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USING CONDITIONAL ENTROPY TO EVALUATE A 
CORRELATORjTRACKER 

Shipborne correlator/trackers accept reports about nearby ships and aircraft, decide how many such 
platforms must be present to have caused the reports, and determine where they are located. Conditional 
entropy is shown to be a useful concept for evaluating correlator/tracker performance. 

INTRODUCTION 
When a Navy ship is at sea, its captain would like to 

know the identities and positions of all platforms (ships 
and aircraft) in the vicinity. Since platforms within radar 
range are easy to follow, only those platforms outside 
radar range are considered. For each of those platforms, 
the captain may receive reports (from sources located 
elsewhere) at various times, each containing a position 
estimate with the parameters of a 90% confidence ellipse, 
and possibly infOlmation such as ship class or even ship 
name. Unfortunately, such a report seldom contains both 
specific identifying information and precise positional 
information, so it can be difficult to determine exactly 
how many platforms are present. For example, if the six 
reports shown in Figure 1 refer to simultaneous obser
vations, it is difficult to tell whether four, five , or six 
platforms are present. With six reports, the chance that 
all of the associated platforms lie within their 90% con
fidence ellipses is only 53%. Even assuming that they do, 
it is possible, for example, that reports 3, 4, and 6 cor
respond to only one platform since all their ellipses over
lap, or that they correspond to two or three distinct plat
forms. 

Because manual con"elation can be difficult, reports 
are fed into an automated correlator/tracker. It correlates 
the reports by partitioning them into sets, each of which 

• Aircraft 

Figure 1. Confusing reports. Two or more of these reports may 
refer to the same platform. For example, reports 3, 4, and 6 may 
correspond to only one platform since all their ellipses overlap, or 
they may correspond to two or three distinct platforms. 
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is purported to be associated with exactly one nearby 
platform. It also tracks the platforms by estimating their 
positions at any given time, usually the present. If cor
relation has already been performed, tracking can pro
ceed independently, and therefore a tracker can be eval
uated as an isolated algorithm. A correlator, however, 
usually relies on a tracker for feedback about which 
parti tions are the most reasonable. Therefore, a correlator 
cannot, in general, be evaluated independently; in tead, 
the entire correlator/tracker must be evaluated as a unit. 

The simplest and most direct way to evaluate a cor
relator/tracker is to test it on simulated data and calculate 
measures of performance (MOP 'S) that are functions of the 
correlation matrix of the result. This article describes the 
correlation matrix and determines how well some exist
ing MOP 'S evaluate certain extreme correlation matrices. 
It demonstrates how conditional entropy (a concept from 
information theory that is a measure of the average extra 
information obtained by learning an additional fact about 
a random variable) can be used in MOP 'S, and compares 
MOP ' S that use this concept with the other MOP'S. 

CORRELATION MATRIX 
The job of correlation is to place the received reports 

into groups that can be associated with individual plat
forms, usually resulting in a partition of the reports that 
is not exactly the same as the true partition. One partic
ular representation of the difference between the two 
partitions is the correlation matrix (sometimes called the 
confusion matrix). An element EI} of this matrix is the 
number of reports describing the platform associated with 
column j that were determined to relate to the hypothet
ical platform associated with row i. This is not the usual 
correlation matrix that is square, symmetric, and po itive 
definite, and that quantifies statistical correlation be
tween pairs of random variables. Instead, the columns of 
this correlation matrix correspond to actual platforms, 
and the rows correspond to hypothetical platforms; there
fore, the number of rows does not necessarily equal the 
number of columns. Since we can ignore platforms on 
which no reports were made, and we would not generate 
a hypothetical platform having no reports associated with 
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it, each row of the matrix contains at least one nonzero 
element, as does each column. Although the matrix re
sembles a contingency table, we are not interested in 
testing for statistical independence, but would like to test 
how far the rows deviate from being identified with the 
columns. Simulation is usually necessary to obtain such 
a matrix because for real data the true partition might 
itself be unknown, and the correlation matrix would 
therefore be incalculable. 

Several definitions will prove useful. These are given 
in terms of the matrix elements Eij and the normalized 
matrix elements Pij , each of which represents the prob
ability that a randomly selected report (with each report 
equally likely) is associated with a particular row and a 
particular column: 

E++ = II Eij' 
i j 

Ei+ = I Eij' 
j 

E+ j = I Eij ' 

Ei* = maxEij' 
) 

E*j = max Eij' 
I 

~j = Eij /E++ ' 

~+ = I~j ' 

P+ j = I~j' 

p,.* = m~x P,j' 
) 

P*j = m~x ~j . 
I 

All these quantities are nonnegative, and only the Eij and 
Pij are possibly 0; the rest must be positive. 

EXTREME CORRELATIONS AND TWO 
STANDARD MEASURES OF PERFORMANCE 

No matter how many platforms are present or how 
many reports are associated with each platform, at least 
three extreme correlations are possible: perfection, com
pression, and extension. Perfection occurs when all re
ports are perfectly correlated; the correlation matrix is 
square, and each of its rows and each of its columns 
contain exactly one nonzero element. Compression oc
curs when all reports are correlated with one hypothetical 
platform, and therefore the correlation matrix consists of 
exactly one row. Extension occurs when each report is 
correlated with a separate hypothetical platform , and 
therefore the number of rows in the correlation matrix 
equals the number of reports. For the special circum-

Johns Hopkins APL Technical Di8esl. Voilime 13. Number 2 (1992) 

stance where the same number of reports has been gen
erated for each platform, confusion is also possible. In 
that situation, every entry of the correlation matrix has 
a value of I , and the number of rows in the matrix equals 
the number of reports generated per platform. Figure 2 
shows examples of correlation matrices corresponding to 
perfection, compression, extension, and confusion for the 
situation where three reports have been received for each 
of three platforms. 

Two standard MOP 'S called the track purity (TP) and 
the track continuity (TC) have the following definitions: 

The idea for these MOP 'S comes from the concept of 
perfection in correlation. Since a row in the correlation 
matrix should have only one nonzero element, a measure 
of how well this requirement is met is provided by di
viding the maximum element of the row by the row sum. 
An extension of this measure to the entire matrix is the 
sum of the row maxima divided by the sum of all the 
elements, which is simply an alternative definition for the 
track purity. The track purity varies between ° and I and 
attains the value 1 if and only if each row of the corre
lation matrix contains exactly one nonzero element. The 
track continuity is obtained in the same manner by 
working with the columns of the matrix instead of the 
rows. 

Table 1 shows the track purity, the track continuity, and 
their geometric mean for four extreme correlations where 
there are N platforms and R reports per platform. Whereas 
TP and TC individually may reward imperfect correlation 
with the maximum score of 1.0, their geometric mean 
reaches this value if and only if each row and each 
column contain exactly one nonzero element, thus indi-

0 0 

0 0 

0 0 

0 0 3 0 0 

3 0 0 1 3 3 3 1 0 0 

0 3 0 Compression 0 0 

Perfection 0 0 Confusion 

0 0 

0 0 

Extension 

Figure 2. Correlation matrices showing perfection , compression , 
extension , and confusion forthe situation where three reports have 
been received for each of three platforms. Each column corre
sponds to an actual platform, and each row corresponds to a 
hypothetical platform. 
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Table 1. Measures of performance for four extreme correla
tions. 

Measure Perfection Compression Extension Confusion 

TP 
TC 
-Jr--( T-P-) (-TC- ) 

l/N 
1 

l/..JN 

1 

l/R 

l/.JR 

liN 
l/R 

l/..JNR 

Note: TP = track purity, TC = track continuity, N = number 
of platforms, R = reports per platform. 

cating the existence of a one-to-one identification be
tween rows and columns, and therefore signifying that 
the correlation is indeed perfect. 

CONDITIONAL ENTROPY 
The concepts of entropy, joint entropy, and conditional 

entropy (all from information theory) have been in use 
for more than forty years.' We can apply them in eval
uating a correlator/tracker by selecting a particular cor
relation matrix and considering a random variable, Re
port, that takes on the identity of one of the reports 
considered in the correlation matrix, with equal probabil
ities. Then, by using two functions , rowe ) and column( ), 
we create two additional random variables, Rowand Col
umn: 

Row = row(Report) , 

Column = column(Report) . 

Now we calculate their individual, joint, and conditional 
entropies. The entropy, H, of a random variable that takes 
on only a finite number, n, of possible values with prob
abilities PI> P2, ••• , Pn is given by 

11 

H = I ( - Pk in Pk ) , 

k =! 

where 0 in 0 is taken by convention to be O. Therefore, 
the individual and joint entropies of Rowand Column are 
given by 

H(Column) = I(-P+j InP+ j ) , 
j 

H(Column , Row) = I (- Pij Infjj) . 
ij 

Each conditional entropy is simply the difference be
tween a joint entropy and an individual entropy: 

H(Rowl Column) = H(Column, Row) - H(Column) 

= I ( - fjj in fjj ) 
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ij 

- I ( - P+ j in P+ j) , 
j 

H(Columnl Row) = H(Column, Row) - H(Row) 

= I ( - fjj In fjj ) 
ij 

Finally, the average of the conditiona~ entropies is called 
the average conditional entropy (ACE): 

ACE(Row, Column) = Ih[H(Rowl Column ) 

+ H(Columnl Row)] . 

How are these conditional entropies physically realiz
able? Suppose that someone randomly (with equal prob
abilities) and repeatedly selects reports, and we must send 
messages to someone else, indicating the row and column 
numbers of each report. Being clever, we encode the 
messages judiciously on the basis of the various proba
bilities, and minimize the average length of message 
required to describe each report. The average message 
length measures the joint entropy of Rowand Column. 
Similarly, if we only needed to report the column, we 
would judiciously select a different code, and its average 
message length would measure the entropy of Column. 
The difference between these average message lengths is 
the conditional entropy of Row given Column, a measure 
of how much extra information is provided by the identity 
of the row. 

CONDITIONAL ENTROPY MEASURES OF 
PERFORMANCE 

The track purity and track continuity MOP'S mentioned 
previously measure goodness of correlation and range 
between 0 and 1, where 1 is the most favorable value. 
The three different types of entropy measures given pre
viously measure error in correlation and are nonnegative, 
where 0 is the most favorable value. To convert the 
entropy measures into the more standard form, we simply 
take the exponential of their negative; that is, we define 
the informational purity (IP), the informational continu
ity (IC), and the fidelity (F) as follows: 

IP = exp[-H(ColumnIRow)], 

IC = exp[-H(RowIColumn)], 

F = exp[ - ACE(Row, Column)] . 

The following inequalities are proved in the 
boxed insert: 

IP:::; TP, 

IC -::; TC. 

Since F = ,j(lP )(lC) , it follows that 

F -::; ,j(TP )(TC) . 

To see that equality may hold in the previous three equa
tions, one can simply look at the four extreme correla
tions given earlier. 
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PROOF THAT IP ~ TP AND IC ~ TC 

The proof of the theorem is simplified by the following 
lemma: 

Lemma 

If for i = 1, . .. , n we have 0 ~ Xi' and 

o ~ Ci ~ 1 along with I ?= I ci = 1, and we define 0° = 1, 
then 

n n 
IT X/ i ~ I CiXi 
i= 1 i=1 

Proof 

Without loss of generality, we may assume that aJi the 
Xi > 0, for if Xj = 0 and Cj > 0, the left side of the inequality 
is zero and the result is trivial ; whereas if x · = 0 and c- = 

O h 
. J J 

, t e Jth factor on the left is 1 and the jth term on the right 
is 0, and we need only to prove the result for the remaining 
n - 1 pairs of C and x . Similarly, we maya sume that all 
Ci > 0, for if some Cj = 0, again the jth factor on the left 
is 1 and the jth term on the right is 0, and we need only 
to prove the result for the remaining n - 1 pairs of C and 
x. When all values are positive, the result follows from 
Jensen 's inequality? That theorem states that any particular 
convex function of the expected value of a random variable 
cannot be greater than the expected value of that particular 
convex function of the random variable. If we choose the 
exponential function as the convex function and let the 
random variable take on the values YI, ... , Yn with positive 
probabilities CI> . . . , ell' then Jensen 's inequality indicates 
that 

11 n 
I exp (ci Yi) ~ I Ci exp (Yi) . 
i= 1 i= 1 

The lemma follows by identifying Xi with exp(Yi) for 
i = 1, ... , n. 

Theorem 

IP ~ TP and IC ~ TC . 

Proof 

IP = exp{ - [ ~ (-P;j In P;j) -7 (-P;+ In P;+) ] } 

= (g p;/ ij )( ~ p;+P;+ r 
,; ( g P; ,P;j )( ~ p;+P;+ r 
,; ( ~ p;, P;+ )( ~ p;+P;+ r 

= TP , 

where the last inequality is due to the lemma. The proof that 
IC ~ TC is similar. 
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Conditional Entropy 

RATIONALE FOR CONDITIONAL ENTROPY 
MEASURES OF PERFORMANCE 
. ~hy use the conditional entropy MOP 'S, when they are 

SImilar to the corresponding standard MOP 'S and yet more 
complicated? First, the standard MOP 'S concern them
selves only with the row and column maxima, and are 
not functions of smaller values that may be related to the 
vast majority of the reports. For each conditional entropy 
MOP, every value is used, and minor changes in the cor
relation matrix can affect the value of the MOP. Second, 
e:a~uat.ing the correlation is equivalent to quantifying the 
sumlanty between two different ways of partitioning the 
same objects (i.e. , partitioning rep0l1s into platforms). 
Therefore, we should be able to determine how similar 
two different correlator/trackers are in their correlation of 
a batch of reports by using an MOP on a matrix constructed 
in a manner similar to the correlation matrix. If their 
partitions are close together, resulting in an MOP value 
near 1.0, we would expect that the MOP values obtained 
by comparing the two partitions with the true partition 
should be nearly the same. This similarity does not nec
essarily occur when the geometric mean of TP and TC 
is used, but it always occurs if the fidelity is used. If the 
partitions are close together, the fidelity is near 1.0 and 
ACE is near 0. Because ACE has been shown to be a 
metric, which by definition obeys the triangle inequality,3 
the ACE values obtained by comparing the two partitions 
with the true partition must be nearly the same. Since the 
mapping from ACE to the fidelity is continuous and 
monotonic and has a bounded derivative, the fidelity 
values must also be nearly the same. 

COMPUTATIONAL FORMS 
For computational ease, the following forms can be used: 

H (Columnl Row ) 

2;. (Ei+ In Ei+ ) - L ( Eij In Eij) 
I ij 

H (Rowl Column) 

L (E+ j In E+ j ) - L (Eij In Eij ) 
= } ij 

E++ 

ACE (Row, Column) 

H(Columnl Row) + H(Rowl Column) 

2 

PRACTICAL CONSIDERATIONS 
The preceding discussion assumes that each incoming 

report is associated with a specific platform, and that each 
is processed by the correlator/tracker and associated with 
a particular hypothetical platform. This assumption is not 
always true. For example, a sensor can produce a false 
~larm and ~eport the presence of a platform when nothing 
IS there. Smce we are working with a simulation, how
ever, this condition is easily avoided by asserting that the 
input data of the simulation will contain no false alarms. 
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Another option is to allow reports that are fal se alarms, 
but to consider each one as corresponding to its own 
unique platform. In this way, each report is the only report 
in its column of the correlation matrix. Other problems 
are not so easily handled. Although a correlator/tracker 
could receive a report and completely disregard it, we 
simply ignore this possibility. Instead of disregarding a 
report, a correlator/tracker could indicate that it cannot 
determine to which hypothetical platform the report be
longs, thereby declaring it an ambiguity. 

If ambiguities are allowed, then no good way to modify 
the MOP of fidelity is apparent; further research in this 
area would be useful. One way to handle ambiguities is 
to associate all of them with one additional hypothetical 
platform row, evaluating the fidelity as before. This meth
od makes sense from a point of view based on game 
theory, because if the punishment for creating ambigu
ities were too harsh, the correlator/tracker itself could be 
programmed to append this new row and obtain a better 
MOP value. This option, however, makes the triangle in
equality cease to hold for ACE; thus, any measure of how 
close two correlator/trackers came to each other would 
have no meaning. Another option is to calculate the fi
delity for the correlation matrix without the reports that 
led to ambiguities, and then to multiply the result by the 
fraction of reports that did not become ambiguities. This 
method, however, produces a fidelity of 0 if every report 
becomes an ambiguity, a result worse than that for any 
other possible correlation. In particular, the correlator/ 
tracker would do better to declare all the ambiguities to 
belong to one hypothetical platform. Other options for 
modifying the fidelity have been investigated, but none 
seems acceptable in all situations. 

WEIGHTING OF REPORTS 
In all the preceding results, the reports were weighted 

equally. If we give weights to the reports (perhaps be
cause the platforms associated with them are of different 
interest), then we can redefine Eij to be the sum of the 
weights of the associated reports instead of simply the 
number of associated reports. The rest of the results re
main valid as stated. 
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CONCLUSION 
To evaluate a correlator/tracker by means of a corre

lation matrix, we have produced a measure of perfor
mance, the fidelity, that is the exponential of the negative 
of a metric. It can be used to compare the results of 
correlator/trackers with each other, as well as with per
fection. It incorporates the concept of conditional entro
py, is sensitive to all elements of the correlation matrix, 
and is bounded above by a function of standard measures 
of performance. 
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