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THE NUMBER OF TESTS NEEDED TO DETECT AN 
INCREASE IN THE PROPORTION OF DEFECTIVE 
DEVICES 

One of the questions most frequently brought to a statistician is, How many tests will I need to run to 
detect an increase in the proportion of defective devices in a group? Minimizing the number of tests is 
important, since destructive testing of expensive devices is often involved. Different approaches can be 
used, depending on the assumptions made and how the testing is conducted. Five approaches are 
summarized in this article. 

INTRODUCTION 

Testing program exist to detelmine if an increase has 
occurred in the proportion of defective devices in a group 
in relation to an initial value. The type of device being 
evaluated may be a complex system with many compo­
nents, assemblies, and subsystems (e.g., rocket motors) 
or a single component of a system. At APl, missile sys­
tems are analyzed to detect a significant decrease in 
reliability, that i ,a ignificant increase in the proportion 
of missiles that will fail. The number of missiles to be 
tested, the ample ize, must be determined. 

Binomial ampling to estimate a proportion of defec­
tive devices entail taking a random sample from a larger 
group and then cIa ifying the devices as either defective 
or nondefective. The number of defective devices in the 
sample divided by the number of devices tested is an 
estimate of the proportion of defective devices in the 
larger group. (More devices may be defective because of 
aging chemical cOlTosion of parts or cracks from the 
cumulative effect of environmental stresses.) The num­
ber of tests one mu t conduct to detect an increase in the 
defective proportion is especially important when de­
structive testing of expensive items is involved. The nec­
essary sample size will depend on the initial proportion 
of defective devices, the amount of the increase in the 
defective proportion one wishes to detect, and the con­
fidence one want to have in the decision. The necessary 
sample size determines the number of devices to be tested 
and helps quantify the cost of the testing program. 

The question to be answered by the testing and the 
different types of risks to be considered can lead to 
different statistical methods. The five methods discussed 
in this article, the first three of which have been used at 
APL to detetmine the number of missiles to be tested in 
weapon system evaluations, are as follows: 

1. Fisher 's Exact Te t: tests whether two amples have 
the same proportion of defective device . 

2. One-Sample Neyman-Pearson Test: tests one sam­
ple against two pecific proportions of defective devices 
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(the initial defective proportion and an increase by a given 
amount). 

3. Two-Sample Neyman-Pearson Test: tests two sam­
ple for an increase in the defective proportion by a given 
amount between the first and second samples. 

4. Sequential Testing (also a Neyman-Pearson Test): 
te ts a sample against two specific proportions of defec­
tive devices; a statistical test is made after observing 
whether each device is defective or nondefective to de­
cide whether to accept one of the two values or to test 
another device. 

5. Double Sampling Plan Test (also a Neyman-Pear­
son Test): tests a sample against two specific proportions 
of defective devices; the testing occurs in two groups, and 
a statistical test is made after the first group is tested to 
decide whether to accept one of the two values or to test 
the second group before deciding between the two values. 

STATISTICAL FRAMEWORK 
Sample sizes are u ually detetmined in the context of 

statistical hypothesis testing. Statistical hypothe is test­
ing has a particular framework and set of concept and 
terminology into which a testing problem must be struc­
tured. For example, if one decides that the proportion of 
defective devices has increased when in fact it has not, 
thi is a false alarm, and the false alatm rate i called Ci . 

On the other hand, if one decides that the defective pro­
portion has not increased, when it has, this is another 
mistake, a failure to detect, and its probability i called 
{J . Optimally, the probabilities of these two elTors will be 
small; in textbooks Ci is usually set to 5% to indicate an 
event unlikely by chance alone. In a statistical context, 
confidence is the probability of correctly declaring that 
no increase has OCCUlTed and is equal to 1 - Ci (or 95 % 
if Ci = 5%). The probability of correctly declaring that an 
increase has occurred is called power and is equal to 1 - {J. 
Of course, one would like to have high confidence and 
high power in the testing, but to do so would require many 
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tests. Determining acceptable levels for ex and 13 is part 
of the problem formulation. In this article, a 25 % false 
alarm rate and a 75 % power will be used to limit the size 
of the examples. The choices of ex and 13 should be 
determined by the consequences of the two types of 
errors. If one of the two is more serious than the other, 
then the probability of that error should be set to a small 
value and the other probability made considerably larger. 
On the other hand, if one is equally concerned about the 
two mistakes , then ex and 13 can be equal. 

The probabilities ex and 13 are sometimes called pro­
ducer's risk and consumer 's risk, respectively. Imagine 
that a lot of identical components is received and in that 
lot a certain maximum proportion of defective items is 
acceptable. A sample of the lot is usually taken and tested 
to decide whether to accept or reject the whole lot. An 
incorrect decision to reject the lot is a false alarm and is 
a risk to the producer of the items (ex). To decide incor­
rectly to keep the lot is a failure to detect the larger 
proportion of defects and is a risk to the consumer of the 
items (/3). If the acceptance criterion is very stringent 
(very low consumer' risk, 13) , many good lots will be 
rejected, resulting in a high producer's ri sk (ex). If the 
acceptance criterion is very loose (high consumer 's risk) , 
many bad lots will be accepted (low producer s risk). 
Thus, a trade-off exist between the two types of risk. 

We assume in this article that the testing can be 
modeled by the binomial probability di tribution. The 
assumptions for the binomial model are as follows: 

1. The testing of each item will result in a classifica­
tion of either defective or nondefective. 

2. A constant proportion of defective items, denoted 
by p, exists in the population of items tested. 

The probability of a certain number of defective de­
vices (x) in a sequence of tests (n) can be computed as 

where 

(nJ n! 
x - x!(n -x)!' 

The number of tests required is also a function of the 
initial proportion of defective devices and the amount of 
increase one wishes to detect with the preestablished 
amounts of ex and 13 risks. To illustrate the procedures and 
computations used in testing, in this article the initial 
proportion of defective items is 0.15, and the amount of 
increase to be detected is 0.25. The assumption of no 
change in the defective proportion is called the null hy­
pothesis, which is denoted by Ho. The assumption of an 
increase in the defective proportion is called the alterna­
tive hypothesis , which is denoted by HA • The null and 
alternative hypotheses are written as 

Ho: p = 0.15 versus HA : P = 0.40 

or 

Ho: No Increase versus HA : Increase of 0.25. 
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Table 1 shows the decisions that can be reached and the 
associated probabilities of cOlTectly or incolTectly mak­
ing those decisions. 

Table 1. Summary of decisions and probabilities. 

Decision reached 

Ho: No increase 

H A : Increase 
of 0.25 

FISHER'S TEST 

Actual situation 
HO: HA : 

No increase Increase of 0.25 

Confidence = 
I-a 

Failure to detect = 
(3 

False alarm = a Power = 1 - (3 

Ronald A. Fisher l publi hed a test in 1934 variously 
known as the Fisher-Yates Test, Fisher's Exact Test, or 
Fisher-Irwin Test. Fisher's Test is a hypothesis test used 
to determine whether two binomial samples (the number 
of defective and nondefective devices in the two samples) 
can reasonably be expected to have the same proportion 
of defective devices. The acceptance or rejection of the 
hypothesis of no increase in the proportion of defective 
devices is based on computing the probability of the 
observed sets of defective and nondefective devices and 
also on more extreme sets with the same total number of 
defective devices: 

where nl is the first sample size, n2 is the second sample 
size, XI is the number of defective devices in the first 
sample, and X2 is the number of defective devices in the 
second sample. If this probability is less than or equal to 
the prespecified false alarm rate, the null hypothe is is 
rejected, and the statement is usually made that an in­
crease in the defective proportion has been detected at an 
ex(lOO%) risk level. Note that power (the probability of 
correctly deciding an increase has occurred) is not used 
in Fisher's Test. 

The sample size is derived by ensuring that the false alarm 
rate (probability of declaring an increase when no increase 
has occurred) is no more than 25% in all cases for equal ize 
samples with defective proportions differing by 0.25 or less. 
The smallest sample size for which the false alarm rate will 
be less than 25% is 12 (Table 2). 

ONE-SAMPLE NEYMAN-PEARSON TEST 
Jerzy Neyman and Egon Pearson2 published a paper 

in 1933 that formulated the two types of errors (false 
alarm and failure to detect) discussed in the Statistical 
Framework section. The Neyman-Pearson Test is a hy­
pothesis test designed to maximize the probability of 

327 



J. K Telford 

Table 2. Possible outcomes for Fisher's Test for a sample size 
of 12. 

Initial sample 
(x/n,)a 

0/12 
1/12 
2/12 
3/12 
4/12 
5/12 
6/12 
7/12 
8/12 
9/12 

Second sample 
(x2/n2)b 

3/12 
4/12 
5/12 
6/12 
7/12 
8/12 
9/12 

10/12 
11/12 
12/12 

False alarm 
rate (%) 

11 
16 
19 
20 
21 
21 
20 
19 
16 
11 

ax, = number of defective devices in the fir t ample, n, = first 
sample size. 
bX2 = number of defecti ve devices in the econd sample, n2 = 
second sample ize. 

correctly deciding that a change has occurred (the power 
of the test is maximized for a selected false alann rate; 
see Table 1). The one-sample test compares one set of 
data with two hypotheses having certain proportions of 
defective devices. For example, the question could be 
stated as: Is the current defective proportion, p , 0.15 (Ho) 
or 0.40 (HA)? The test is used to determine whether the 
observed result (and those more extreme) are more like­
ly to have come from the Ho or the HA values of p and 
also to maximize the power of the test for a given false 
alarm rate. Bartlett3 ummarizes the major contributions 
of Neyman and Pearson to the foundations of statistical 
hypothesis testing by observing that " . .. there is no 
doubt that the general theory clarified considerably the 
current statistical procedures, and in particular counter­
balanced Fisher ' overemphasis of the null hypothesis , 
with its concomitant neglect of the consequences if al­
ternative hypotheses were true." 

Figure 1 is an example of the four probabilities in Table 
1 computed u ing the binomial probability distribution 
and assuming one decides that the defective proportion 
is 0.40 (has increa ed by 0.25) if there are two or more 
defective devices in the sample. The green area in the Ho 
histogram (Fig. lA) is the probability of a false alarm (ex), 
and the red area in the HA histogram (Fig. IB) is the 
failure to detect probability ({3). 

The sample size is determined by increasing it until the 
probabilities of both types of mistaken decisions (false 
alarm and failure to detect) are sufficiently small. These 
probabilities for ample sizes of 6, 9, and 12 are given 
in Table 3. Trade-offs between false alann rate and power 
for different rejection criteria for the same sample size 
(12) are seen. For the same power, the false alarm rate 
decreases as the sample size increases. In addition, the 
power increases as the sample size increases for approx­
imately the same false alarm rate. Because the binomial 
distribution is discrete, exactly 25 % false alarm rates and 
75% powers usually cannot be achieved for any given 
sample size. 

A feature of the one-sample Neyman-Pearson Test is 
that the deci ion can be reached that an increase of 0.25 
has occurred before the defective proportion is as high 
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c=::::J Confidence, 1- a = 78% 

_ False alarm rate, a = 22% 
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Figure 1. Histograms of the binomial probability for the number 
defective. A. Probability given p = 0.15 (Ho). B. Probability given 
p = OAO (HA). 

Table 3. One-sample Neyman-Pearson Test for sample sizes 
of 6, 9, and 12. 

Sample Criterion: reject Ho if False alarm Power 
size the number defective is rate (%) (%) 

6 2 or more 22 77 
9 3 or more 14 77 

12 4 or more 9 77 
12 3 or more 26 92 

as that hypothesized by HA- The decision to reject Ho in 
favor of HA can be reached with 2 defectives out of 6, 3 
defectives out of 9, or 4 defectives out of 12. The defec­
tive proportion is consistently 0.33. That is, an increase 
in the proportion of defective devices to 0.40 can be de­
tected before it is estimated as high as 0.40, since the test 
determines whether the data are more likely to have come 
from a binomial distribution with p = 0.15 or p = 0.40. 

TWO-SAMPLE NEYMAN-PEARSON TEST 
The two-sample Neyman-Pearson test is used to com­

pare two samples to decide whether the estimates from 
the two sets are more likely to be estimating the same 
defective proportion or if the second sample is estimating 
another defective proportion that is 0.25 greater than the 
first. The uncertainty in the two estimates is taken into 
account by this approach. An approximation using the 
normal distribution will be used, although the adequacy 
of the approximation may be questioned. The usual rule­
of-thumb that both np and n(1 - p) should be at least 5 
may be satisfied, however. 
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The null and alternative hypotheses can be written as 

Ho: P2 - P I = 0 versus HA: P2 - P I = 0.25 , 

where P I is the defective proportion in the first sample 
of size n I, and P2 is the defecti ve proportion in the second 
sample of size n2' The variance of the estimate of a 
binomial parameter P is p( 1 - P )In. The variance of the 
difference in the defective proportions is PI(l - PI)ln l 
+ P2( 1 - P2)ln2' Under the hypothesis of no change in the 
defective proportions, the variance of the difference can 
be simplified to p(l - p)(1ln l + Iln2), where P is the com­
mon defective proportion. 

Figure 2 shows the distributions of the estimates of the 
difference between two defective proportions given ei­
ther Ho or HA. The centers of the Ho and HA curves are 
placed at 0 (no increase) and 0.25 (the increase we ~ish 
to detect), respectively. The area under each curve IS 1 
or 100%. The vertical line dividing the red and green 
areas is called the critical value and is the boundary at 
which we change from deciding that no increase in the 
defective proportion has occurred to deciding that an 
increase has occurred. The red and green areas are the 
probabilities of mistaken decisions (# and a , respective­
ly). Moving the critical value to the right or left will 
decrease or increase a with the opposite effect on #. By 
placing the critical value at the point where the .density 
curves intersect, # will be slightly larger than a , smce the 
HA curve is more spread out than the Ho curve. Increasing 
the sample size increases the steepness of the curves. The 
sample size for testing is determined by increasing the 
sample size until the prespecified values for a and # are 
met. From Figure 2 we can see that 

ZCi~Var( pl - P2) IHo +Z (1 ~Var( pl - P2)iHA =0.25. 

The coefficients Za and Z{3 are values from the normal 
probability distribution and are determined by the spec­
ified false alarm rate and power. 

The sample size needed to detect a 0.25 increase in the 
defective proportion from 0.15 to 0.40 can be derived 
assuming the same number of samples for the two sets 
of observations, a 25 % fal se alarm rate, and a 75% power 
as follows: 

O. 6745~ (0.15)(0.85)(2 In ) + 
0.6745~(0 . 15 )(0.85 )(1 I n) + (0.40)(0.60 )(l In ) =0.25. 

o~ 0.25 Increase in 
/ ~ proportion 

___ ~--,--,---,--- defective 
Z(Y. Var (P1 - P2) I Ho Z{3 Var (p1 - P2) I HA 

Figure 2. Distributions of increase in the defective proportion for 
the two-sample Neyman-Pearson Test. 
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Solving for n yields a necessary sample size of 9 for each 
of the two sets of observations. 

SEQUENTIAL TESTING 

Sequential sampling was developed by Abraham Wald4 

in 1944. Sequential testing is another form of the Ney­
man-Pearson test similar to the one-sample test in that 
the decision is made as to which of two fi xed proportions 
of defective devices the observed test results more likely 
represent. Rather than testing all devices in the required 
sample size and then deciding which of the two propor­
tions is more likely, the decision is made after each test 
result (defective or nondefective) whether to accept one 
of the two proportions or to test another device. Testing 
proceeds one device at a time, and the number of devices 
that will be tested is not known in advance. An expected 
number of devices to be tested can be computed, which 
is usually about half the fixed sample size required, since 
large increases in the defective proportion or a very low 
defective proportion will be detected early in the testing. 
To avoid the possibility of a very large sample size, a 
truncated sequential testing plan can be devised. 

The statistical test after each observed test result (defec­
tive or nondefective) can be conveniently performed by 
plotting the number of tests and the number of defective 
devices on a graph where the shaded areas indicate accep­
tance of one or the other of the defective proportion , and 
the un shaded area indicates the need to continue testing 
devices. The fal se alarm rate and the failure-to-detect prob­
ability must be chosen in advance to implement the se­
quential testing procedure. Figure 3 is an. ~xample of ~he 
graph resulting from having a 75% probabIlIty of detectmg 
a defective proportion of 0.40 and a 25% fal se alarm rate 
if the defective proportion is 0.15. The formulas used to 
develop Figure 3 are given by Crow et a1.5 

A truncated sequential test limits the number of tests. 
The truncation point for this example could be 11 devic­
es, although a truncation point of 12 will be used here 
to be comparable with the fixed-sample-size test (one­
sample Neyman-Pearson test). The possible outcom.es 
and the associated decisions for the truncated sequential 
test with binomial data are shown in Figure 4. To compute 
the expected number of devices to be tested until a de­
cision is reached that the defective proportion is 0.15 or 
0.40, the probabilities of reaching the decision points 
must be calculated. From these probabilities, the expect-

6 
Impossible 

Q) 
> Decide P = 0.40 U 
Q) 

4 ID 
"0 

Q) 
.0 
E 2 Continue testing 
~ 

z 
Decide P= 0.15 

0 
0 2 4 6 8 10 12 

Number of devices tested 
Figure 3. Sequential testing procedure. 
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Figure 4. Truncated sequential testing procedure. 
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ed sample sizes are computed. The expected sample size 
when the proportion defective is 0.15 is 5.5 , and when 
the proportion defective is 0.40, the expected sample size 
is 5. The false alarm rate and power can also be computed 
using the probabilitie of reaching the boundary points. 
The false alarm rate is 16%, and the power is 75%. By 
comparing this false alarm rate and power with those in 
Table 3, we find that a test with a fixed sample size of 
9 is the closest to the sequential tests with expected 
sample sizes of about 5. This comparison (9 versus 5) 
demonstrates the expected savings in the number of de­
vices to be tested for a sequential test. 

DOUBLE SAMPLING PLAN TEST 
The double sampling plan test is also based on the 

Neyman-Pearson test and is an intermediate type of test­
ing plan that incorporates features of a fixed-in-advance 
sample size approach and a sequential, one-at-a-time test­
ing procedure. A double sampling plan entails testing all 
the device in the fir t group (usually one-half or one­
third of the total testable devices). If a certain minimum 
number of defective devices is found, the decision is 
reached without further testing that the lower of the two 
proportions is correct. If a certain maximum number of 
defective devices is equaled or exceeded, a decision is 
reached without further testing that the higher of the two 
proportions is correct. If an intermediate number of de­
fective devices is found in the first group of tests , the rest 
of the devices are te ted, and the decision between the 
two proportions is reached on the basis of the total de­
fective devices. See Crow et al.5 for a discussion of 
double sampling in quality control. 

A double ampling plan test is illustrated in the boxed 
insert. Let the two samples be six device each. A deci­
sion rule for deciding to accept one of the two proportion 
from the first sample only and for deciding between the 
proportions from both samples is evaluated by computing 
the false alarm rate and power when using the rule. Let 
Xl be the number defective in the first sample and X2 the 
number defective in the second sample. 

The expected number of devices to be tested is 9.5 if 
the proportion defective is 0.15 and 9 if the proportion 
defective is 0.40. The false alarm rate for this double 
sampling plan is 25%, and the power is 87%. 

This double sampling plan can be used, since the 
power and false alarm rate are wi thin the 75 % and 25 % 
specifications. This double sampling plan is comparable 
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DECISION RULE FOR DOUBLE SAMPLING PLAN 

Decide p = 0.15 if X I = 0 out of the first 6. 

Decide p = 0.40 if Xl = 3 or more out of the first 6. 

If X I = 1 or 2, test the econd sample of 6. 

Then decide p = 0.40 if Xl + X2 is 3 or more. 

Decide p = 0.15 if XI + X2 is 2 or less. 

Region Where p = 0.40 Deci ion Is Made 

XI = 3, 4, 5, or 6 

XI = 1 and X2 = 2, 3, 4, 5, or 6 

Xl = 2 and X2 = 1, 2, 3, 4, 5, or 6 

to the fixed sample size of 12 in Table 3. The expected 
sample size of 9.5 and 9 may represent significant sav­
ings over the fixed sample size of 12. 

Many other possible double sampling plan can be 
devised, such as using four te ts in the first sample and 
then eight in the second sample. The false alarm rate and 
power must be calculated for each to see if the proposed 
sampling plan meets the specifications for false alarm 
rate and power. As stated by Burington and May,6 "A 
systematic trial and error method is thu evolved for 
building various sampling plans of interest." Some stan­
dard test procedures with double sampling plans for 
quality control are cataloged in MIL-STD-IOSD, Sampling 
Procedures and Tables f or Inspection by Attributes. 
These plans, however, usually apply to rather small false 
alarm rates and high powers. The plans generally assume 
that the first and econd sample are of equal size or that 
the second sample is twice the ize of the first sample. 
An extension of double sampling called multiple sam­
pling5 or grouped sequential ampling6 might also be 
useful when testing is performed in groups of devices. 

CONCLUSIONS 
Fisher's Test can be used when one is only concerned 

about the false alarm rate and the sample sizes are small. 
Concern exists , however, that Fisher 's Test is not pow­
erful; consequently, several alternative tests have recently 
been published in the statistical literature. One of the 
Neyman-Pearson approaches should be considered when 
a certain increase in the proportion of defecti e items 
needs to be detected with a given false alarm rate and 
power. The one-sample Neyman-Pearson test requires a 
relatively small number of tests , but it assumes that the 
value for the initial defective proportion is known per­
fectly. The same is true for the formulation of the se­
quential and double sampling plan tests. The two-sample 
Neyman-·Pearson test incorporates the uncertainty of 
both the initial defective proportion and the current de­
fective proportion, since both are derived from testing. 
The sequential testing would probably give the earliest 
termination of testing if the failure rate is very high or 
low. Table 4 summarizes the sample sizes, false alarm 
rates, and power for the five tests discussed. 
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Table 4. Comparison of five tests for detecting an increase in 
the proportion of defective devices. 

Maximum Expected False 
sample sample alarm Power 

Test size size rate (0/0) (0/0) 

Fisher's 12 12 24 61 
One-sample 6 6 22 77 
Two-sample 9 9 25 75 
Sequential 12 5.5 16 75 
Double 12 9.5 25 87 

sampling 

Other approaches such as Bayesian or decision theo­
retic methods could be used for sample sizing and hy­
pothesis testing. Some of the most commonly used 
methods, however, have been summarized in thi s article. 
Lloyd and Lipow7 have produced a good reference book 
on reliability that discusses most of the topics summa­
rized in this article and others, such as reliability growth 
modeling. 

REFERENCES 
I Fisher, R. A. , Statistical Methods for Research Workers. Oliver and Boyd , 
Ltd ., Edinburgh, pp. 96-97 ( 1958). 

2Neyman, J. , and Pearson, E. S .. "On the Problem of the Most Efficient Tests 
of Stati stical Hypotheses," Phil. Trans . Roy. Soc . Ser . A 231 , 289-337 (1933). 

Johns Hopkins APL Technical Digest, Volume 13. Number 2 (/992) 

Detecting an Increase in the Proportion of Defective Devices 

3 Bartlett , M . S., " Egon Sharpe Pearson, 1895- 1980: An Appreciation by M. S. 
Bartlett," Biometrika 68, 1- 12 ( 1981 ). 

4 Wald , A. , Sequential Analysis , John Wiley and Sons, New York ( 1947). 
SCrow, E. L. , Davis, F. A. , and Maxfield, M. W. , Statistics Manllal, Dover 

Publications, Inc., ew York, pp. 2 12-213 and 220-221 (1960). 
6 Burington, R. S. and May, Jr. , D. C , Handbook of Probabili,,· alld Slatistics 

with Tables. McGraw- Hili , ew York, pp. 3 15-3 19 ( 1970). 
7 Ll oyd, D . K., and Lipow, M., Reliability: Management. Methods. and 

Mathematics, Prentice- Hall , Inc., Englewood Cliffs , .1. ( 1962). 

THE AUTHOR 

JACQUELINE K. TELFORD re­
ceived a B.S . degree in mathemat­
ics from Miami University in 1973 
and M.S. and Ph.D . degrees in 
stati stics from North Carolina 
State University in 1975 and 1979, 
respectively. She was employed at 
the U.S . Nuclear Regulatory Com­
miss ion in Bethesda, Maryland, 
from 1978 to 1983. Since joining 
APL in 1983, she has worked in the 
Systems Studies and Simulations 
Group of the Strategic Systems 
Department on reliability analysis 
and testing, test sizing, and plan­
ning for Trident programs. 

331 


