
ERIC BOHLMAN

DEVELOPMENT OF A POWERFUL AND AFFORDABLE
SCREEN READER

Tiny talk is a powerful , memory-efficient, and inexpensive screen reader program for blind or otherwise
print-handicapped users of ffiM-compatible computers. It was developed to meet needs expressed by blind
consumers, who participated in all stages of the design and implementation process and played a key role
in providing recommendations and feedback. The program is marketed as shareware, allowing potential
users to determine whether it meets their needs before making a commitment to purchase it. The
development of Tiny talk illustrates how small private-sector developers can produce high-quality and
inexpensive adaptive software by involving consumers in the development process, avoiding stereotypical
preconceptions about the nature of people with disabilities and incrementally improving existing
technology.

INTRODUCTION

A screen reader is a program that lets a blind or dys­
lexic person use a speech synthesizer to access the text
shown on a computer 's video display. It stays in the
background while the user runs application software such
as a word processor or database manager. Screen readers
are adaptive software (system programs that modify a
computer 's user interface to enable a user with a disability
to use other programs) rather than therapeutic or prosthet­
ic software (application programs that enable the user to
perform tasks that an able-bodied person could perform
without a computer).

A screen reader lets a blind user select and read the
sections of the display he or she wants to hear. For ex­
ample, sighted users stop reading a menu when they come
to the item they want; blind users use the screen reader
to silence the synthesizer 's output after they have heard
it. Screen-reader user consider the ability to filter out
irrelevant information as important as the ability to hear
relevant information.

Screen readers would be unnece sary if all application
software programs were specifically designed to u e
speech output. In the early days of speech access, pub­
lishers sold application programs specially designed for
blind users, but this approach was unsatisfactory because
it did not give blind u ers access to most of the programs
that sighted people could use. Since blind people use
computers for the same purposes as sighted users, not as
therapy or compensation for their blindness, they need
access to the entire range of available software.

Computers represent information as electrical signals
that nobody can directly perceive. Sighted users need
technology (a video monitor) to translate this information
into a perceptible form. A screen reader/voice synthesizer
simply performs the same function for a blind user.

A BRIEF HISTORY OF SCREEN READERS
Video displays , in the form of serially interfaced ter­

minals, were first used with computers in the early 1960s,

478

but did not become common until the early 1970s. Early
terminals used a printer rather than a video screen for
output; consequently, application programs output a one­
dimensional stream of scrolling text that could be fed into
a speech synthesizer connected between the computer
and the terminal. The only problem was that the user had
no way to reread text that had already been spoken; this
shortcoming led to the development of the talking termi­
nal , a video terminal equipped with a voice synthesizer
and some extra control logic that let the user move an
audio cursor around the screen display and hear the text. 1

The first personal computer developed in the late
1970s used serial terminals, but manufacturers soon
began building keyboard and video-display logic into the
computers themselves. Those advances changed the way
programs produced output; instead of writing a stream of
characters to an output device, they wrote the characters
into memory locations corresponding to the rows and
columns of the display. Since the computer could now
generate a video signal rather than a stream of character
codes, no "tap-in" point was available to insert a speech
synthesizer. Programmers started taking advantage of the
two-dimensional nature of the display by writing full­
screen rather than line-oriented programs.

One way to access the displayed characters was to add
extra circuitry to shadow the display memory and provide
talking-terminal functions. The problem with that ap­
proach was the expense of the extra circuitry and the lack
of standardized interfaces for equipment that needed
access to internal memory. Manufacturers would need to
produce separate units for each computer model, and
installation would require special modifications to the
computer. A few manufacturers developed computers
designed specifically for blind users, but they were un­
satisfactory for the same reason that special talking soft­
ware was unsatisfactory: blind users could not use main­
stream computers.

f ohns Hopkins APL Technical Digest, Volume 13 . Number 4 (1992)

The second approach was to extend the computer 's
operating system with code to monitor the display mem­
ory and send the text to the speech synthesizer. In the late
1970s and early 1980s, Maggs and others2 developed
screen-reader programs for computers such as the Apple
II, the Radio Shack TRS-80, and the many computers that
used CP/M operating systems that existed at the time. Most
of them offered few facilities because they had to share
the very limited memory available at the time with ap­
plication software. When I developed a screen-reader
program for the Commodore 64 (the 64Reader, marketed
by OMS Development in the mid-1980s), the entire code
had to fit into 8 kilobytes.

The introduction of the IBM personal computer in 1982
removed many of the constraints that had kept screen
readers in a primitive state by providing a standard in­
terface for connecting external devices, a standard oper­
ating system, and the possibility of installing much more
memory. By the late 1980s, several screen-reader pro­
grams were commercially available; examples included
Enable Reader, Soft Vert, and the Enhanced PC Talking
Program.

HOW TINYTALK CAME ABOUT
The screen readers of the late 1980s still fell short of

providing blind users appropriate access to screen dis­
plays. The trend toward full-screen applications had
continued, and programmers were using attributes such
as color and reverse video to convey information. Modem
application programs were using pop-up windows, light­
bar menus, and fill-in-the-form data-entry fields, but
screen readers could not automatically read these fea­
tures; users had to stop what they were doing and enter
a review mode to navigate around the screen and find out
what had been displayed. As more memory became
available, both screen readers and application programs
got bigger, and some large application programs could
not be used with speech.

Screen-reader suppliers often acted as if third parties
such as rehabilitation and special education agencies,
rather than blind computer users, were their ultimate
customers. Their products often seemed to be designed
to impress sighted rehabilitation counselors rather than to
be of use to blind computer users, and their marketing
efforts were directed at administrators who often had
little computer knowledge. That focus kept them from
discovering what features the ultimate users actually
wanted and needed. The assumption that third parties
would pay for the software kept prices too high for in­
dividual users; although computer prices were dropping
rapidly, screen readers typically cost more than $400 per
copy, and the combination of screen reader and speech
synthesizer often cost more than the computer itself.

By late 1989, many blind computer users who knew
of my earlier work with the Commodore 64 were urging
me to develop a screen reader for IBM-compatible com­
puters. Although I was hesitant to do so because of the
number of screen readers already on the market, conver­
sations with these users and messages posted on comput­
er bulletin boards convinced me that an unserved market
still existed for a powerful, low-cost, and memory-effi-

f ohns Hopkins APL Technical Digest. Volume 13, Number 4 (1992)

cient screen reader. I learned that many users were strug­
gling with outdated software, running illegal copies of
commercial screen readers, or trying to make do with
limited demonstration versions of the newer programs.
After a little more prodding (including a donation of an
Echo GP voice synthesizer by a particularly impatient
user), I began to develop Tiny talk.

I first concentrated on implementing a minimal set of
screen-reader features using as little memory as possible.
As the project gained momentum and positive comments
were received from early testers, all of whom were ex­
perienced blind computer users, I started adding exper­
imental features such as automatic monitoring of multiple
areas of the screen (windows), ways to specify not only
when to read a window but how to read it (e.g., reading
only text in a certain color or only lines that scrolled into
the area), and reading field prompts and values as the user
moved through a data-entry screen. Throughout this pro­
cess, I was in constant contact with the testers, who kept
me on the right track whenever I introduced a feature that
was awkward to use or omitted some function that they
needed. I broadened the base of testers by making test
copies of Tiny talk available for the asking on computer
bulletin boards (the program was presented as-is as an
experimental program with no guarantees of support).

By late 1990, it was apparent that Tiny talk would be
commercially viable, and I started developing versions
for synthesizers other than the Echo. I set a target of mid-
1991 for release and decided to market Tiny talk using the
shareware method, which would avoid large up-front
advertising and distribution costs on my end and encour­
age potential customers to try the program. Tiny talk be­
came commercially available in April 1991 and continues
to evolve.

THE FEATURES OF TINYTALK
Tiny talk is a memory-resident program that uses less

than 27 kilobytes of computer memory. A separate ver­
sion of the program is run for each voice synthesizer; this
arrangement keeps memory usage to a minimum because
the program does not have to store command tables for
synthesizers not being used. Tiny talk provides the user
with all of the standard features that screen-reader users
have come to expect, as well as advanced features that
let the user make application programs speak as naturally
as possible.

Tiny talk automatically reads teletype-style output
written through the operating system, echoes keystrokes
as either words or letters according to the user's prefer­
ence, and provides a review/control mode where the user
can freeze the application program, read selected portions
of the screen, and change synthesizer settings such as
speed and pitch. Since most application programs write
directly to screen memory rather than through the oper­
ating system, Tiny talk lets the user set up areas of the
screen that will be read whenever they change.

Tiny talk was one of the first screen readers to search
the screen for box-enclosed pop-up windows and read
them as they appear, and can track light-bar menus even
if the application program does not move the actual dis­
play cursor. The user can specify how much text to read

479

E. Bohlman

when using the an-ow keys to move the cursor in the
application program ' options include reading whole line,
characters, words, or ections of columns. Tiny talk stores
up to thirty configurations (lists of operating modes, syn­
thesizer parameter, and window definitions) in memory
at one time, and switches to the appropriate one when the
user runs an application program. The user can have
separate configurations for each screen within an appli­
cation program; Tiny talk switches between the screens on
the basis of the presence of identifying text.

Tiny talk has "hot keys" that let the u er review parts
of the screen without having to go into review mode;
these functions can be assigned to whatever keystroke
combinations the user prefers. The user can also assign
labels that are spoken whenever a certain key is pressed
and can save and restore configurations to and from di k
files.

Tiny talk supports most commercially available voice
synthesizers including orne very inexpensive one . It
can even generate peech (albeit of very low quality)
through the computer's internal speaker. Tiny talk was
written using Borland International's Turbo C+ + com­
piler and TASM assembler.

THE SHAREWARE MARKETING METHOD
Tiny talk is marketed as shareware by OMS Develop­

ment; a user can evaluate a fully functional copy of the
program before committing to buy it. The user is legally
obligated to purchase (register) the program for $75 if he
or she decides to continue using it after evaluation; this
process is handled on the honor y tern. The evaluation
copy is not crippled in any way; the only difference from
the registered copy is that it makes the user listen to a
thirty-second commercial when it is loaded.

Although the shareware method has become a popular
way of marketing all kinds of main tream oftware, it ha
seldom been used for adaptive or other special needs
programs. We decided to use it as an effective way to
market Tiny talk directly to end users without incun-ing
large up-front expen es for packaging materials, adver­
tisements, presentations at conventions, or dealer promo­
tions (these costs are often cited to explain why adaptive
software ha been 0 expensive). Customers also benefit
because they know that when they commit to buy Tiny­
talk they will be getting a screen reader that meets their
needs, since they have already been using it. The user can
pass the evaluation copy along to others, so we get the
benefit of word-of-mouth recommendations for our
software.

THE FUTURE OF TINYT ALK
By its nature, a screen reader is never finished; it

always has to catch up with new developments in appli­
cation programs and operating systems. At OMS Devel­
opment, we are continuing to develop Tiny talk by adding
new features, improving old ones, and supporting new
voice synthesizers as they come on the market. We are
committed to enabling Tiny talk to use the new multime­
dia sound devices for speech output; as mass-produced
consumer products rather than special-needs items, they

480

are widely available at low prices. Tiny talk already sup­
ports two such devices, the SoundBlaster from Creative
Labs and the Speech Thing from Covox.

We intend to expand the market for Tiny talk beyond
blind users. Many dyslexic users, for example, could use
its creen-reading facilities. One person who has difficul­
ty telling when she has applied enough pressure to a key
has used Tiny talk's keystroke echo facility; a $400, 100-
kilobyte program would be overkill for this kind of ap­
plication, but Tiny talk's low price and compactness make
it feasible. We also intend to develop screen readers that
can work in graphics-mode operating environments such
as Microsoft Windows, which have only recently become
acces ible by speech.

BARRIERS TO THE DEVELOPMENT OF
ADAPTIVE SOFTWARE

I developed Tiny talk to fill a market void created by
the carce, expensive, and unsophisticated nature of much
of the creen-reading software available at the time.
Adaptive software in general has had many of these
problems, and I believe that most of them have been
caused by attitudinal barrier rather than by technological
challenges. One such barrier is the view that the lives of
the disabled center around their disabilities. This belief
has led software developer to regard adaptive software
as being therapeutic or life-supporting, needing to be
customized for each user on the basis of diagnosis or
etiology.

Thi model has distorted the marketplace for adaptive
software by fostering the notion that it can be developed
and marketed only by special companies that must recov­
er their start-up and operating expenses from a small
number of customers. The result is that individual users
cannot afford the software, so the companies are forced
to deal mainly with institutional customers. In doing so,
companies incur additional co ts and end up basing prod­
uct designs on what professionals think their clients need
rather than on the functional needs of the end users.

Under the resulting system, potential users often need
to obtain funding from third parties such as governmental
agencie or charitable organizations to purchase adaptive
software. These agencies u ually can purchase only pro­
grams directly related to immediate and narrowly defined
vocational or educational goals, and even then funding is
difficult to obtain. Instead of the user evaluating possible
tools and purchasing the one that best fits his or her needs,
the agencies evaluate the user and attempt to prescribe
a treatment. Thus, the attitude that adaptive software is
somehow special discourages the development of afford­
able standard-product solutions to common problems and
cuts the real customer out of the product development
process.

A second barrier to the development of adaptive tech­
nology is the belief that progress consists only of major
breakthroughs rather than continuous, small improve­
ments of existing technology. Although this attitude af­
fects all technological development, it has a particular
impact on adaptive technology because the field is per­
ceived as esoteric. Small companies and individual de-

Johlls Hopkins APL Technical Digest, VolLime 13 . Number 4 (1992)

velopers often believe that they do not have the resources
to develop computer access tools , and that only heavily
funded research groups in large corporations and univer­
sities can achieve progress in computer access.

Research projects often focus on the technology rath­
er than the functional needs of the users , resulting in
programs and devices that are technically elegant but
cannot be practically produced at prices users can afford.
They frequently concentrate on areas that translate into
marginal product features; for example, many of the de­
velopers of early reading machines put more effort to­
ward the marginal goal of making the speech output
sound as human as possible than they put toward the
essential goal of getting reliable character recognition
(personal communication with Harvey Lauer, 1985).

The third barrier is the lack of dissemination of infor­
mation on adaptive technology. Consumers frequently do
not know what technology is available, because no sys­
tem is in place for getting the information to them. Com­
panies develop products that merely duplicate existing
ones with no improvement because they are not aware of
what others have done and do not find out what the real
customers want.

A CUSTOMER-DRIVEN STRATEGY
FOR DEVELOPING QUALITY
ADAPTIVE SOFTWARE

An alternative to the medical/institutional model is the
message of the disability-rights movement: a person with
a disability is rust of all a person, one who is more like
than unlike other people. This view leads to the idea that
adaptive software is more like than unlike other software:
it should be developed by the same kind of companies
that develop other software, marketed like general soft­
ware, and priced so that customers can afford to buy it.
Consumers should be routinely involved in all phases of
product development, just as they increasingly are when
other products are developed. In short, since people with
disabilities are people rust, products used by people with
disabilities should be products first.

Such a view of adaptive software should encourage
software producers to include adaptive programs in their
product lines, allowing the cost of administration and
development tools to be amortized over a larger market
and resulting in prices that customers can afford without
outside funding. If developers see adaptive programs as
commodity products rather than custom engineering ef­
forts , they will be more likely to produce-rather than
hundred-bladed Swiss Army knives-tools that do one
job, do it well, and work in conjunction with other tools.

Entrepreneurs without the resources to develop expen­
sive new technology can make significant contributions
to computer access by refining and improving existing
technology. Reducing the memory usage of screen read­
ers, designing a compact and inexpensive track-balI-con­
trolled keyboard emulator, developing text-magnification
software for popular word processors, and writing a word

Johns Hopkins APL Technical Digest. Volume 13. Number 4 (1992)

Development of a Powelful and Affordable Screen Reader

predictor that works well with other companies ' alterna­
tive input devices are all examples of incremental im­
provements that small software developers have accom­
plished without large financial resources. These develop­
ments have enhanced computer access for people with
disabilities as much as many highly funded research
projects have.

Computerized communication networks such as bulle­
tin board systems and commercial on-line services can
play an important role in breaking down information
barriers and bringing developers, consumers, and third
parties together. Consumers can share information about
what works well and what does not, and can find out what
is available. Developers can quickly learn what current
or potential customers want, and counselors, educators,
and other third parties can keep up-to-date on the latest
advances.

Tiny talk has been successful because its development
followed a customer-driven strategy. At OMS Develop­
ment, we can profitably sell it for $75 because adaptive
software is not our only business; our capital expenses
are spread over a broader customer base. Tiny talk is not
bloated with features such as alarm clocks or phone
dialers, because it works well with existing general-pur­
pose programs that can perform these functions. By
building on and improving existing concepts rather than
reinventing the wheel, we were able to develop Tiny talk
within our means. We hope that other small software
firms will realize that adaptive software development is
not as arcane as is commonly believed and will produce
simple, low-cost solutions to common computer access
needs if the proper strategy is used.

REFERENCES
I Stoffel , D., "Talking Tenninals ," Byte 7(9), 218-227 (Sep 1982).
2Maggs, P. B., "Adapting Personal Computers for Blind and Speech­

Handicapped Users," Johns Hopkins APL Tech. Dig. 3(3), 258 -26 1 (1982).

ACKNOWLEDGMENTS : Most of the credit for the success of Tiny talk goes to
the users who requested its development and put in the time and effort to test and
evaluate the many interim versions that I developed. I also wish to thank the
Committee on Personal Computers and the Handicapped (COPH-2) for kindling my
interest in adaptive technology.

THE AUTHOR

ERIC BOHLMAN is the owner of
OMS Development, a software de­
velopment firm based in Wilmette,
Illinois. He received his B.A. in
mathematics and computer science
from Knox College in 1980. Mr.
Bohlman is a member of the Com­
mittee on Personal Computers and
the Handicapped and administered
its national computer bulletin
board service for several years.

481

