replace iteration of a transformation
with relaxation of a differential equation. The differential
equation can be implemented as a physical neural net­
work with feedback. The use of feedback networks to
implement iterative algorithms helps us to convert con­
ventional algorithms into neural algorithms.4

To account for nonlinearities, the encoder must be
modified by including a transistor model. This modifica­
tion results in a technology-dependent encoder. The
approach is actually quite similar to conventional

83

F. 1. Pineda and A. G. Andreou

software practice. After all, we think nothing of using
cross-compilers that run on one machine and produce
code for another machine. The only difference is that, in
our case, the encoder runs on a digital machine, whereas
the target machine is an analog machine. We have, in fact,
already developed a prototype software encoder that
includes a simple transistor model. Given a vector that
we wish to encode, the encoder calculates voltages that
are appropriate inputs to the analog decoder.

THE ARCIDTECTURE
The contractive iterated transformation approach to

encoding and decoding can be implemented by a feed­
back neural network-a so-called recurrent neural net­
work. The sparse connection topology and weights of the
network correspond to the nonzero matrix elements of
the transformation matrix A. Additions are performed by
adding currents. Multiplications are performed with
minimum transistor circuits. A simple example of the
basic recurrent architecture is presented in Figure 1. The
network consists of a computing layer, a switching layer,
and an interconnection layer (the bus). The bus comprises
wires that physically connect the neurons. In the figure
there are two ranges of two neurons each. The ranges are
identical in their computing and switching layers. They
differ only in the way their outputs are connected to the
bus. Each bus line is driven by a unique neuron. The
parameters ao, bo, do and al> bl, d l are input as analog

Computing Switching
layer layer Bus

ao bo eo fo

Outputs

Figure 1. Schematic of a recurrent neural network architecture.
Each neuron performs a transformation of the type lout =
aIin + bx + e, where x is the neuron position (x = 1, 2, 3, 4). All
neurons in a given range receive the same parametric input.

84

values. The parameters fa, fl are presented as digital
inputs. They represent a single bit of information used by
the switching layer to determine whether the two neurons
in a range are connected to even- or odd-numbered neu­
rons. The four ways of connecting the neurons in this
network correspond to the two bits offo and fl. The actual
connections are selected at "run time" by the input to the
switching layer. Of course in larger networks the possible
connection topologies can be much more complex than
the trivial connections shown in this example.

To run the network one simply sets the parameters. The
network relaxes to a steady state where the currents
coming out of the neurons represent the decoded vector.
The network is always computing the vector that corre­
sponds to the current input parameters. Significantly,
there is no clock in this architecture: continuous-time
asynchronous signal/information processing is an impor­
tant property of biological information processing
systems.

PROGRESS
We designed and laid out a sixteeen-neuron experi­

mental chip in a 2-J.l.m CMOS process and submitted the
chip to the MOS implementation service (MOSIS). Four
chips were recently received. Preliminary tests have
deomonstrated that the design is sound and the circuit
operates as expected.

To help layout the chip we developed a simple, por­
table silicon compiler written specifically for analog
design and for student projects. It has been successfully
run on UNIX-, DOS-, and Macintosh-compatible worksta­
tions. The design for the entire chip is specified in a
C language source code called a chip generator. When
compiled and excecuted, this generator reads primitive
cells as input and writes the layout for the entire chip as
output. Routing is done automatically. The number of
neurons, as well as the number of domains and ranges,
is parameterized. Thus, the production of a larger chip or
a chip with a different connection topology simply re­
quires executing the generator with different parameters.
We hope to use this new capability to establish a library
of standard analog cells for application in future analog
neuromorphic designs.

REFERENCES
I Faggin, F., and Mead, C., "VLSI Implementations of eural Networks," in An
Introduction to Neural and Electronic Networks, Zornetzer, S. , David, J. L.,
and Lau, C. (eds.), Academic Pres, San Diego, pp. 275-292 (1990).

2 Andreou, A. G., and Boahen, K. A., 'Neural Information Processing I: The
Current-Mode Approach," Chapter 6 in Alwlog VLSI: Signal and Information
Processing, Ismail , M. , and Fiez, T. (ed .), MacGraw-Hill, Inc., New York
(1994).

3 Jacquin, A. E. , A Fractal Theory of Iterated Markov Operators with
Applications to Digital Image Coding, Ph.D. Dissertation, Georgia Institute of
Technology (1989).

4Pineda, F., "Generalization of Back-Propagation to Recurrent Neural Net­
works," Phys. Rev. Lett. 59, 2229-2232 (1987).

ACKNOWLEDGME TS : The work described here is funded by APL Independent
Research and Development as well as grant ECS9313934 from the National Science
Foundation . The authors would like to thank Robert Jenkins and Kim Strohbehn for
many useful conversations and comments on the manu cript.

Johns Hopkins APL Technical Digest, Volume 15, Number J (1994)

THE AUTHORS

FERNANDO J. PINEDA received
his B.S. in physics in 1977 from
the Massachusetts Institute of
Technology and his M.S. and
Ph.D. in theoretical nuclear phys­
ics in 1981 and 1986, respectively,
from the University of Maryland,
College Park. He has been en­
gaged in neural network theory,
applications, and implementations
since joining APL in 1986. Pres­
ently, he is a member of APL'S

Mathematics and Information Sci­
ence Group, and is a lecturer in the
Computer Science Department and
a visiting scholar in the Depart­
ment of Electrical and Computer

Engineering at The Johns Hopkins University. Dr. Pineda has received
research grants from the Air Force Office of Scientific Research. He
serves as an editor on several publications including Neural Compu­
tation, Applied Intelligence, IEEE Transactions on Neural Networks,
and Neural Networks.

Johns Hopkins A PL TechnicaL Digest, Volume 15, Number 1 (1994)

Analog Neuromorphic Computation: An Application to Compression

ANDREAS G. ANDREOU re­
ceived his M.Sc. (1982) and Ph.D.
(1986) in electrical engineering
and computer science from The
Johns Hopkins Univer ity. He is
an associate professor of electrical
and computer engineering at JHU

and a member of the APL Senior
Staff in the Computer Science and
Technology Group. Dr. Andreou
received a Research Initiation
Award from The National Science
Foundation in 1990 and the JHUI

APL R. W. Hart Prize for Indepen­
dent Research and Development in
1989 and 1991 . He is an associate
editor of IEEE Transactions on
Neural Networks.

85

