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ANALOG NEUROMORPHIC COMPUTATION: AN 
APPLICATION TO COMPRESSION 

Nature has evolved computing engines whose intelligence and natural abilities are unrivaled by modem 
computers. To match Mother Nature's abilities, we must overcome the same difficulties faced by natural 
systems, and we must learn to perform reliable computing with unreliable components. Steps in this 
direction are being taken by several groups at the Applied Physics Laboratory and at The Johns Hopkins 
University Department of Electrical and Computer Engineering. The purpose of the work is twofold: (1) 
to explore algorithms based on physical and neural models of computation and (2) to develop useful 
applications. We describe the basic approach and an experimental electronic neural network for the 
decompression of one-dimensional signals. 

INTRODUCTION 
Computation in biological systems is carried out on a 

substrate characterized by highly variable and noisy 
components. Nonlinearity and low precision abound. This 
is not the combination of properties we usually associate 
with today's electronic computing devices. Yet biological 
systems, with the fine-grained massively parallel organi­
zation of their processing elements, can solve problems 
in sensing, communication, and sensorimotor coordina­
tion with a speed and energetic efficiency that our best 
technology cannot match. For example, consider the 
mammalian retina, a tiny membrane at the back of the 
eye. As an outpost of the brain, it serves as both sensor 
and preprocessor for the visual cortex. Mead has per­
formed several simple order of magnitude estimates I 
from which one can conclude that the combined super­
computers of the world would be unable to compute at 
a rate equal to that performed by the retina. The perfor­
mance gap between natural and synthetic computation 
highlights two aspects of the development problem: (1) 
it suggests that conventional algorithms are not the best 
approach, and (2) it point out that even if the algorithms 
were to work well, conventional hardware would be 
suboptimal, since the power dissipated by all these ma­
chines would suffice to illuminate a small city. Yet we 
know that the entire human brain dissipates less power 
than a dim lightbulb. 

Power dissipation ultimately limits physical computa­
tion, because computing machines must be able to dis­
sipate the heat they generate. Modem computers are 
approaching this limit. As clock speeds have increased, 
efforts to channel heat out of processor chips have be­
come more sophisticated and complex. In the end, one 
must reduce the amount of heat that is generated, since 
the thermal conductivity of the silicon itself limits the rate 
at which heat can be removed. 
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Current-mode subthreshold analog VLSI (very large 
scale integration) is an excellent medium for implement­
ing neuromorphic algorithms.2 Information is represent­
ed by currents typically measured in units of 10- 1 to 
10 nA. Voltage swings are typically measured in tens to 
hundreds of millivolts. The power dissipated in these 
circuits can be measured in microwatts. This dissipation 
is many orders of magnitude less than conventional dig­
ital microchips. Like biological neural networks, analog 
VLSI employs components that are noisy, imprecise, and 
nonlinear. Analog computation could be carried out with 
linear, precise, and low-noise components, much like it 
was done in the late 1950s before the advent of digital 
computation. This approach, however, does not scale to 
highly complex multimillion-component highly integrat­
ed systems. The neuromorphic approach, on the other 
hand, is to develop fine-grained massively parallel algo­
rithms and architectures that are intrinsically insensitive 
to high noise, low precision, and device variability. Non­
linearity and noise are viewed as assets rather than 
liabilities. 

In the neuromorphic approach, semiconductor physics 
and the physics of the microchip fabrication process play 
important roles in constraining candidate algorithms and 
architectures because the algorithms must use the natural 
operations of the substrate if they are to be scalable 
and energetically efficient. For example, simple charge 
conservation guarantees that the arithmetic operation of 
addition (a + b) can be performed easily and precisely, 
provided the quantities a and b are represented as cur­
rents. Conversely, copying a quantity (i.e., a current), 
although easy, is not very precise. It can be performed 
by a two-transistor circuit called a current mirror. 
With minimum-size transistors in a 2-l-tm complementary 
metal oxide semiconductor (CMOS) process, current 
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mirrors will usually copy currents only to within a factor 
of 2! This rather large error is due to a process-dependent 
phenomenon known as transistor mismatch. In today's 
technology, transistor mismatch is caused mainly by vari­
abilities in the fabrication process itself, not by funda­
mental physical limitations. However, as the technology 
scales down to ever-smaller sizes, the origin of mismatch 
will become fundamental, since it is related to the 
physics of ion implantation, an inherently stochastic 
process. Another operation, multiplication of signed 
quantities (a . b), requires as little as four transistors. The 
simplest circuit actually calculates the nonlinear quantity 
f( a + c) . f(b + 0) instead of a . b, where E and 0 are 
offsets caused by transistor mismatch, and where the 
functionf(.) = tanh(.) arises from semiconductor physics. 
Thus, this nonlinear multiplication is a more natural 
operation in silicon than the usual mUltiplication. 

The task of algorithm design for neural machines 
amounts to designing fine-grained massively parallel 
algorithms that use the natural arithmetic operations of 
the substrate and can cope with transistor mismatch. 
Algorithms and architectures for neural machines are not 
particularly well developed, nor are they particularly well 
understood. In this project we exploit the theory of a 
recently developed encoding algorithm to devise and 
implement a neural network machine that decodes pre­
viously encoded signals. 

THE ALGORITHM 
The architecture of our network is inspired by recent 

work on image encoding based on iterated transformation 
theory (ITT) as described by Jacquin.3 The encoding al­
gorithm is sometimes informally referred to as "fractal" 
coding. In fact, the algorithm is closely related to vector 
quantization. In traditional vector quantization, one trans­
mits both the code book and the indices of the vectors 
that best approximate particular blocks in the image. In 
ITT coding, there is no code book. Instead, the encoder 
transmits a set of transformation coefficients that convey 
relationships between different blocks in the image. The 
transformations are used by the decoder, at the receiving 
end, to transform each block in an image into another 
block. The decoder starts with an initially random image 
and, by repeatedly applying the transformations, a se­
quence of images is generated that converges to a final 
image. The final image approximates the original uncod­
ed image! Although this sounds like magic, it is actually 
based on some rather simple mathematics. 

To see how the algorithm works, consider an image I 
to be a vector in a metric space. An affine transformation 
of a vector in this space is simply a transformation of the 
form 

I ' = AI + B, 

where A is an N x N component matrix and B is an N 
component vector. This transformation can be iterated to 
produce a sequence of vectors 1(0), ... ,1(n) . It is simple to 
show that if the maximum eigenvalue of the matrix A is 
less than 1, the sequence converges to a unique final 
vector 1* that does not depend on the initial vector 1(0). 
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The uniqueness of the final vector implies that if we want 
to transmit the vector 1* to a receiver, we can just as well 
transmit the (N x N) + N components of A and B and let 
the receiver perform the iteration to produce 1*. In this 
case we say that A and B constitute an encoding of the 
vector 1*. Furthermore, if the number of independent 
coefficients in A and B is less than the number of com­
ponents in 1*, and if we only transmit these independent 
components, we say that we have a compressed encoding 
of the vector 1*. Compressed encodings are possible if A 
and B have sparse coefficients, functionally dependent 
coefficients, or some kind of symmetry. The transmitter 
and receiver must either agree beforehand on the struc­
ture of A and B or this information must be transmitted 
as part of the code. The ITT compression algorithm is 
simply a special case of the iterative approach just noted. 
It amounts to choosing A to be sparse in a blockwise 
sense. The transmitted code includes information about 
the block structure of the transformation as well as the 
actual values of the matrix elements. 

Of course decoding a code is only half the problem, 
the other half being how to determine the code (i.e., the 
matrix elements of A and B) in the first place. Suppose 
we want to encode and transmit a vector T. How do we 
find the affine coefficients? The most obvious answer is 
to minimize d(T, 1*), the distance between T and 1*, with 
respect to the nonzero coefficients of A and B. In fact this 
is the basis of all standard algorithms for performing this 
kind of compression. Different algorithms differ in the 
details of how they perform the minimization. Some al­
gorithms are based on combinatorial search, whereas 
others are based on simple least-squares minimization. 

The salient features of the affine theory just discussed 
are as follows: (1) the transformation only requires linear 
operations, and (2) convergence of the decoder requires 
that f... max <1. The general iterated transformation theory 
developed by Jacquin and others is similar to the affine 
theory, but it states that convergence is guaranteed, pro­
vided the transformation satisfies a more general techni­
cal condition known as contractivity. Any transformation 
that can be made contracting can be made the basis of 
a decoding and encoding scheme. In particular, we can 
base a coding algorithm on the natural operations of the 
substrate. Basically, we replace all multiplications in the 
simple transformation with nonlinear multiplications. 
The offsets and nonlinearities do not change the contrac­
tive nature of the transformation. To deal with random 
mismatch, we use a variant of the basic algorithm that 
aggregates outputs from many neurons. Simulations have 
shown this to be an effective method for reducing the 
effect of mismatch. The second change we make in the 
simple theory is to replace iteration of a transformation 
with relaxation of a differential equation. The differential 
equation can be implemented as a physical neural net­
work with feedback. The use of feedback networks to 
implement iterative algorithms helps us to convert con­
ventional algorithms into neural algorithms.4 

To account for nonlinearities, the encoder must be 
modified by including a transistor model. This modifica­
tion results in a technology-dependent encoder. The 
approach is actually quite similar to conventional 
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software practice. After all, we think nothing of using 
cross-compilers that run on one machine and produce 
code for another machine. The only difference is that, in 
our case, the encoder runs on a digital machine, whereas 
the target machine is an analog machine. We have, in fact, 
already developed a prototype software encoder that 
includes a simple transistor model. Given a vector that 
we wish to encode, the encoder calculates voltages that 
are appropriate inputs to the analog decoder. 

THE ARCIDTECTURE 
The contractive iterated transformation approach to 

encoding and decoding can be implemented by a feed­
back neural network-a so-called recurrent neural net­
work. The sparse connection topology and weights of the 
network correspond to the nonzero matrix elements of 
the transformation matrix A. Additions are performed by 
adding currents. Multiplications are performed with 
minimum transistor circuits. A simple example of the 
basic recurrent architecture is presented in Figure 1. The 
network consists of a computing layer, a switching layer, 
and an interconnection layer (the bus). The bus comprises 
wires that physically connect the neurons. In the figure 
there are two ranges of two neurons each. The ranges are 
identical in their computing and switching layers. They 
differ only in the way their outputs are connected to the 
bus. Each bus line is driven by a unique neuron. The 
parameters ao, bo, do and al> bl, d l are input as analog 

Computing Switching 
layer layer Bus 

ao bo eo fo 

Outputs 

Figure 1. Schematic of a recurrent neural network architecture. 
Each neuron performs a transformation of the type lout = 
aIin + bx + e, where x is the neuron position (x = 1, 2, 3, 4). All 
neurons in a given range receive the same parametric input. 
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values. The parameters fa, fl are presented as digital 
inputs. They represent a single bit of information used by 
the switching layer to determine whether the two neurons 
in a range are connected to even- or odd-numbered neu­
rons. The four ways of connecting the neurons in this 
network correspond to the two bits offo and fl. The actual 
connections are selected at "run time" by the input to the 
switching layer. Of course in larger networks the possible 
connection topologies can be much more complex than 
the trivial connections shown in this example. 

To run the network one simply sets the parameters. The 
network relaxes to a steady state where the currents 
coming out of the neurons represent the decoded vector. 
The network is always computing the vector that corre­
sponds to the current input parameters. Significantly, 
there is no clock in this architecture: continuous-time 
asynchronous signal/information processing is an impor­
tant property of biological information processing 
systems. 

PROGRESS 
We designed and laid out a sixteeen-neuron experi­

mental chip in a 2-J.l.m CMOS process and submitted the 
chip to the MOS implementation service (MOSIS). Four 
chips were recently received. Preliminary tests have 
deomonstrated that the design is sound and the circuit 
operates as expected. 

To help layout the chip we developed a simple, por­
table silicon compiler written specifically for analog 
design and for student projects. It has been successfully 
run on UNIX-, DOS-, and Macintosh-compatible worksta­
tions. The design for the entire chip is specified in a 
C language source code called a chip generator. When 
compiled and excecuted, this generator reads primitive 
cells as input and writes the layout for the entire chip as 
output. Routing is done automatically. The number of 
neurons, as well as the number of domains and ranges, 
is parameterized. Thus, the production of a larger chip or 
a chip with a different connection topology simply re­
quires executing the generator with different parameters. 
We hope to use this new capability to establish a library 
of standard analog cells for application in future analog 
neuromorphic designs. 
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