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RECENT DEVELOPMENTS IN 
POLYGRAPH TECHNOLOGY 

Are polygraphs able to detect lies? If so, how well? How do they work? This article provides background 
information on polygraph applications, accuracy, test scoring, and test formats. The Applied Physics Labo­
ratory is using statistical techniques and personal computers in an effort to improve the scoring of poly­
graph data. Techniques for discriminating truth from deception are described. The results of an application 
of the first algorithm developed at APL are provided and compared with other techniques currently in use. 
The Laboratory is also developing a personal computer system for converting polygraph tracings on paper 
charts into digitized data suitable for analysis by the developing scoring methods. 

INTRODUCTION 

On any given day, more than a thousand suspects in 
criminal investigations will voluntarily take polygraph 
examinations in the hope of being cleared. The analyses 
perfonned are based on the assumption that, when de­
ception is attempted, small changes in human physiology 
occur as a result of either cognitive processing or emo­
tional stress. Tests are administered by more than two 
thousand trained and experienced examiners in the Unit­
ed States, Canada, Japan, India, Israel, Saudi Arabia, 
Turkey, and many other nations. Somewhere between 
40% and 60% of those who take the tests will be cleared 
on the basis of an examiner's decision of "No deception 
indicated." For those who are not cleared, the criminal 
investigative process will continue. Polygraphs affect the 
lives of many people, from those who are the victims of 
criminals to those who are suspects. 

A new project at APL is concerned with improving the 
methods used to analyze polygraph data. Under contract 
with a government defense agency, APL has a research 
program to develop statistical methods to analyze digi­
tized physiological signals received and processed by a 
polygraph instrument. In addition, to bridge the gap be­
tween traditional methods and the implementation of 
new technology, APL is developing an optical scanner 
system for converting standard polygraph pen tracings 
into a digital fonnat that will permit us to apply our 
methods to analyze the data recorded on paper charts. 
Standard recording devices currently do not produce 
digitized physiological signals. 

The use of polygraphs gives rise to many questions 
and concerns, the most basic of which is, Do they work? 
This article provides background infonnation on poly­
graph technology, including applications, test fonnats, 
and polygraph accuracy. Analytic methods for discrim­
inating truth from deception are described, and the results 
of applying the fIrst APL-developed method are reported. 
The digitization of paper records presents an interesting 
challenge; this article describes a method of solution. 
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BACKGROUND 

Polygraph Applications 
The primary use of the polygraph test is during the in­

vestigative stage of the criminal justice process, but 
polygraph results are sometimes presented in court as evi­
dence, and polygraph tests do playa small role in parole 
and probation supervision. In addition to the significant 
role in criminal justice, polygraph examinations are also 
used for national security, intelligence, and counterintel­
ligence activities of the United States and foreign na­
tions. Thousands of federal screening examinations are 
used annually to grant or deny clearance and access to 
sensitive operations and material. 

Test Formats 
A polygraph test fonnat is an ordered combination of 

relevant questions about an issue, control questions that 
provide physiological responses for comparison, and ir­
relevant (or neutral) questions that also provide re­
sponses or the lack of responses for comparison, or act as 
a buffer. All questions asked during a polygraph test are 
reviewed and discussed with the examinee and reworded 
when necessary to assure understanding, accommodate 
partial admissions, and present a dichotomy answerable 
with a definite "yes" or "no." During the test, the ques­
tions are delivered in a monotone voice to avoid empha­
sis on one question or another. 

Polygraph examiners have a choice of several stan­
dard test fonnats. The examiner's decision will be based 
on test objectives, experience, and training. Three classes 
of test fonnats are used: control question tests, concealed 
knowledge tests, and relevant-irrelevant tests. Each for­
mat consists of a prescribed series of questions that to­
gether make up a chart. Two to fIve charts make up a test. 

Control Question Tests. The majority of criminal in­
vestigation tests are conducted by using one of the possi­
ble fonnats of control question tests. These tests consist 
of a series of control, relevant, and irrelevant questions. 
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Each question series is repeated two to five times, and 
each series produces a separate chart. An example of a 
relevant question is, Did you embezzle any of the miss­
ing $12,000? For this test fonnat, the corresponding con­
trol questions will be about stealing; the questions are 
threatening to the subject but are not about the theft at is­
sue. An example is, Before you were employed at this 
bank, did you ever steal money or property from an em­
ployer? The control and relevant questions will be com­
pared. Irrelevant questions will also be asked that will 
probably be answered truthfully, are not stressful, and act 
as buffers. Do you reside in Maryland? or Do they call 
you Jim? are examples of irrelevant questions. 

Concealed Knowledge Tests. If the police have facts 
about a crime that have not become public or common 
knowledge (facts that would be known to the guilty sub­
ject but not to the innocent), they will use a concealed 
knowledge test. 

In a murder case in Maryland, newspapers had re­
vealed only that a woman was found murdered in a motel 
room. All suspects denied knowledge of the details of 
her death. The concealed knowledge test fonnat was 
used in the polygraphs given. The focus was on the 
method of the murder. The first series comprised four 
questions: Was Sally stabbed? Was Sally strangled? Was 
Sally shot? Was Sally poisoned? After three repetitions, 
each in the same sequence but recorded on separate 
charts, the examinee was told that the victim was stran­
gled. The second series tested the examinee for con­
cealed knowledge of the means of strangulation. It in­
cluded six questions: Was Sally strangled with a heavy 
rope? Was Sally strangled with a jewelry chain? Was Sal­
ly strangled with a man's belt? Was Sally strangled with 
a venetian blind cord? Was Sally strangled with a wom­
an's stocking? Was Sally strangled with a lamp cord? 
This series was repeated three times on separate charts. 

To the first two suspects, the questions had equal 
emotional value because they did not know before the 
test which answer was correct. The third examinee had 
good reason to conceal knowledge of the details, because 
to admit knowing details would implicate him in the 
crime. Consequently, his physiological responses were 
much greater to the question about strangling in the first 
series and to strangling with a venetian blind cord in the 
second. After the test, he confessed (personal communi­
cation, W. T. Travers, 1979). 

In another version of the concealed knowledge test, 
the examiner does not know the critical item but believes 
the examinee does know. In one kidnapping case, the ex­
aminee was the prime suspect. The examiner used a map 
marked in grids and asked the examinee where the bod­
ies were buried, specifying each grid location in series. 
When a section was identified on the basis of the sub­
ject's reactions, a map of that section, also divided into 
grids, was used to narrow the focus. In that manner, the 
location of the bodies was revealed. I This type of test is 
also used to locate stolen vehicles, money, and other 
goods, as well as persons in hiding. 

Relevant-Irrelevant Tests. A relevant-irrelevant test 
differs from a control question test in several ways. It has 
few, if any, control questions on each chart, the sequence 
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of questions usually varies from chart to chart, and the 
amplitude of reactions to relevant questions is not com­
pared with the amplitude of reactions to the control ques­
tions. This type of test is widely used for multiple-issue 
testing, such as that used for commercial and counterin­
telligence screening. 

Physiological Measures 
Regardless of the test fonnat used, three physiological 

measurements are nonnally recorded: 
1. Volumetric measures taken from the upper arm: A 

standard blood pressure cuff (see Fig. 1) is placed on the 
arm over the brachial artery and inflated to about 60 mm 
Hg pressure for an indirect measure of blood pressure 
variables, together with the strength and rate of pulsation 
from the heart. 2 

2. Respiratory measures taken from expansion and 
contraction of the thoracic and abdominal areas using 
rubber tubes placed around the subject (see Fig. 1): The 
resulting data are closely related to the amount of gas­
eous exchange.3 

3. Skin conductivity (or resistance) measures of elec­
trodennal activity, largely influenced by eccrine (sweat) 
gland activity: Electrodes are attached to two fmgers of 
the same hand (see Fig. 2), and a galvanometer records 
the measured skin conductance or resistance to an elec­
trical current.4,5 

Accuracy of Polygraph Decisions 
Real Cases. When some charts are scored, the ex­

aminer cannot make a clear decision and must score the 
chart as inconclusive. From analyzing charts where deci­
sions were made, a defense agency completed a report on 
polygraph validity based on all the studies of real cases 
conducted since 1980. Examiner decisions were com­
pared with other results such as confessions, evidence, 
and judicial disposition. Ten studies, which considered 
the outcome of 2,042 cases, were reviewed. It must be 

Figure 1. Measuring a subject's cardiovascular and respiratory 
responses. 
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Figure 2. Measuring skin conductivity or resistance using a 
galvanometer. 

pointed out, however, that studies of real polygraph tests 
are necessarily flawed by the fact that the guilt or inno­
cence of the subject must be determined, and correct 
calls are more easily confmned than incorrect calls. For 
example, if the test shows that the subject is guilty, the 
examiner will often obtain a confession. Thus, tests 
scored as guilty are more often confirmed if the subject is 
gUilty. If the test shows that the subject is innocent, other 
people may be investigated. If another person is found to 
be guilty, the test becomes confirmed innocent. With this 
in mind, and assuming that every disagreement was a 
polygraph error, the results indicate an accuracy (or 
validity) of 98% for the 2,042 confmned cases. For 
deceptive cases, the accuracy was also 98%, and for non­
deceptive cases, 97%. 

Mock-crime studies, such as the one described later in 
this article, generally have correct calls about 85% of the 
time. Because of the nature of mock-crime studies, it is 
believed that real-crime tests are scored as accurately or 
more accurately. The accuracy of polygraph decisions for 
real cases, then, is somewhere between the 85% demon­
strated with mock-crime studies and the 98% demon­
strated with confmned charts. 

Special Case: Psychopathic Liars. It is widely be­
lieved that psychopathic liars can beat a polygraph test 
because they are not bothered by lying. Psychophysiolo­
gists who have studied psychopaths believe they are es­
pecially reactive, at least in electrodermal responding.6,7 

All of the studies focused on this issue indicate that the 
detection rates do not differ significantly for psychopaths 
and nonpsychopaths.8

-
12 

AUTOMATIC SCORING 
In 1973, Kubis 13 presented the concept of quantifying 

polygraph patterns for computer analysis. Later, 
analysts l4 at the psychology laboratory at the University 
of Utah began to develop a computerized scoring al­
gorithm, employing a few of the many variables avail-
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able in physiological patterns. Their research suggested 
that the most useful measures were the amplitude and 
duration of the electrodermal response, the rise and fall 
of the cardiovascular pattern (related to blood pressure 
changes), and the length of the respiration tracing within 
a fixed time sequence. 15 These responses were incorpo­
rated into a special-purpose computer analytic system, 
marketed under the name CAPS (Computer Assisted 
Polygraph System).14,16 

A novel aspect of the CAPS system is the introduction 
of decisions based on a probability figure. For example, 
deception might be indicated with a probability of 0.89. 
The probabilities were developed by using both laborato­
ry and field polygraph data, the latter being tests con­
ducted by the U.S. Secret Service that were confirmed by 
confession. 16 Two other features of the CAPS system are 
its ability to rank-order reactions and its analytic system, 
which gives the greatest weight to electrodermal re­
sponses, less to respiratory responses, and the least to 
cardiovascular responses. Before this work, scoring sys­
tems gave equal weight to responses from each of the 
three physiological recordings. A deficiency of the CAPS 

system is that the data are taken from a field polygraph 
instrument that is often nonlinear, and the analog-to-digi­
tal conversion (ADC) is performed after some processing. 
New instruments will reduce distortions in the data by 
performing the ADC before any processing, displaying, or 
printing. 

In 1989, Axciton Systems, Inc. of Houston, Texas, de­
veloped a new commercial computerized polygraph (see 
Fig. 3). This system features a computer that processes 
the physiological signals directly, scrolls the physiologi­
cal data across a screen in real time during testing, pro­
vides for a later printout, records the test on a hard drive 
or a floppy disk, and provides a system for ranking sub­
ject responses. The system has been field tested with real 
cases in a Texas police department and is user friendly. 
The charts, printed after the test, look like standard poly­
graph charts and can be hand-scored by traditional meth­
ods. The availability of the Axciton system and the prob­
ability of other new computerized polygraphs becoming 
available make the APL research timely, because instru­
ments on the market will be able to incorporate the 
results of our work. 

RESEARCH AT APL 

The development of an automatic scoring algorithm 
for use with new computerized data collection systems is 
the focus of our research. The algorithm will be able to 
use more sophisticated techniques than human exam­
iners, should be more accurate (higher validity), and will 
ensure consistency from case to case. It is expected that 
the accuracy will improve as the automatic scoring tech­
niques evolve. 

The first algorithm developed uses data collected with 
the CAPS system and is applicable for the one control 
question format used to generate the data. Future al­
gorithms will address different question formats and will 
use digitized data that have been recovered from paper 
charts. Most polygraph data exist only on charts and will 
continue to be collected as tracings on paper for much of 
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the remainder of this century. As a second task, APL is de­
veloping a system to scan the paper charts and convert 
these time series into digitized data to be used for 
specialized algorithm development and evaluation. Since 
information is lost when the pens transcribe the signals 
on paper charts, the data from the scanner will be scored 
differently. 

Algorithm Development for Automatic Scoring 
We are using an empirical approach for the develop­

ment of an algorithm. Data are collected from both de­
ceptive and nondeceptive subjects. The study of the 
physiological measures requires using digitized data 
from laboratory studies in which we know whether the 
subject is telling the truth or being deceptive. Ultimately, 
the scoring algorithm must be enhanced and validated by 
using data from real polygraph tests in which the deci­
sion of truth or deception has been verified by indepen­
dent means. 

The output of each recording channel (physiological 
measurements) is represented by a time series of values. 
Features (also referred to here as parameters) of the time 
series, which characterize the responses to questions, are 
studied to determine which can be used to distinguish de­
ceptive and nondeceptive subjects. An example will help 
to explain the method. Figures 4 and 5 are samples of 
charts from a mock -crime study. The figures can be used 
to see how characteristics of skin conductivity are used 
to detect deception. The subject may be telling the truth 
or lying about having seen a psychologist, falsifying an 
employment application, or stealing a watch. Notice that 
the skin conductivity increases when the subject is asked 
about the watch. In fact, the subject did steal the watch. 
The rise is associated with deception and can be charac­
terized by a rapid increase in the amplitude of skin con­
ductivity. (The skin conductivity tracing is plotted 5 to 7 
seconds behind the other tracings to reduce pen colli­
sions.) If the pattern of increases is repeated over many 
cases, it suggests that the change in skin conductivity 

Figure 3. Demonstration of a poly­
graph examination using the Axciton 
computerized polygraph system. 
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amplitude, after a question is asked, may be a valuable 
parameter in discriminating between truth and deception. 

Many different features can be used to characterize the 
time series of responses to the questions. Once a list of fea­
tures is chosen, it is necessary to select the ones that best 
separate deceptive and nondeceptive subjects and to de­
velop a discrimination rule based on the parameters. To be­
gin the efforts, polygraph data are required. 

Training Data from Mock Crimes. To acquire data for 
developing an algorithm, a pool of volunteers is selected. 
Half are randomly chosen and asked to commit a mock 
crime. All of the volunteers then take a polygraph test, 
and all deny committing the crime. The polygraph ex­
aminers have no knowledge of the guilt of the subjects. 
They score each test as inconclusive, deceptive, or non­
deceptive. Data collected in this type of experimental 
setting are often used to evaluate different polygraph tech­
niques. Although many mock-crime experiments have 
been performed, few have produced digitized data suit­
able for use in developing an automatic scoring system. 
Suitable data are available, however, from two experi­
ments. One of these data sets has been used to develop an 
algorithm. 

Data from mock-crime studies have the advantage of 
a well-established knowledge of which subjects are at­
tempting deception. The examiners, however, typically 
provide more inconclusive and incorrect results for mock 
crimes than they do for real, verified criminal cases. One 
possible explanation is that the control questions regard­
ing an individual's character may be more of a threat to 
the subject than the relevant question concerning a mock 
crime. As a result, a gUilty person may be scored as in­
conclusive or nondeceptive. For these mock crimes, the 
threat to the person during a relevant question is substan­
tially diminished, and the reactions being measured are 
more easily overcome by physiological reactions not re­
lated to the attempted deception (low signal-to-noise ra­
tio). Even so, polygraph tests for mock-crime studies 
usually produce correct conclusions. 
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Removing Artifacts. Even when data are collected in a 
laboratory setting, artifacts are present. Artifacts, or data 
distortions, are often the result of a data collection prob­
lem. Figure 6 provides examples of two types of prob­
lems: centering artifacts and a clipped series. A centering 
artifact occurs when the examiner adjusts the polygraph 
instrument, and a clipped series occurs when the data ex­
ceed the dynamic range of the ADC. Problems associated 
with these and other artifacts are being addressed. 

Characterizing the Response. When this project start­
ed, the only digitized data available were provided by the 
Department of Defense Polygraph Institute at Fort Mc­
Clellan, Alabama. The data consisted of a set of pa­
rameters produced by CAPS. 14 As a result, the initial work 
to develop a discrimination rule has been based only on 
the features selected by CAPS. This system characterizes 
each blood pressure response and each skin conductivity 
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response by using twenty parameters, and it character­
izes each of the two respiration responses by using only 
the tracing length for a 10-s period. The twenty 
parameters characterizing blood pressure and skin con­
ductivity consist of various measures of the area under 
the response curve; times relating response onset to 
peak amplitude, or recovery; rise and recovery rates; 
and the tracing length for a 20-s period. 

These parameters characterize the data sufficiently to 
detect deception as well as human examiners do. Other 
parameters should be investigated. The APL researchers 
plan to look at the time-series history just before the 
question to predict the physiological measurements that 
would be expected if the subject were not deceptive. This 
sort of prediction could be used to establish a better base­
line for computing parameters such as the area under the 
curve. Individual characteristics will also be treated 

Figure 4. Sample polygraph chart 
showing responses to control and rele­
vant questions from a mock-crime 
study. 

Control See psychologist? Steal watch ? Neutral 

Control Steal watch ? 
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Falsify application? 

Figure 5. Another sample polygraph 
chart showing responses to control and 
relevant questions. 
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when calculating parameters. For example, some in­
dividuals react to questions immediately, whereas others 
require a few seconds. Reaction-time information is avail­
able from the data and should be considered when char­
acterizing the responses. This type of information is used 
by human examiners but not by the CAPS system. 

Other types of parameters are not easily evaluated by 
the human examiner. Frequency information is nearly 
impossible to evaluate from paper tracings but is easily 
obtained by using a computer. Detrending algorithms can 
be used before the parameters are calculated to remove 
nominal physiological changes with time. Since algo­
rithms for discrimination studies (neural networks, dis­
criminant analysis , and log it analysis) all provide rea­
sonable discrimination rules , we expect that the biggest 
improvements in the scoring of the standard measure­
ments will come from a careful development of charac­
terizing parameters. 

From the four basic channels of information, more than 
one hundred different characterizations of the physiologi­
cal response to a question will eventually be evaluated to 
fmd the best subset for discriminating between truth and at­
tempted deception. The vector of characteristics is called a 
feature vector and is computed for each question. We have 
not yet described how to select the most useful elements of 
the vector of characteristics and how to combine them to 
provide a probability of deception. 

Methodologies for Discrimination. Three feature-vec­
tor-based methods for discriminating between deceptive 
and nondeceptive subjects have been considered. The 
fIrst, the use of artifIcial neural networks, requires train­
ing a network by using feature vectors as input and zero­
to-one target (output) vectors to separate innocent and 
deceptive subjects. Once the network has been trained, 
new feature vectors produce a number between zero and 
one. A value near zero indicates that the subject was non­
deceptive, and a value near one indicates that the subject 
attempted deception. This approach produces a useful 
solution, but it does not provide a probability of decep­
tion or clear information about which feature-vector ele­
ments are statistically signifIcant, and it does not offer 

Figure 6. Sample artifacts present on 
a polygraph chart. 
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the insights that other methods do. Nevertheless, this ap­
proach provides a rich modeling capability and is being 
investigated. 

A second method, statistical discriminant analysis 
(used by the CAPS system16) , usually assumes the fea­
tures can be modeled using a normal probability distribu­
tion. During training, statistical models for feature vec­
tors from both deceptive and nondeceptive subjects are 
built. The method uses these models to compute both the 
likelihood that a subject is deceptive and the likelihood 
that the same subject is nondeceptive, and then it makes 
a decision on the basis of which is more likely. Another 
application of statistical discriminant analysis, involving 
kernel estimation, has been applied by Dustin (personal 
communication, 1990) to polygraph analysis by .using 
techniques described by Priebe and Marchette. 17 This ap­
plication does not assume normality of feature-vector 
elements and has provided promising results. 

We chose a third method, known as logit regression, 
for the fIrst algorithm developed at APL. This method 
provides insights into how the algorithm works. For ex­
ample, it provides information about how the different 
channels of data are weighted in making a decision. It al­
lows the investigators to easily explore many ideas and 
examine factors such as age and sex. In a manner similar 
to that of linear regression, logit regression selects the 
best elements of the feature vector to incorporate into the 
algorithm. It does this while considering the elements al­
ready selected for the models, making sure that new ele­
ments do not contain essentially the same information. 
This method does not assume that the feature vectors 
have a normal distribution. 

Logistic Regression. Before explaining logit regres­
sion, linear regression will be reviewed briefly. For 
selected values of Xl> X2, ' . . , xp ' a value y is measured. 
It is assumed that, except for noise, a linear relationship 
exists between the Xi values and y; that is , 
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For a series of measured y values, corresponding to 
different values of x;'s, the coefficients, a;'s, are selected 
to minimize the squared difference between the observed 
y and that predicted by using the model; that is, the a;'s 
are selected to minimize 

for all the measured values of y. 
The x;'s correspond to the feature-vector elements in 

this model. The y's would have a value of one for decep­
tive subjects and zero otherwise. This model allows the 
use of substitute or additional functions of the feature­
vector elements so that models such as 

can be developed by letting X3 = xi and X4 = X IX2' The 
right side of Equation 1 provides an estimate of the mean 
for y at given values of x. 

If linear regression were used to provide probabilities 
of deception, the model would produce probabilities 
greater than one and less than zero. The range of the lin­
ear model on the right of Equation 1 and the range of the 
response on the left are mismatched. No valid probability 
interpretation exists. The odds (the ratio of the probabili­
ty of nondeceptive to the probability of deceptive) range 
between 0 and 00 , so the log of the odds ranges between 
-00 and +00 . Since a linear model has the same range as 
the log of the odds, it is reasonable to consider a model 
of the form 

The expected value of the log of the odds is more natu­
rally modeled as linear than is the expected probability. 
This model , called the log it model, is well document­
ed. 18

,19 The assumptions for this model are simple: the 
data ( y's) are statistically independent, and the log of the 
odds is a linear model of feature-vector elements. 

Once the coefficients, a;'s, are estimated, the probabil­
ity of deception is easily calculated by using 

where AX = ao + al x l + ... + apxp' 
This model has been used successfully for many 

years, for a variety of applications. Comprehensive 
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statistical software packages can fmd the maximum 
likelihood estimates of the coefficients. The SAS Institute 
procedure LOGISTIC will perform a "stepwise" search to 
fmd those feature-vector elements that best discriminate 
physiological responses of deceptive subjects from the 
responses of those who are nondeceptive. The coeffi­
cients, a;'s, provide information about how the algorithm 
works. For example, the coefficients show how the 
different measurements are weighted and which ele­
ments need to be computed. 

THE ALGORITHM 
The available mock-crime data were taken from a 

control question test with eleven questions per chart and 
three charts per subject. The first question for each chart 
was a neutral question such as, Are you in the state of Al­
abama? The second question was a sacrifice (not scored) 
relevant question such as, In regard to the theft, do you 
intend to answer the questions truthfully? The first two 
questions give the subject time to adjust to the test ques­
tions; they are not used by the examiner when scoring 
charts. Next, a neutral (N) , a control (C) , and a relevant 
(R) question are asked in that order. The control question 
is a probable lie, whereas the relevant question is direct­
ed at the subject's guilt or innocence. This series of three 
questions is repeated three times with some variations in 
wording. Thus, the question format on the chart is 

NR NCR NCR NCR. 
The data consisted of forty-two CAPS parameters comput­
ed for each of eleven questions on each of three charts. 

In scoring charts with this format, examiners compare 
adjacent control and relevant responses. This approach, 
however, does not easily generalize to other test formats 
and does not allow for the use of the first two questions 
or the neutral questions, except as buffers. For this rea­
son, the logit model is used to find the best way to com­
bine the information, for a given parameter, on a chart. 
The data could be displayed as shown in Table 1. The 
columns in the table are feature vectors. A score is com­
puted for each row in the table and could provide, for ex­
ample, the probability of deception by using a single fea­
ture, such as skin conductivity amplitude, for the chart. 
For each element, X ij' of the feature vector, the au's in the 
equation are estimated, using all charts, where 

scorei = log(odds)i 

and where the xu's correspond to the ith feature or param­
eter for each of the eleven questions. 

Since there are forty-two CAPS parameters, this step 
provides, for each chart, forty-two estimated probabili­
ties of deception, some of which provide similar or cor­
related information. The loge odds) scores for each pa­
rameter are put into a second log it model to determine 
which of the parameters can best be used for discrimina-
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Table 1. Format and feature-vector display for the control question test analyzed. 

Logit 
computed score 

Scorej, for 
Feature 1 

Score2, for 
Feature 2 

Score42, for 
Feature 42 

N 

XI ,I 

X2,I 

X2,I 

R N C 

2 3 4 

XI,2 

X2,2 

tion and to fmd the best combination of the scores; that 
is, 

A stepwise logit procedure is used to find which 
score/s (or parameter combination) can make a statisti­
cally significant contribution to the discrimination. If 
several score/s provide similar information, only one 
will have a nonzero B i coefficient. A parameter may at 
first appear to have little discriminating capability but 
may provide useful insights when used with other 
parameters. The stepwise procedure chooses a subset of 
statistically important parameters. 

Finally, the log(odds)'s from each chart for a subject 
are averaged and converted to a probability of deception. 
For purposes of comparison with the examiner, subjects 
with probabilities between 0.45 and 0.55 are scored as 
inclusive. 

Automatic Scoring Results 
When all the test data from the sixty available sub­

jects are used to estimate the coefficients (a/s and b/s) 
in the logit models, and the resulting algorithms are used 
to score these same subjects, fifty-nine of sixty are 
scored correctly. Training the algorithm (estimating the 
a/s and b/s) and testing using the same data are not valid 
procedures. The algorithm essentially memorizes the da­
ta. Instead, all subjects but one are used for training, and 
the remaining one is used for testing. Then, the algorithm 
is again trained by using fifty-nine subjects, but this time 
a different subject is held out for testing. The process of 
training and testing is repeated sixty times; each time the 
test uses a different subject. This process is known as 
cross-validation and is used to arrive at the results 
provided in Table 2. 

Since population characteristics for the sampled Fort 
McClellan subjects may be different from those for other 
populations, it can be argued that an algorithm trained on 
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Table 2. A comparison of scoring methods. 

Method of scoring 

Original examiner 

Independent 
(blind) examiner 

Computer Assisted 
Polygraph System 

First APL algorithm 
(0.45 to 0.55 scored 
as inconclusive) 

Percent 
inconclusive 

23 

23 

40 

7 

C R 

10 11 

XI,IO XI,II 

X2,1O X2,11 

Percent of 
remaining correct 

85 

83 

89 

84 

this population should perform better for this population 
than other algorithms or standard procedures used by ex­
aminers for a more general population. Since the training 
data set is very small, however, the results are not ex­
pected to be as favorable as other methods. (The training 
can be influenced by a single subject.) The CAPS training 
is based on a larger data set containing both real and 
mock crimes. Another reason not to expect exceptional 
performance from this training stems from the difficul­
ties with mock-crime data sets discussed earlier. Guilty 
subjects may be more threatened by control questions 
than relevant questions. Some subjects will even fall 
asleep during the test. An additional reason not to expect 
results better than those of other methodologies is that 
the parameters are limited to those provided by CAPS. 

Table 2 provides the results for the mock -crime study 
used to train the algorithm and compares the cross-vali­
dated results with those of the CAPS system and standard 
scoring methods. The first APL algorithm was as accurate 
as the human examiners and, surprisingly, could remain 
so even while scoring the more difficult charts. It there­
fore produced a significantly smaller inconclusive rate. 
If, when using the new algorithm, probabilities between 
0.30 and 0.70 are scored as inconclusive, the results are 
identical with those for CAPS. 

The first attempt at developing an algorithm was 
limited by the small size of the training data set and 
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preselected parameters. New algorithms will examine 
many other parameters computed from recently provided 
and expected data. Some of the data will be from paper 
charts digitized with an APL-developed digitizer. 

Digitizing Data on Paper Charts 
As part of the work at APL, a polygraph digitizer is be­

ing developed that takes a paper polygraph chart as input 
and generates a computer file as output that can be ana­
lyzed with the algorithms described previously. Canon 
scanners were purchased, and the microprocessor control 
chip was modified so that very long charts (sometimes 9 
ft) could be read. Software was developed to scan charts, 
convert them into raster image files, and store them on 
disks. These flies can be processed with the digitizer 
software to convert them into meaningful time-series da­
ta to be scored by the APL system under development. 

Considerations. One problem with digitizing data 
from paper polygraph charts involves the pens used to 
trace the data. They are mounted on pivots, so that if 
large responses are registered, the pen tracings can actu­
ally move backward (see Figs. 4 and 5) in time. The ef­
fect could be removed if the actual center of the curve 
(vertical location on the paper) could be found. There­
fore, a software module was written that prompts the us­
er to identify the center of each curve to digitize. 

Another problem occurs when two traces cross each 
other on a chart (see Figs. 4 and 5). Any algorithm used 
to follow data from left to right will be confused when a 
trace can go in two or more directions. This problem was 
solved by using a variety of different image processing 
techniques. First, the traces are thinned by using a classic 
line-thinning algorithm described by Deutsch.2o In this 
process, each pixel of the digitized chart is compared 
with its neighbors to decide whether or not it is outside 
of a boundary. If so, it is deleted. This process continues 
until the skeleton is only one pixel wide at all points. A 
line-following algorithm was written that traverses this 
skeleton and converts it into data curves for use with the 
analysis program. 

Regression-like techniques are used to predict where 
a curve will appear in the future. The predicted direction 
lags the actual direction in which the curve moves and is 
less subject to variabilities resulting from the line thin­
ning. When two traces cross, the thinned line branches 
off in two directions. The program needs only to choose 
which direction the curve is likely to take. Because the 
prediction is less subject to anomalies in a particular 
trace, the program makes a reasonable choice when 
selecting which of two lines to follow. 

Digitization System. The digitization system requires 
some user intervention. In the future, this prototype will 
be developed into a system that will require less inter­
vention and will digitize the large majority of polygraph 
charts, independently of their source. The user will be 
able to provide chart annotations, grid markings, adjust­
ment and question markings, and a host of other poly­
graph-specific information. 

The New Polygraph Analysis System 
A significant effort and an important part of the APL 

project is the development of a system for entering, edit-
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ing, displaying, and printing data. On paper charts, trac­
ings cross each other and trend up or down. Pens often 
hit stops or are reset. The resulting discontinuities in the 
data make the charts difficult to score. Figure 7 provides 
an example of a chart with the normal line crossings and 
pen adjustments. With computer-generated charts, these 
difficulties can be eliminated. Long-term trends, which 
make pen adjustments necessary, are removed with a 
detrending algorithm. Data input definitions can be con­
structed to allow a range of values to accommodate any 
reasonable measurements. Figure 8 provides a view of 
the data shown in Figure 7 after the APL-developed sys­
tem has detrended them and removed pen artifacts. 
(These data were digitized by using another system21 but 
contained the expected chart artifacts.) The pen used to 
plot skin conductivity is made longer than the others to 
reduce the number of pen collisions. This difference cre­
ates a 7 -s delay in the tracing and an added complication 
for the examiner trying to score charts. This delay has 
been removed from the computer image in Figure 8. 

FUTURE WORK 

Most of our future efforts in scoring the standard 
physiological measurements are apparent and have been 
described. The Laboratory will soon have digitized data 
from law enforcement agencies for use in developing 
new algorithms. These data will help in the selection of 
new features and the treatment of different test formats. 
In the longer term, we hope to investigate other physio­
logical measurements. Evoked potentials from electroen­
cephalograms, muscle movements from electromyo­
graphs, QRS waves (a diagnostic feature) from elec­
trocardiograms, eye shifts and saccadic eye movement, 
and pupillometry have all been shown to have diagnostic 
value for lie detection in a laboratory setting. 

CONCLUSION 

In normal conversation, we continually evaluate peo­
ple's convictions in what they tell us by voice intona­
tions, eye movements, gestures, and general "body-En­
glish." Attempted deception by children is often obvious 
from observing these mannerisms. A jury cannot help 
but evaluate witnesses and the accused by watching their 
behavior. In some sense, jurors perform their own ad hoc 
lie-detection tests. 

A polygraph test monitors physiological mannerisms 
in a controlled environment. Tests are conducted by a 
knowledgeable examiner asking carefully worded ques­
tions. Whether or not polygraphs are measuring lies or 
emotional responses, they provide a signal whose char­
acteristics can be used to detect attempted deception. 
Researchers at APL are using scientific methods to deter­
mine which characteristics are most important and how 
they should be combined to provide the best possible es­
timate of the probability of deception. Since more than 
one thousand people each day take polygraph tests, our 
efforts to improve these tests could affect many lives by 
keeping criminals off the street, monitoring probation, 
preventing the conviction of innocent people, and im­
proving our national security. 
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Figure 7. Sample polygraph data on 
a chart as they appear to the examiner. 

Figure 8. The same polygraph data 
shown in Figure 7 as they appear to the 
examiner on a video screen . 
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