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REASONING UNDER UNCERTAINTY FOR A COASTAL 
OCEAN EXPERT SYSTEM 

The Applied Physics Laboratory is conducting research in tactical oceanography whose objective is to 
develop an Ocean Expert System that (1) captures the physical cause-and-effect relationships of the 
dominant coastal processes and (2) performs coastal scene reasoning using the available environmental 
data and products to assess critical environmental factors and their likely effects on mission effectiveness. 
This article presents the need for evidence-based mechanisms for uncertainty management in such a system 
and surveys various approaches to uncertainty management that are being investigated for use in the Ocean 
Expert System. 

INTRODUCTION 
Recent military operations have been largely maritime 

with a significant emphasis on j oint-service control of the 
littoral battlespace. Although the particular geographic 
location may vary, future operations are likely to have a 
similar nature and emphasis. The coastal environment is 
extremely complex and can affect littoral military oper­
ations both positively and negatively. I Research in tactical 
oceanography focuses on providing naval mission plan­
ners and platform commanders with the information re­
quired to exploit the oceanographic and lower atmospher­
ic environment across a full range of possible missions. 

The tactical use of environmental information will be, 
at least partially, specific to the particular mission or 
warfare area (e.g., mine warfare, special warfare, amphib­
ious warfare, strike warfare, anti air warfare, antisurface 
warfare, and antisubmarine warfare). In particular, which 
environmental information is even of interest must be 
determined by its potential effect on the mission. For 
example, ocean currents would be of great interest in 
planning an amphibious landing but of much less interest 
in planning an airborne strike. 

Further, the same underlying physical process may 
have different tactical implications for various missions. 
An example here might be atmospheric winds. For a 
strike mission, the winds could influence the orientation 
of the carrier (to better support takeoff and landing) and 
route planning (to conserve fuel and extend flight time). 
The same winds could be of interest when planning an 
amphibious assault because of their influence on the 
currents (hence, landing time) and during antisubmarine 
warfare because of the acoustic effects of the air-sea 
interaction or the possibility of upwelling deepening the 
mixed layer. Tactical oceanographic support, therefore, 
requires insight into the governing oceanographic and 
meteorological processes as well as their tactical impli­
cations for the various warfare areas. 

Currently, specially trained naval meteorological and 
oceanographic (METOC) officers provide the tactical deci­
sion maker with the environmental information relevant 
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to the task at hand. The METOC officers use a dedicated 
environmental workstation called TESS (Tactical Environ­
mental Support System2

) to acquire and assimilate fore­
cast fields , satellite imagery, and in situ data. In addition 
to determining what environmental information is rele­
vant, they interpret information in the context of the 
mission and even the individual systems that might be 
employed. Finally, they are frequently called upon to 
make tactical recommendations, such as the orientation 
of the aircraft carrier, on the basis of environmental con­
siderations. Unfortunately, a METOC officer is not avail­
able to provide tactical oceanographic support on every 
naval platform. Currently, METOC officers are limited to 
the oceanographic forecast centers ashore and the major 
command ships at sea, such as the aircraft carriers. Recent 
trends in military force levels suggest the situation will 
not improve in the near future. 

The shift from open-ocean warfighting to littoral op­
erations brings with it shrinkage of the temporal and 
spatial scales over which environmental changes occur 
and expansion of the potential effect of the environment 
on military operations. The inherent complexity of the 
coastal environment, the small scales of tactical interest, 
and the likely paucity of coastal data suggest that accurate 
environmental assessment and tactical interpretation will 
become more difficult as they become more important. 

Dantzler and Scheerer3 have proposed a know ledge­
based or expert systems approach to the problem of 
coastal scene assessment and mission-specific tactical 
interpretation. The Ocean Expert System (OES) is intended 
to capture some of the physical insight and reasoning 
processes of the METOC officer and make them more 
widely available. The OES does not negate the need for 
trained analysts but rather is targeted at extending the 
availability of analytical skills in an autonomous fashion. 

A major functional goal of the OES is to perform the 
mission-driven coastal scene reasoning required to devel­
op a mission-specific coastal scene description as shown 
in Figure 1. Each mission area will have associated with 
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Figure 1. The mission-driven nature of 
coastal scene reasoning in the Ocean 
Expert System (OES). Each mission area 
has one or more operational critical fac­
tors (i.e., "time across the beach" for an 
amphibious landing) that capture the po­
tential effect of the environment on the 
mission. The values of the operational 
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. critical factors are determined by the un­
derlying physical critical factors (i.e. , cur­
rents [set and drift]) . Coastal scene rea­
soning consists of drawing on the avail­
able input and the OES process knowl­
edge base (which captures the cause­
and-effect relationships govern-ing the 
fundamental physical processes) to as­
sess and predict the values of the physi­
cal and operational critical factors. The 
coastal scene description is a geographic 
presentation of these values. 

Real-time data 
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it one or more operational critical factors, which will 
directly affect mission effectiveness and are the key pa­
rameters for a tactical decision maker/mission planner. 
Underlying those operational critical factors are physical 
critical factors that ultimately determine their values. For 
example, the prevailing currents (physical critical factor) 
will fundamentally influence the "time across the beach" 
(operational critical factor) in an amphibious landing. 

The coastal scene description that a tactical decision 
maker desires is mission specific and comprises both the 
operational and physical critical factors for a given mis­
sion. Those factors can be presented geographically and 
temporally at multiple levels of detail. In the example of 
the amphibious landing, the coastal scene description 
might include, at a high level, a display of time across 
the beach for various landing areas and start-of-mission 
times. A lower-level display of the coastal scene descrip­
tion might show the actual currents. 

Assessing and predicting the values of mission-specif­
ic physical and operational critical factors in a coastal 
region are major goals of the OES. The OES process knowl­
edge base is intended to capture the fundamental coastal, 
physical cause-and-effect relationships in a manner that 
supports computer-based coastal scene reasoning. Draw­
ing on the available input (in situ and remotely sensed 
data, historical climatology, numerical model outputs, 
environmental products, and the rest) , OES coastal scene 
reasoning will identify which physical processes are 
currently dominating the coastal scene. An understanding 
of the underlying physical processes will allow the OES 

to generalize sparse coastal data into regions of similar 
physics and assess the physical critical factors. From 
there, the values of the operational critical factors can be 
determined. 

The OES conceptual system architecture (Fig. 2) 
provides for local and offboard data acquisition and in­
terpretation, guided by a central set of interactive knowl­
edge bases that support the scene description reasoning 
process. The content of the individual knowledge bases 
and the manner in which this system architecture reflects 
the process by which the human analyst develops an 
environmental scene description have previously been 
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presented.3 This article examines the need for uncertainty 
management and evidence-based reasoning in the OES 

and explores various formalisms that may fulfill this need. 

EVIDENCE-BASED REASONING AND 
UNCERTAINTY MANAGEMENT IN THE OES 

The coastal ocean environment is fundamentally deter­
mined by the interactions of identifiable physical pro­
cesses and geographic/oceanographic features including, 
but not limited to, bathymetry, water masses, long-period 
waves, coastal upwelling, fronts and eddies, internal 
motions, kelvin and edge waves, barotropic tides, internal 
tides, internal waves, and mixing.4 Extensive literature 
exists on the significant oceanographic processes and 
features potentially relevant to the coastal ocean, and it 
is now being reviewed for knowledge acquisition and 
computer-based knowledge representation in the process 
knowledge base (see Fig. 2). One of the functionality 
goals for the OES is to be able to use this knowledge to 
identify and predict the critical physical features and 
processes relevant to a particular region on the basis of 
available historical, in situ, and offboard data. 

Evidence-Based Reasoning 

In several situations, the OES will need to make infer­
ences and confmn or disconfirm hypotheses on the basis 
of the available evidence, as in the identification of sig­
nificant oceanographic features. Consider remote sensing 
of sea-surface temperature via satellite sensors (Fig. 3). 
The application of edge-detection algorithms to such 
satellite images frequently yields many filaments that 
identify high horizontal temperature gradients in the 
image similar to those identified by an analyst, as shown 
in Figure 4. Inferring which of these fIlaments should be 
discarded as superficial and which should be grouped as 
significant water-mass features (e.g., eddies or fronts) 
could involve multiple hypotheses that would be con­
firmed or denied by the evidence of historical climatol­
ogy, previous analyses, and the underlying physical pro­
cesses. In this example, the remotely sensed data provide 
diagnostic evidence (high gradients) for the feature, and 
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Figure 2. Conceptual design forthe Ocean Expert System (OES). The goal of the system is to produce a best estimate of the oceanographic 
scene description, given the information that might be available at any particular time. Information external to the system is derived from 
local oceanographic and atmospheric measurements and from information communicated to the system from offboard sources. A key 
aspect of the OES is the integration of embedded knowledge bases that allow (1) the evaluation of available oceanographic information 
in a context of conventional algorithmic tests (such as statistical variability) in addition to previous experience in the area and (2) a physics­
based representation of coastal dynamics that cannot easily be captured in a conventional computer-based system. The estimated scene 
description provides information about significant environmental events, the mapping of those events to the local area, and estimates of 
the larger-scale context within which the scene is to be interpreted. 

Figure 3. Infrared imagery of the surface of the Sea of Japan in 
May 1991 , obtained by the NOAA-1 0 satellite. The nearly cloud-free 
image, taken in late winter, shows the remarkable complexity in the 
thermal structure within the transition from the warm water tem­
peratures (represented by the dark shades) in the eastern portion 
of the sea to the colder waters (shown by the light shades) to the 
west. (Courtesy of the U.S. Naval Oceanographic Office, Opera­
tional Oceanography Center, Stennis Space Center, Miss.) 
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the underlying physical process that could cause the 
feature (e.g., the pinching off of an eddy from the Gulf 
Stream) provides causal or predictive evidence. 

Evidence-based reasoning is also likely to be required 
for the identification and prediction of coastal oceano­
graphic processes. Consider coastal upwelling.s The Ek­
man layer is a surface layer in which there is a balance 
between the wind stress and the Earth 's rotational force. 
In coastal upwelling, persistent along -shore winds pro­
duce an Ekman transport (net movement of water in the 
Ekman layer) away from the coast/continental shelf that, 
in turn, results in the upwelling of cooler water near the 
coast and/or shelf break. In this example, a communicated 
weather forecast from a regional oceanography center 
provides information on expected wind conditions. A 
forecast of the appropriate wind conditions would be 
predictive evidence indicating an increased likelihood of 
upwelling. In such a situation, the shelf's coastal and 
bathymetric configuration would be evidence for whether 
the upwelling would be likely to occur only at the coast 
or also at the shelf break. A similar approach would be 
used for other relevant processes. 
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Figure 4. Sea-surface temperature gradient analysis of the infra­
red image in Figure 3. The original sea-surface imagery is replaced 
by an oceanographic feature analysis of the locations of the 
significant temperature gradients in the image. The gradients (red 
depicting a strong temperature difference and black a weak 
gradient) often represent the surface expression of the water-mass 
features (e.g., water-mass boundaries, or fronts, and separated 
eddies) in the image. The complexity in the imaged water-mass 
structure is evident by comparison with the mean climatological 
location of the 1 aoc sea-surface isotherm shown in green, which 
is often taken as the indicator of the northern boundary of the 
Tsushima current. The analyst captures the essential elements of 
this complexity in an oceanographic feature-oriented analysis, 
thus reducing the volume of data that must be handled in subse­
quent analyses and facilitating automated interpretation of 
the image. 

Figure 5 shows the anticipated flow of reasoning. Upon 
entering a new operating area, the OES would first try to 
hypothesize which coastal processes would be likely to 
occur and their signifIcance to the local area. Nowcastl 
forecast field from a regional oceanographic center, out­
puts from numerical models, and geographical and cli­
matological databases would be used to infer which of 

Predictive 
inputs 

the potentially relevant processes represented in the pro­
cess knowledge base are actually important to the specific 
area at hand. The process knowledge base is intended to 
be general in the sense that it is not tailored to a particular 
coastal region. The variations and variability climatology 
knowledge bases (shown in Fig. 2) are to be instantiated 
with region-specifIc information. 

Once the oceanographic features and processes that are 
likely to be significant have been hypothesized, the pro­
cess knowledge base is consulted to assess their probable 
effect on the local environment. For example, the process 
of coastal upwelling could be expected to produce a 
deeper mixed layer and cooler sea-surface temperatures 
in the upwelling zone. Similarly, the effect of a local eddy 
that does not appear in the regional nowcastlforecast can 
be assessed by "bogusing" it in, that is, by adjusting the 
adjacent stream lines accordingly.6 

Next, in situ data measured locally or sensed remotely 
are checked to see if they are consistent with the expec­
tations or if they suggest alternative hypotheses. The 
complexity of the coastal scene and the interactions 
between the various processes may make it difficult to 
assess which processes are causing the various manifes­
tations observed in the local data. Limiting the focus to 
the dominant processes and their manifestations, howev­
er, will help, as will the additional data and understanding 
gained over time in a particular area. Further, merely 
hypothesizing the processes in a region that are likely to 
be significant, even if they cannot be decisively con­
firmed or denied by local data, has potential utility. 

The final step in the reasoning process is to assess the 
tactical implications (e.g., the implications for acoustic 
propagation) of the processes/features confirmed or at 
least believed to be likely. The output of the reasoning 
process is an on-line geographic critical factors chart 
showing the dominating conditions for the task at hand 
(e.g,. regions of bottom-limited acoustic propagation). An 

Figure 5. Flow of reasoning for the Ocean 
Expert System (OES). When a new operating 
area is entered, the oceanographic environ­
mental scene description would be initialized 
from historical climatological databases. The 
OES could then draw on predictive inputs and 
the process knowledge base to generate hy­
potheses about the occurrence of various 
coastal ocean processes and their expected 
environmental effects. Diagnostic data serve 
to confirm the hypotheses or suggest alterna­
tives. The conclusions are used as feedback 
so that the scene description improves with 
time as more local data become available. 
Finally, the tactical implications of the oceano­
graphic processes/features are assessed and 
highlighted to the operator in a geographically 
based critical factors chart. 
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explanation facility is envisioned that would explain the 
process or feature that caused the tactically relevant con­
dition, as well as the predictive and diagnostic evidence 
that led to the conclusion of that particular process or 
feature being present or likely. 

Refining the Environmental Scene 
Description with Time 

Recent experience during Desert Storm highlighted the 
benefit of being able to develop improved forecasts over 
time. Anticipating nontraditional and data-sparse operat­
ing areas, the OES must be able to refine its understanding 
of the coastal ocean environment with time and evidence. 
In particular, mechanisms must exist to accumulate ev­
idence and refine analyses, estimates, and conclusions. 
The feedback loop shown in Figure 5 allows the OES to 
use previous analyses in the ongoing reasoning process 
for the coastal scene description. The initial field estimate 
can then be revised as additional evidence is obtained in 
the form of satellite imagery or other relevant local 
measurements. 

Sources of Uncertainty 
Numerous sources of uncertainty exist in both the 

available data and the reasoning that occurs throughout 
the process of developing the coastal ocean scene de­
scription. Nowcastlforecast fields , for example, may not 
resolve the physical scales of interest. Similarly, the data 
may be insufficient to initialize a numerical model such 
that the scales of interest can be accurately resolved. In 
situ data, such as expendable bathythermograph readings, 
can be inaccurate. Remotely sensed data may be impre­
cise if not properly registered to reference points on the 
coastline. Additionally, satellite image-processing algo­
rithms highlight the significant water-mass features only 
to some degree of uncertainty. In short, the available data 
can be incomplete, imprecise, inaccurate, or otherwise 
uncertain. 

When reasoning on the basis of evidence, one frequent-
1y makes use of rules of inference where the presence of 
(causal or diagnostic) evidence implies the truth of a 
hypothesis. Such a statement can be represented as 
E ~ H, where E represents the evidence and H represents 
the hypothesis. Inaccurate, imprecise, incomplete, or oth­
erwise uncertain data used as the evidence E can only 
produce an uncertain conclusion concerning the hypoth­
esis H. Additionally, the rules of inference themselves are 
subject to uncertainty. In other words, even if the evi­
dence E were known with certainty, the logical implica­
tion of the "~" symbol is often an expression of in­
creased likelihood rather than complete certainty. For 
example, although one may be able to come up with a 
reasonable likelihood that an eddy will be pinched off 
from the meandering Gulf Stream or that coastal up­
welling will occur under a particular set of circumstances, 
complete certainty that these things will occur is unlikely. 
Finally, even if a precise and certain rule could be devel­
oped, the conditions in a given region at a particular time 
would probably only meet the triggering conditions of 
that rule to some degree of uncertainty, and, hence, the 
conclusion would again have an element of uncertainty. 
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Reasoning Under Uncertainty for a Coastal Ocean Expert System 

Each of the examples of sources of uncertainty given here 
has focused on hypothesizing the physical processes that 
are likely to be significant in a particular region. Similar 
uncertainties are present when hypothesizing the effects 
of such processes on the coastal environment. 

Although both the data and the feature/process knowl­
edge involved in developing a description of the coastal 
scene contain many uncertainties, causal links are known 
between the underlying physical features/processes and 
the resulting environmental conditions. Operational naval 
oceanographic and meteorological analysts currently rely 
on these causal links and the predictive and diagnostic 
evidence to develop a geographically based critical fac­
tors chart. The OES is intended to extend such an approach 
to surface and subsurface platforms where expert analysts 
are not available. 

In this section, a flow of reasoning for the OES has been 
defined that requires the ability to refine the description 
of the coastal scene with time, to handle both uncertain 
data and inferences, and to distinguish between compet­
ing hypotheses on the basis of accumulating evidence. 
The remainder of this article introduces various ap­
proaches to uncertainty management and evidence-based 
reasoning currently being investigated for incorporation 
into the OES. This survey will be of interest to anyone 
developing a knowledge-based system in which uncer­
tainty management is required. 

PROBABILISTIC APPROACH USING 
BAYES'S THEOREM 

Uncertainty about the likelihood that a particular event 
will occur frequently finds expression in probabilistic 
terms. If S, the sample space, is the set of all the possible 
elementary outcomes, and H is an event, that is, a subset 
of S, then the probability of event H is denoted by p(H) . 
The function p is a probability function if and only if it 
satisfies the following three axioms: 

(PI) p(H) 2: 0 for all H that are elements of the set S, 
(P2) peS) = 1, and 
(P3) if Hi' ... , Hn are mutually exclusive, that is, they 

are pairwise disjoint and cannot occur at the same 
time, then P(U7=1 H i ) = 1:.7=1 p(H) , where U 
refers to set union. 

An important consequence of these axioms is that 

p(H) + p(-H) = 1 , (1) 

where - H , the complement of H, is the set difference of 
Sand H. This equality follows since 1 = peS) = 
p(H U - H) = p(H) + p( - H). Rewriting Equation 1 as 
p( - H) = 1 - p(H) allows one to compute p( - H) from 
p(H). 

The probability that an event H occurs, given that one 
knows with certainty that an event E occurs, is called the 
conditional probability of H given E. This conditional 
probability is denoted p(H I E) and is defined to be the 
probability of both Hand E occurring (the joint probability 
of Hand E) divided by the probability of E occurring: 

(HIE) = p(H n E) if (E) > 0 (2) 
p pee) p , 

where n refers to set intersection. 
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Two events A and B are independent (meaning that the 
occurrence of either one of the events does not affect the 
occurrence of the other) if p eA I B) = peA) and pCB I A) = 
pCB). From the definition of conditional probability, it can 
be seen that two events A and B are independent if and 
only if peA n B) = p eA ) X pCB). 

The concept of total probability states that if E b .. . , 
En are exhaustive and mutually exclusive (i.e. , 
U7=1 Ei = Sand E; n Ej = 0 [the empty set] for i =1= j ), 
then for any event H, 

n 
p(H ) = LP(H IEi )p (Ei ) · (3) 

i=1 
This result can be shown with the following argument. 
Since E\> .. . , En are exhaustive and mutually exclusive, 
H can be expressed as H = (H n E j ) U (H n E2 ) U .. . 
U(H n E,J Using the additivity axiom (P3), we can ex­
press the probability of H as p (H ) = L 7=1 p (H n Ei ) . 
Finally, making use of the definition of conditional prob­
ability on each term in the summation gives us the result 
in Equation 3. 

With the necessary fundamentals of probability theory 
in place, Bayes's theorem, the core of uncertainty man­
agement in this approach, can be derived. From the 
definition of conditional probability, p (HI E) p eE) = 
p(H n E) = p eE n H) = p eE I H) p (H) , since joint proba­
bility or set intersection is commutative. This expression 
can be rewritten as 

(HI E ) = p (EI H ) p(H ) 
p peE ) (4) 

Recognizing that any set and its complement are exhaus­
tive and mutually exclusive, total probability (Eq. 3) can 
be used to express peE) = peE I H) p(H) + peE 1-H) p( - H). 
Substituting this equation into the denominator of Equa­
tion 4 yields Bayes's theorem: 

p ( HIE ) = p (EI H )p(H ) 
p (EI H )p (H ) + p (EI-H)p (-H) 

(5) 

If H represents some hypothesis one seeks to confirm or 
deny and E represents a piece of evidence that has been 
observed, then p (H ) represents the prior probability of H 
occurring before the evidence E was observed, and 
p(HI E) represents the posterior or updated probability of 
H after factoring in the new evidence E. 

The value of Bayes's theorem for evidence-based rea­
soning can now be seen. Consider a medical diagnosis 
in which H is a particular illness that has been hypoth­
esized, and E is a symptom that has been observed. If we 
know the likelihood of a random person in the popUlation 
having the illness, p (H ), and the likelihood of a patient 
known to have the illness exhibiting the symptom, 
p eE I H ), and the likelihood of the symptom being present 
in a person known not to have the illness, p eE 1-H ), then 
Bayes's theorem allows us to conclude the likelihood that 
a person exhibiting the symptom does, in fact, have the 
illness, that is, p (HI E ). Similarly, one could determine 
the likelihood of a particular physical process or feature 
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(e.g. , a front) being present, given the prior probability 
of the process or feature being present (e.g. , from histor­
ical satellite imagery) and the conditional probability of 
the observed environmental conditions, given the pres­
ence or absence of the process or feature in question. 

Naturally, more than one process or, in general, hy­
pothesis may need to be considered, and Bayes's theorem 
will need to be generalized accordingly. If Hb ... , Hm 
are exhaustive and mutually exclusive events (hypothe­
ses), then for any (evidence) E, P(Hi IE) = [P(EIHi) 
. P(H i) ]/p(E) by the definition of conditional probability. 
Applying total probability (Eq. 3) to the denominator 
gives 

P(H i IE) m 
(6) 

LP(EI H k)p(H k) 
k=1 

Just as multiple (exhaustive and mutually exclusive) 
hypotheses may need to be considered, so may multiple 
pieces of evidence. The most general form, then, is 

p(E1E2 ••• En lHi) 
P(H i IE1E2 ··· En) = m . (7) 

LP(E1E2 ··· EnlHk) p(H k) 
k=1 

To summarize, assuming that one has prior probabil­
ities for the hypotheses in question and conditional 
probabilities showing the likelihood of observing the 
various combinations of evidence, given one of the hy­
potheses, Bayes 's theorem provides a method for deter­
mining the updated or posterior probability of any hy­
pothesis in view of any observed evidence. Bayes's the­
orem has two primary advantages. First, it allows us to 
determine the probabilities of interest from other prob­
abilities that are, presumably, easier to state. Second, the 
method can be rigorously proved correct, given the ax­
ioms of probability. 

The Bayes 's theorem approach to evidence-based rea­
soning, however, is not without difficulty. One issue is the 
prior and conditional probabilities required. The manner 
in which these numbers may be obtained can be limited 
by one's interpretation of probability. The relative fre­
quency interpretation of probability, for example, re­
quires that a repeatable experiment can be performed and 
defines the probability of an event E to be 

peE ) = lim neE ) , (8) 
n~oo n 

where neE) is the number of times that E occurs in the 
first n repetitions of the experiment. The weak law of 
large numbers states that if p is the probability of an event 
E, then for any D greater than 0 and any confidence level 
less than 1, a sufficiently large number of experiments 
exists for which one can conclude with that confidence 
level that the frequency estimate is within D of p eE). 
Someone holding to the relative frequency interpretation 
of probability will be limited to applying Bayes's rule 
only when many repeatable experiments can be per­
formed to arrive at the requisite initial values. Although 
this limitation is not a problem for tossing coins, rolling 
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dice, or drawing cards, situations exist in which one 
would like to assign probabilities but a repeatable exper­
iment may not be possible. For example, the OES may 
want to use the probabilities of upwelling occurring along 
a particular continental shelf break under various wind 
conditions. Conducting a large number of repeated exper­
iments under each of the wind conditions to determine 
these probabilities is not feasible. 

The subjective interpretation of probability, on the 
other hand, claims that probability represents a person's 
degree of belief in a proposition. A central idea of this 
interpretation is that a probability is the rate at which a 
person is willing to bet for or against a proposition. Thus, 
two reasonable people may have different degrees of 
belief in a proposition, even though they have been pre­
sented with the same evidence. The subjective interpre­
tation postulates rational behavior in which people hold 
only coherent sets of beliefs. In this context, a set of 
beliefs is said to be coherent if it will not support a 
combination of bets such that the person holding those 
bets is guaranteed to lose. Shimony 7 has shown that a set 
of beliefs is coherent if and only if the beliefs satisfy the 
axioms of probability. If one accepts a subjectivist inter­
pretation of probability, then subjective estimates provid­
ed by a domain expert can legitimately be used for as­
signing the requisite probabilities for the application of 
Bayes's theorem. 

A reasonable question, then, is "How good are people 
at estimating probabilities?" Tversky and Kahneman8 pro­
vided empirical evidence that people are poor estimators 
of probability. Compiled data are another potential source 
for the needed probabilities. Harris9 surveyed medical 
literature for results that compiled data on patients for 
seven commonly used tests and found significant vari­
ability in the reported probabilities for five of the tests 
and good correlation between the reported probabilities 
for the other two. Although both experts and compiled 
data seem to produce suboptimal probability values, Ben­
Bassat et al. 10 showed that even poor probabilities may 
be good enough to discern accurately between competing 
hypotheses, since large deviations in the prior and con­
ditional probabilities result in only small changes in the 
value produced by the application of Bayes's theorem. 

In addition to the question of where the requisite prior 
and conditional probabilities come from, other potential 
difficulties are associated with the application of Bayes 's 
theorem. In particular, Bayes 's theorem requires all the 
evidence and hypotheses to be expressed as propositions, 
and all the evidence that may be received to be anticipated 
in advance (since one must supply the conditional prob­
abilities of the evidence being present or not, given the 
truth of a particular hypothesis). Most troubling, howev­
er, is the exponential explosion in the number of values 
required for the application of Bayes's theorem. In par­
ticular, Equation 7 requires the conditional probabilities 
of all the possible combinations of evidence for each of 
the hypotheses of interest. Further, extending the system 
to include the possibility of a new piece of evidence could 
require updating all the conditional probabilities, since 
they depend on the combination of the presence or ab­
sence of each piece of evidence. 
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One approach to dealing with the large number of 
values required is to assume conditional independence 
among pieces of evidence, given a hypothesis. This as­
sumption reduces Equation 7 to 

P(Hi 'E1E2··· En) = (9) 

p(EI ' Hi ) X p(E2 ' Hi) X . .. X p(En ' Hi) X P(Hi) 
m 

L p( E I' H k) X p( E2 , H k) X ... X p( En , H k ) X p( H k ) 
k=l 

Although the conditional independence assumption helps 
to reduce the number of initial values required, it sacri­
fices the accuracy if the assumption is not valid. In sum­
mary, the use of subjective probability theory and Bayes 's 
rule provides a mathematically well-founded and statis­
tically correct method for handling uncertainty, but such 
an approach is not feasible for most applications, because 
too many prior and conditional probability values are 
required. 

DEMPSTER-SHAFER THEORY 
The theory of belief functions , or Dempster-Shafer 

theory, was developed by Arthur Dempsterll in a series 
of papers in the 1960s and Glen Shaferl2 in his 1976 
book, A Mathematical Theory of Evidence. The theory is 
a generalization of probability theory and was motivated 
by difficulties these researchers had with the additivity 
axiom (P3), the representation of ignorance in probability 
theory, and the demands for prior and conditional prob­
abilities, which they perceived frequently to be unavail­
able. 

In particular, Shafer took issue with the property of a 
probability function p that states that p(H) + p( - H) = 1 
for any hypothesis H. Shafer claims that evidence partial­
ly supporting a hypothesis need not be viewed as also 
partially supporting the negation of the hypothesis. In 
regard to the representation of ignorance, Dempster­
Shafer theory provides an explicit representation to make 
up for the perceived weakness of the lack of such a 
representation in probability theory. Under a probabilistic 
approach, in the absence of any further information, 
probability is distributed among competing alternatives 
according to the principle of indifference or maximum 
entropy. Thus, if three alternatives exist and no evidence 
for or against any of them has been obtained, then each 
is assigned a probability of 1/3. Shafer argues that such 
an approach blurs this circumstance of ignorance with the 
situation in which significant background knowledge or 
evidence exists to show that the three alternatives are, in 
fact, equally likely. Dempster-Shafer theory provides an 
explicit representation of ignorance, where assigning a 
belief of zero to a proposition implies complete ignorance 
rather than certain falsehood, as in probability theory. 

The starting point in Dempster-Shafer theory is the 
frame of discernment 8 , which is composed of a set of 
exhaustive and mutually exclusive events. The frame of 
discernment can be viewed as a set of possible (mutually 
exclusive) answers to a question. It is similar to the 
sample space in probability theory. Consider ocean fron­
tal analysis at a particular location where fronts of various 
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strengths have been ob erved in the past. One question 
might be "What type of front is present at this location?" 
The frame of discernment would be a set of possible 
(mutually exclusive) answers to this question, perhaps 
{none, weak, strong}. An important concept in Demp­
ster-Shafer theory is that any subset of the frame of 
discernment is a hypothesis and is equivalent to the dis­
junction of the individual elements in the subset. Thus, 
the hypothesis of some type of front being present would 
be the subset {weak, strong} . The set of all hypotheses 
represented by a frame of discernment 8 , that is, the set 
of all subsets of 8 , i denoted 28. 

A basic probability assignment, m, assigns a number 
in [0, 1] to every subset A of 8 such that the numbers 
sum to one. The expression meA) is the probability mass 
assigned exactly to A that cannot be further subdivided 
among the subsets of A. Thus, in the frontal analysis 
example, probability mass that simply supports the pres­
ence of a front without giving any insight into whether 
the front is likely to be weak or strong would be assigned 
to m( {weak, strong}). More specific information would 
be assigned to m( {weak}) or m( {strong}). Any probabil­
ity mass not assignable directly to any subset of 8 (be­
cause of ignorance) is grouped under m(8). Formally, a 
function m with domain 28 is a basic probability assign­
ment if it satisfies 

(Ml) 0 :s; meA) :s; 1 for any A that is a sub et of 8 , 

(M2) m(0) = 0, and 

(M3) L, m(A) = 1. 
Ace 

Gordon and Shortliffe l3 have presented an example of 
a simplified medical diagnosis on cholestatic jaundice 
that helps to make the e concepts clear. The frame of 
discernment compri es four competing causes of the ill­
ness, namely, hepatiti (Rep), cirrhosis (Cirr), gallstones 
(Gall), and pancreatic cancer (Pan) (Fig. 6A). There are 
sixteen possible subsets of 8 to which some of the total 
belief can be assigned (Fig. 6B plus the empty set 0), 
although only seven of these are of clinical interest (Fig. 
6C). One pos ible basic probability assignment is m( {Rep}) 
= 0.2, m({Cirr}) = 0.1 , m({ R ep, Cirr}) = 0.2, m({Gall, 
Pan}) = 0.4, m(8 ) = 0.1 , and meA) = 0 for all other A ~ 8 . 

The belief in A, denoted Bel(A), measures the total 
amount of belief in A, not the amount assigned precisely 
to A by the basic probability assignment. Thus, 

Bel(A) = L, m(X) , (10) 
X~A 

where every belief function corresponds to a specific 
basic probability assignment. Formally, a function Bel 
with domain 28 is a belief function if it satisfies 

(Bl ) O:s; Bel(A):S; 1 for any A ~ 8 , 
(B2) Bel(0 ) = 0, 
(B3) Bel(8) = 1, and 
(B4) Bel(AI U A2) ~ Bel(AI) + Bel(A2) 

- Bel (A I n A2) and similarly for n > 2 subsets. 
Returning to the chole tatic jaundice example, Bel( {Rep, 
Cirr}) = m( {Rep}) + m( { Cirr}) + m( {Rep, Cirr}) = 0.2 
+ 0.1 + 0.2 = 0.5. 
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A e = {Hep, Girr, Gall, Pan} 

B {Hep, GirT, Gall, Pan} 

{Hep, GirT, Gall } {Hep, GirT, Pan} {Hep, Gall, Pan} {GirT, Gall, Pan} 

{Hep, Girr} {Hep, Gall} {GirT, Gall} {Hep, Pan} {GirT, Pan} {Gall, Pan} 

{Hep} {Girr} {Gall} {Pan} 

c {Hep, GirT, Gall, Pan} 

~ 
{Hep, Girr} {Gall, Pan} 

~ ~ 
{Hep} {Girr} {Gall} {Pan} 

Figure 6. The frame of discernment, 8, in Dempster-Shafer 
theory is the set of possible (mutually exclusive) answers to a 
question. A. The frame of discernment for a simplified medical 
diagnosis of cholestatic jaundice where hepatitis (Hep) , cirrhosis 
(Cirr) , gallstones (Gall ), and pancreatic cancer (Pan) are the 
possible causes. B. 28 , the set of all subsets of 8. C. A few 
subsets of 8 that are of clinical interest. Dempster-Shafer theory 
supports the assignment of belief and the collection of evidence at 
any level in the hierarchy of subsets shown in part B. Further, it 
parallels human reasoning in the narrowing of the hypothesis 
subset with the accumulation of evidence. Dempster's rule of 
combination for assessing the combined effect of two pieces of 
evidence can be computationally demanding, but that problem is 
mitigated when the evidence is limited to a small subset of 28 as 
shown in part C. 

In Dempster-Shafer theory, the observation of evi­
dence against a hypothesis is viewed as evidence support­
ing its negation. The negation of a hypothesis is defmed 
to be the set difference of the frame of discernment and 
the hypothesis . Thus, evidence disconflIming the hypoth­
esis {Rep} is equivalent to evidence supporting the hy­
pothesis {Cirr, Gall, Pan} , that is , Cirr or Gall or Pan. 
Similarly, Bel( - {Rep, Cirr} ) = Bel( {Gall, Pan} ) = 0.4. 
Note that if we call A the hypothesis Rep or Cirr, that 
is, {Rep, Cirr}, we see that Bel(A) + Bel(-A) = 0.9. In 
general, for any hypothesis A ~ 8 , Bel(A) + Bel( -A) :s; 1. 
This can be contrasted with probability theory, where 
peA) + p( -A) = 1. 

The plausibility of A is defined as 

Plaus(A) = 1 - Bel( - A) , (11) 

and reflects the extent to which the evidence allows one 
to fail to doubt the hypothesis A. The complete informa­
tion stored in a basic probability assignment m or the 
corresponding belief function Bel can be expressed by the 
belief interval [Bel(A), Plaus(A)], where Bel(A) repre­
sents the amount of belief currently committed to A, and 
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Plaus(A) represents the maximum amount of belief that 
could be committed to A, since the remaining belief has 
been committed to -A. The width of the interval is a 
measure of the belief that neither supports nor refutes A, 
but which may later shift either way on the basis of 
additional evidence. The width of the interval can be 
viewed as the amount of uncertainty associated with a 
particular hypothesis, given the evidence. 

In probability theory, the effect of evidence is repre­
sented as conditional probabilities, and when new evi­
dence is received, the posterior probability can be calcu­
lated from the prior and conditional probabilities using 
Bayes 's rule. The analogous method for updating beliefs 
in the presence of new evidence under Dempster-Shafer 
theory is Dempster's rule of combination. If two pieces 
of independent evidence are represented by two basic 
probability assignments m, and m2, then Dempster's rule 
of combination provides a method for calculating a new 
basic probability assignment denoted m, (f) m2 and called 
the orthogonal sum of m, and m2' The corresponding 
belief function Bel, + Bel2 can then be computed from 
m, (f) m2 using Equation 10. Formally, Dempster's rule 
of combination is as follows. Let m" m2 be basic proba­
bility assignments over e. If LXII Y = 0 ml (X)m2 (Y) < 1 , 
then the orthogonal sum, m, (f) m2, of m, and m2 is 

(i) ml (f) mi0) = 0 and 
(ii) for any nonempty A ~ e, 

L ml (X)m2 (Y) 
m E9 m (A) _ X_II_Y_=_A ___ _ 

1 2 =1- Lmj(X)m2(Y)' (12) 
XII Y= 0 

An intersection table with values of m, and m2 along 
the rows and columns, respectively, is a helpful device 
for computational purposes. Each entry in the table has 
the intersection of the subsets in the corresponding row 
and column, as well as the product of the two basic 
probability assignment values. If we take m l to be the 
sample basic probability assignment defined earlier and 
m2( {Hep}) = 0.8, mi e) = 0.2, and miA) = 0 for all other 
subsets A of e, then the information shown in the fol­
lowing table results: 

m, 

{Hep} {Orr} {Hep, Orr} {Gall, Pan} 8 
m2 (0.2) (0.1 ) (0.2) (0.4) (0.1 ) 

{Hep} {Hep} 0 {Hep} 0 {Hep} 
(0.8) (0.16) (0.08) (0.16) (0.32) (0.08) 

8 {Hep} {Cirr} {Hep, Cirr} {Gall, Pan} 8 
(0.2) (0.04) 0.02 (0.04) (0.08) (0.02) 

U sing this table, we have m, (f) m2 ({ Hep }) = (0.16 + 
0.04 + 0.16 + 0.08)/[1 - (0.08 + 0.32)] = 0.44/0.60 =0.733. 

The primary difference between Dempster-Shafer the­
ory and Bayesian probability theory is that Dempster­
Shafer allows one to assign probability mass to subsets 
of the frame of discernment directly, whereas Bayesian 
probabilities are only directly assigned to the elementary 
outcomes or individual elements of the sample space. It 
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is possible to compute the probability of an arbitrary 
subset of the sample space in Bayesian probability theory, 
but this value is computed from the probability of the 
elementary outcomes that compose that subset. For ex­
ample, the probability of the roll of a single die coming 
up even is the sum of the probabilities of the die corning 
up two, four, or six. Dempster-Shafer theory allows one 
to distribute the probability mass (which must sum to 
one) across the subsets of the frame of discernment, 
whereas probability theory requires that the unit proba­
bility mass be spread across the elementary outcomes or 
individual elements of the sample space. Note that a 
probability function is a special case of a belief function 
in which belief is only assigned to singleton elements of 
the frame of discernment. Hence, Dempster-Shafer the­
ory can be viewed as a generalization of probability 
theory. The explicit representation of ignorance in Demp­
ster-Shafer theory and the fact that Bel(A) + Bel( -A) 
need not sum to one both result from the ability to assign 
probability mass to subsets of e rather than merely to 
singleton elements. 

The difference between these two approaches can also 
be seen in that probability theory represents the state of 
knowledge with a single number, whereas Dempster­
Shafer theory uses two numbers-the belief and the plau­
sibility (or the lower and upper probability, in Dempster's 
terms) (see Fig. 7). In probability theory, the upper and 
lower probabilities are the same, since peA) + p( -A) = 1. 
In Dempster-Shafer theory, the width of the interval be­
tween the belief and the plausibility can be viewed as the 

A 
p(A) p(-A) 

I 

,--.. • '1 

l--"",,~.M:v"'.f$... ..... _~xk"' ....... ~ 

Classical probability 

B 

Classical probability 

8el(A) 
I 

I 

Plaus (A) 

8el(-A) 

I~ 

Dempster-Shafer theory 

Dempster-Shafer theory 

Figure 7. A. Classical probability theory and Dempster-Shafer 
theory differ in their representations of uncertainty in a proposition. 
Probability theory uses a single number p(A) to represent the 
probability that proposition A is true, given the evidence. The 
remaining probability p( - A) = 1 - p(A) is the probability that the 
proposition is not true. Dempster-Shafer theory uses two numbers 
that can be viewed as the lower and upper limits of the probability 
of A. Bel (A) is the belief in A or the lower limit , and 
P/aus(A) = 1 - Be/( - A) is the plausibility of A or the upper limit. 
The width of the interval between the belief and the plausibility can 
be viewed as the uncertainty in the probability of A. B. Illustration 
of how complete uncertainty about a proposition would be repre­
sented in each of the approaches. Probability theory states that in 
the absence of further information, it is equally likely that the 
proposition will be true or false. Proponents of Dempster-Shafer 
theory point out that this approach does not distinguish the 
situation of complete ignorance from the situation of significant 
background knowledge, indicating that truth and falsehood are 
equally likely. Dempster-Shafer theory explicitly represents igno­
rance about proposition A by setting Be/(A) = 0 and P/aus(A) = 1. 
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uncertainty in the probability, since, in general, the prob­
ability cannot be pinned down precisely on the basis of 
the available evidence. One benefit of this "extra" uncer­
tainty is that not nearly as many values are required to 
use Dempster-Shafer theory as are required for the Baye­
sian approach. 

Dempster-Shafer theory has many advantages. The 
most frequently stated advantage is the ability to repre­
sent ignorance explicitly. Probability is said to assume 
more information than is given by using the principle of 
maximum entropy to assert equal prior probabilities. 
Cheeseman, however, has countered that "those that 
make these claims fail to show a single unfortunate con­
sequence that follows from this supposed assumed infor­
mation.,,14 

Dempster-Shafer theory has the advantage of explicitly 
representing evidence that bears on a subset of the frame 
of discernment rather than only on singletons within the 
frame. This explicit representation supports the aggrega­
tion of evidence gathered at varying levels of detail. 
Gordon and Shortliffe J3 have stated that this representa­
tion is of great value, since human diagnostic reasoning 
naturally gathers evidence at multiple levels of detail. For 
cholestatic jaundice, for example, a test may indicate 
whether the problem is intrahepatic cholestasis {Rep, 
Cirr} or extrahepatic cholestasis {Gall, Pan}. Dempster­
Shafer theory allows one to represent evidence for the 
single hypothesis, Rep or Cirr, rather than being forced 
to divide it between the hypothesis Rep and the hypoth­
esis Cirr. 

Another advantage of Dempster-Shafer theory is that 
it models the narrowing of the hypothesis set with the 
accumulation of evidence. That is, as evidence is accu­
mulated, the probability mass tends to move down to 
subsets representing more specific statements. For exam­
ple, if ml assigns mass to e and {Cirr, Gall, Pan}, and 
m2 assigns mass to e and {Rep, Cirr}, then ml + m2 will 
assign some mass specifically to {Cirr}. Finally, since 
Dempster-Shafer theory uses probability more loosely 
than a purely Bayesian approach, it does not require the 
many conditional and prior probability values that a 
Bayesian approach would require. 

Dempster-Shafer theory is not without disadvantages, 
however. Chief among them is the fact that although 
Dempster's rule of combination does seem to reflect the 
pooling of evidence (it is commutative; multiple positive 
evidences yield a higher belief than any of the evidences 
on their own, etc.), Dempster and Shafer have merely 
stated the combination rule without rigorously establish­
ing it as valid. Further, the requirement that the singletons 
in the frame of discernment be mutually exclusive and 
exhaustive, and the assumption in Dempster's rule of 
combination that the evidence is independent, may not be 
easily met in some domains. Finally, like Bayes's rule, 
Dempster's rule of combination suffers from computa­
tional complexity, since nearly all the functions require 
exhaustively enumerating all the 29 possible subsets of 
the frame of discernment. Sometimes, the evidence may 
actually be limited to a small subset of 29 , and Dempster­
Shafer theory may be tractable in these instances (see Fig. 
6C). Barnett l5 has developed a linear-time algorithm for 
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computing m and Bel when the hypotheses of interest are 
restricted to mutually exclusive singletons and their ne­
gations. Shafer and Logan 16 have developed a linear-time 
algorithm that computes beliefs and plausibilities for 
hypotheses in a hierarchical tree. Computing the Demp­
ster-Shafer theory functions for subsets of e not in the 
tree, however, is still exponential in the worst case. 

Bayesian probability analysis is generally believed, 
even by the supporters of Dempster-Shafer theory, to be 
the best approach to uncertainty management for those 
situations in which all the inputs required for a Bayesian 
probability analysis are available. Shafer himself wrote, 
"I would like to emphasize that nothing in the philosophy 
of constructive probability or the language of belief func­
tions requires us to deny the fact that Bayesian arguments 
are often valuable and convincing.,,17 Barnett wrote, 
"This is not to say that one should not use Bayesian 
statistics. In fact, if one has the necessary information, 
I know of no other proposed methodology that works as 
well. Nor are there any serious philosophical arguments 
against the use of Bayesian statistics. However, when our 
knowledge is not complete, as is often the case, the theory 
of Dempster and Shafer is an alternative to be consid­
ered.,,15 Shafer echoed this idea, stating that "the advan­
tage gained by the belief-function generalization of the 
Bayesian language is the ability to use certain kinds of 
incomplete probability models."l7 

BELIEF/CAUSAL NETWORKS 
Bayes's theorem provides a statistically correct method 

for handling uncertainty when the requisite prior and 
conditional probabilities are available. Dempster-Shafer 
theory generalizes the Bayesian approach through char­
acterizing each hypothesis by a belief interval rather than 
a single-point probability, but sacrifices the provable 
validity of the approach in the process. Assuming con­
ditional independence between all the various pieces of 
evidence, given a hypothesis, as in Equation 9, similarly 
greatly reduces the number of values required but also 
sacrifices accuracy, as this assumption is rarely valid. 
Bayesian belief or causal networks 18 allow one, working 
with a domain expert familiar with the cause/effect re­
lationships between the variables, to represent precisely 
which statements of conditional independence are, in 
fact, valid. This representation supports efficient compu­
tation of accurate probabilities with a greatly reduced 
number of initial values. 

Belief networks are special directed acyclic graphs 
(DAG'S), where a DAG G consists of a finite set of vertices 
(nodes) V and a finite set of directed edges E connecting 
pairs of vertices such that G contains no cycles. Each 
vertex or node in a belief network is a propositional 
variable, that is, a variable whose value can be one of a 
set of mutually exclusive and exhaustive alternatives. 
Edges in a belief network represent a causal influence of 
one node on another. 

An exemplary belief network that depicts some of the 
cause/effect relationships associated with coastal upwell­
ing is shown in Figure 8. The node labeled upwelling/ 
downwelling represents a propositional variable that 
might take a value in the set {strong upwelling, weak 
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Figure 8. An exemplary belief network that depicts some of the 
cause/effect relationships associated with coastal upwelling. Each 
node in a belief network represents a propositional variable that 
can take on one of a set of possible values. The directed edges 
between the nodes are drawn from direct cause to effect. Thus, 
coastal upwelling is caused or influenced by the orientation of the 
coast, the stratification, the direction of Ekman transport, and the 
wind speed and wind speed duration. The structure of a belief 
network captures conditional independencies between the propo­
sitional variables. Efficient algorithms have been developed that 
exploit these independencies to determine and update probabili­
ties as new evidence arrives using a greatly reduced number of 
initial values. 

upwelling, none, weak downwelling, strong downwell­
ing}. The propositional variables for wind direction, 
coastal orientation, and direction of Ekman transport 
could take integer values in the range [0, 359]. The hemi­
sphere propositional variable could take the values north 
or south and so on for the other variables in the belief 
network. 

The five edges directed into the upwelling node rep­
resent the causal influence of the coastal orientation, the 
stratification, the direction of Ekman transport, and the 
wind speed and wind speed duration on whether or not 
upwelling takes place. The edges coming out of the up­
welling node capture the influence of upwelling on the 
mixed-layer depth, the sea-surface temperature, and the 
presence or absence of a front associated with the bound­
ary between the displaced warmer surface water and the 
cooler upwelled water. 

Nodes in a graph can be described using kinship ter­
minology. If two nodes A and B are connected by a 
directed edge from A to B, then A is said to be a parent 
of B, and B is called a child of A. Following this concept, 
the descendents of a node X, desc(X) , is the set of all 
nodes that can be reached by following successive direct­
ed edges beginning from node X. 

Informally, a DAG is a belief network if the value of 
every node in the DAG is independent of the values of all 
nondescendent nodes, given the values of the parent 
nodes. With reference to Figure 8, discovering the pres­
ence of a front or cooler sea-surface temperatures in a 
coastal region could normally be viewed as evidence for 
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the increased likelihood of a deeper mixed layer, since 
the front or cool sea surface could have been caused by 
upwelling, which would also cause a deepening of the 
mixed layer. If, however, we know for certain whether 
upwelling is occurring, then discovering the presence of 
the associated front or cool sea-surface temperatures does 
not change the probability of a deepening of the mixed 
layer. Thus, p(MLDI U, S, F) = p (MLDI U), where MLD, 
U, S, and, F refer to the propositional variables for rnixed­
layer depth, upwelling, sea-surface temperature, and 
front, respectively. This equality describes a conditional 
independence relationship represented in the belief net­
work and ranges over all values of the propositional 
variables MLD, U, S, and, F. The power of the belief 
network formalism lies in the ability to represent such 
conditional independencies in a natural way and to ex­
ploit them for the efficient and accurate computation of 
probability values using a relatively small set of initial 
values. 

To make use of causal networks for uncertainty man­
agement, one begins with a domain expert who identifies 
the perceived direct causes of each variable. The variables 
and direct causal links are then assembled into a belief 
network that, by definition, must be acyclic. In Figure 8, 
the coastal orientation, the stratification, the direction of 
Ekman transport, and the wind speed and wind speed 
duration are the direct causes of coastal upwelling. 

Next, one must obtain certain probabilities at the var­
ious nodes in the network. At each of the root nodes 
(those without a parent), the prior probability for the 
possible values of the propositional variable is needed. In 
Figure 8, historical observations could provide the prob­
ability associated with various wind directions at a par­
ticular location. Finally, the conditional probabilities for 
the values of the nonroot node variables, given the values 
of their parent node variables, are needed. Neapolitan l 9 

has presented detailed proofs of theorems that show that 
the joint probability distribution of all the variables can 
be calculated from these initial values. Using the joint 
probability distribution, one can obtain the probability of 
any value of any variable, given the values of any other 
variables. The reduction in complexity is significant. 

For example, suppose one is modeling a domain with 
ten binary valued propositional values. Then there are 2 10 

values in the joint probability distribution. Now suppose 
the same domain can be modeled by a causal network 
where there is one root node, one propositional variable 
having one parent, and the other eight propositional vari­
ables each having two parents. In such a situation, only 
seventy values are needed to calculate the entire joint 
probability distribution. 

An important aspect of belief networks is the manner 
in which probabilities are updated when new evidence 
arrives. Neapolitan19 has rigorously derived algorithms 
developed by Pearl18 for updating the probabilities of all 
the propositional variables using only local computa­
tions. The likelihoods of the various potential values for 
each of the variables depend, in general, on all the ev­
idence that has been observed (as shown in Eq. 9). The 
effect of all the evidence on a single node, however, can 
be broken down into a diagnostic element obtained from 
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the network rooted at the node and a causal element 
obtained from the portion of the network above the node. 

Pearl's algorithm uses a message-passing scheme in 
which data need only to be communicated between ad­
jacent nodes. The total impact of the causal evidence for 
a particular node is represented in messages ~rom t~e 
node's parents, and the total impact of the dIagnOStiC 
evidence is represented in messages from the node's 
children. When new evidence arrives in the form of an 
observation of particular value for a variable, messages 
emanate from this node and are propagated throughout 
the network much as a pebble causes spreading ripples 
when dropped in a pond. The network is guaranteed. to 
reach equilibrium, at which time message propagatIOn 
ceases and all the probabilities for all the possible values 
of all the variables have been updated to reflect the new 
evidence. 

It should be noted that Pearl 's algorithm is designed 
for singly connected DAG'S, that is, networks in which 
there are no cycles in the underlying undirected graph. 
Pearl 18 has proposed a scheme that would allow the al­
gorithm to be applied to multiply connected networks that 
are not highly connected. Lauritzen and Speigelhalte~O 
have developed a belief propagation algorithm based on 
graph theory that, although less elegant and intuitive than 
Pearl's, is directly applicable to multiply connected net­
works. 

Causal networks are attractive because they maintain 
consistent probabilistic knowledge bases, require far 
fewer initial values than a naive use of Bayes's rule, and 
impose no conditional-independence assumptions be­
yond those provided by the domain expe:t who enumer­
ates the direct causes of each of the vanables. That ef­
ficient algorithms exist for updating the probabil~ties ~n 
view of new evidence using only local computatIOns IS 
also attractive. A degree of modularity exists that allows 
the conditional probability distribution of a variable, 
given the values of its parents to be modified without 
affectin cr the rest of the network. Portions of the network 

b . 

may be refined, with additional nodes or edges bel~g 
added to reflect a growing understanding of the domam 
without invalidating the work done to defme the rest of 
the network and obtain the needed prior and conditional 
probabilities. Finally, the causal links in the belief net­
work can be used to produce explanations by tracing 
beliefs back to their sources. 

OTHER APPROACHES 
Several other approaches to uncertainty management 

have been proposed or applied to various problems. The 
certainty factors approach21 ,22 was developed for use in 
the MYCIN medical expert system. Thi ad hoc approach 
is largely of historical interest, as it has been shown to 
have inconsistencies, and its developers have gone on to 
promote Dempster-Shafer theory.1 3 

For the PROSPECTOR expert system, rather than provid­
ing the conditional probabilities peE I H) and peE 1-H), 
the domain expert provided the likelihood ratios 
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LS (H, E) = peE I H ) , 
peE I-H) 

and 

p(-EI H) 
LN (H E)= . 

, p(-E I-H) (13) 

The odds-likelihood formulations of Bayes's rule23 

O(H I E) = LS(H, E) X O(H) , 

and 

O(H I-E) = LN(H, E) X O(H) , (14) 

where O(H) = p(H)/p( - H) is the prior odds of H, and the 
posterior odds O(HIE) and O(HI-E) are similarly de­
fined, were then used to compute the updated odds of the 
hypothesis H, given the evidence E or - E. An adva~t~ge 
of this approach is that people seem to prefer glvmg 
likelihood ratios rather than exact probabilities, although 
the values of LS and LN provided were often inconsistent. 
Duda et al.23 outlined methods for dealing with these 
inconsistencies, and PROSPECTOR was successfully used to 
predict the location of commercially significant mineral 
deposits. 

Each of the approaches presented thus far has been 
concerned with uncertainty in the occurrence of an event 
and has, at least, a loose connection to probability theory. 
Fuzzy logic,24,25 by contrast, is altogether different. Fuzzy 
logic is concerned not with the uncertaint'y in th~ ?ccur­
rence of an event, but rather with the ImpreCISIOn or 
vagueness with which a property can be described. Fuzzy 
logic rejects the law of the excluded middle and thus 
denies a dichotomy between truth and falseness. 

Fuzzy logic is based on fuzzy set theory, ~hich ~s so 
named because the boundaries of the sets are ImpreCIsely 
defined. Figure 9 contrasts conventional set membership 
with fuzzy set membership. In conventional set theory, 
a front is either weak, moderate, or strong. Fuzzy set 
theory, on the other hand, allows a front to belong par­
tially to multiple sets at the same time. Once sets have 
been redefined in this manner, methods can be developed 
for specifying the effects of qualifiers such as "very," 
"not," and "rather" on the possibility di tributions of sets. 
Further, it is possible to define a reasoning system based 
on methods for combining distributions via conjunction, 
disjunction, and implication. Fuzzy logic has succes~ful­
ly been applied in control systems for many deVIces, 
including trains, washing machines, and videocassette 
recorders. 

Much debate exists as to the adequacy of probability 
theory for handling reasoning under uncertainty. Cheese­
man has strongly defended probability, claiming that 
Dempster-Shafer theory, certainty factors, fuzzy logic, 
and other approaches "attempt to circumvent some p:r­
ceived difficulty of probability theory, but ... these dif­
ficulties exist only in the minds of their inventors.,,1 4 He 
has further stated that these other approaches are "at best 
unnecessary and at worst misleading." Horvitz et al:26 

listed seven intuitive properties of measures of belief 
from which the axioms of probability are a necessary 

27 H' 126 1 consequence, as shown by Cox. orVltz et a. a 0 

reviewed which of these properties the various nonprob­
abilistic approaches reject and argued that those proper-
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Figure 9. Comparison of two types of set membership. A. Conven­
tional (precise) . B. Fuzzy (imprecise). The vertical axis is the 
degree of set membership. Fuzzy set theory allows an object to 
have partial membership in one or more sets at the same time and 
forms the foundation for fuzzy logic. Fuzzy logic is not concerned 
with uncertainty about the truth of a proposition , but rather with the 
linguistic imprecision or vagueness with which a property can be 
described. 

ties should provide a framework for future discussions 
about alternative mechanisms for uncertainty manage­
ment. 

OES STATUS AND PLANS 
The OES project is in its first year. Early efforts have 

focused on enumerating sources of input, assessing the 
requirements of the user community, defining a provi­
sional system architecture, conducting preliminary knowl­
edge acquisition, representing the coastal-scene descrip­
tion process, and investigating paradigms for reasoning 
under uncertainty. Software that implements the algo­
rithms for updating probabilities in Bayesian belief (caus­
al) networks has been acquired, and implementation of 
the algorithms in Dempster-Shafer theory has begun. 

Current efforts are focused on developing the process 
knowledge base and developing a facility for the automat­
ed construction of a static critical factors chart based 
solely on historical data. Work is progressing toward the 
demonstration of an initial prototype in 1994. Once this 
prototype is completed, current data, the process knowl-
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edge base, and formalisms for reasoning under uncertain­
ty will be drawn on to support the automated develop­
ment and continual refinement of multiple, mission-spe­
cific, dynamic critical factors charts. 
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